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PERIODIC ORBITS OF PERTURBED NON-AXIALLY SYMMETRIC POTENTIALS IN
1:1:1 AND 1:1:2 RESONANCES

MONTSERRAT CORBERA', JAUME LLIBRE? AND CLAUDIA VALLS?

ABSTRACT. We analytically study the Hamiltonian system in R® with Hamiltonian

1 1
H = o (p: +py +92) + 5 (wia” + w3y’ +wie®) +e(as’ + 2(ba” + ),

being a, b, c € R with ¢ # 0, € a small parameter, and w1, w2 and ws the unperturbed frequencies of the oscillations
along the z, y and z axis, respectively. For |e| > 0 small, using averaging theory of first and second order we
find periodic orbits in every positive energy level of H whose frequencies are w1 = ws = w3/2 and w; = w2 = ws,
respectively (the number of such periodic orbits depends on the values of the parameters a,b,c). We also provide
the shape of the periodic orbits and their linear stability.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Over the last half century dynamical systems perturbing a harmonic oscillator in dimension 2 or 3 have been
used extensively to study the local motion around equilibrium points or periodic orbits and their stability. This
kind of studies are relevant in many physical, chemical,... problems of the sciences. The study of these motions
has been made mainly using several numerical techniques, see for instance [1, 3, 4, 5, 6, 7, 8, 11, 14, 15, 21, 22] to
cite just a few.

We consider the following potential
1
V= 5(&)%:62 + wiy? + wiz?) +e(az® + 2(bx? + cy?)),

of a three-dimensional dynamical system composed of perturbed oscillators, where a, b, c € R are parameters, wy,
wo and w3 are the unperturbed frequencies of the oscillators along the z, y and the z axes respectively, and ¢ is
the small perturbation parameter.

The Hamiltonian associated to the potential V' is
2

(1) H=2(pz+py+p2)+— 5 3% 4 e(a2d + 2(ba? + cy?)),
and the corresponding Hamiltonian system is

T = Dy, Pr = —wir — 2ebxz,
(2) Y = py; Py = —wiy — 2ecyz,

Z =Pz P, = —wiz — e(bz? + cy® + 3a2?).

As usual the dot denotes derivative with respect to the time ¢ € R. Due to the physical meaning the frequencies
w1, wy and wg are all positive.

The objective of this paper is to study analytically the existence of periodic orbits of the Hamiltonian system
(2) and their linear stability. The study of periodic orbits plays a key role in understanding the orbital structure
of a given differential system. The motion in neighborhood of a periodic orbit can be determined by their kind
of stability. More precisely, the stable periodic orbits explain the dynamics of bounded regular motion, while the
unstable ones helps to understand the possible chaotic motion of the system.

The Hamiltonian here studied has been used for modeling the motion in a central region of a galaxy. It
is a particular Hamiltonian of the class of Hamiltonians denoted by some authors generalized Hénon—Heiles
Hamiltonian in dimension 3. There are several papers studying the dynamics of these class of Hamiltonians. Now
we shall mention some of the closer papers to the Hamiltion (1) here studied. In 1998 Ferrer et al. studied this

;Hamiltonian in the particular case a = —1/3, b = ¢ = 1 in [9], where they proved numerically the existence of
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2 M. CORBERA, J. LLIBRE AND C. VALLS

some periodic orbits of the corresponding Hamiltonian system, and also showed analytically the existence of three
circular periodic orbits. Four years later in [10] Ferrer et al. improved these previous results for the Hamiltonian
(1) with b = ¢, we remark that in this case scaling the variables it is not restrictive to take b = ¢ = 1. Haffmann
and van der Meer [13] also in 2002 studied the Hamiltonian (1) for the values of the parameters a = 1 and b = ¢. In
these three quoted previous papers the authors take equal frequencies, i.e. w1 = wo = w3. Also in 2002 Lanchares
et al. [16] studied the Hamiltonian (1) with w; = we # w3 and for fixed values of the parameters a,b = c. We
remark that in this mentioned four papers all the Hamiltonians studied have an axial symmetry and the major
part of the results on their periodic orbits are numerical.

When ¢ = 0 the Hamiltonian becomes H = Hy + Hy where

1
Hy = §p§+

w22 1 222 4 w22
2Ty, Hy = (p; +p2) + %
The Hamiltonian Hq is the well known harmonic oscillator and the Hamiltonian Hs is a generalized Hénon Heiles
Hamiltonian in dimension 2. Note that the Hamiltonian system associated to H = H1+ H» splits into two separate
Hamiltionian systems, both are widely studied by several authors, see for instance [12, 14, 17, 19]. So in this work
we do not consider the case ¢ = 0.

+e(az® + br?z).

Without loss of generality we can assume that ¢ = 1. Indeed, taking the change of variables
chxv Y:Cy7 Z:CZ, PX:CPza PY:pr7 PZ:Cp27

we transform system (2) into system

X = Py, Px = —w?X — 2¢bX Z,
(3) Y = Py, Py = —w3Y —2eY Z,
Z =Py, Pz = —w3iZ —e(bX?+Y? +3a2?),

in which @ = a/c and b=5b /c. From now on in order to avoid heavy notation we denote again (X,Y, Z, Px, Py, Pz, a, B)
as (z,y, 2, Pz, Py, Dz, 4, b), i.e. we work with system (2) with ¢ = 1.

In this paper we will study the periodic orbits and their linear stability of the Hamiltonian system (2) by using
the averaging theory of first and second order described in Section 2. In order to apply the averaging theory for
computing periodic orbits of a differential system we must overcome the following steps:

(a) Find a convenient change of variables which allows to write the differential systems into the normal form
of the averaging theory.

(b) Compute for the differential system in normal form its averaged function. For doing that some integrals
must be computed.

(c) Compute the simple zeros of the averaged function, each one of these zeros provides a periodic orbit of
the initial differential system.

(d) In the case of Hamiltonian differential systems its periodic orbits usually belong to families of periodic
orbits depending on the energy and consequently they are not isolated in the set of periodic orbits. Hence
for such systems it is necessary to apply the averaging theory in each energy level fixing the Hamiltonian.

With the normal form that we use for applying the averaging theory we only can study the periodic orbits of
the Hamiltonian system (2) with ¢ = 1 having frequencies either wy = wy, wy = 2wy or w; = ws = ws. These
periodic orbits are the unique ones which come from the simple zeros of the averaged function associated to the
Hamiltonian system (2) with ¢ = 1. Thus our main results are the following.

Theorem 1. The following statements hold for the Hamiltonian system (2) with ¢ = 1.

(i) Ifwe = wy and ws = 2wy > 0, using the averaging theory of first order for |e| # 0 sufficiently small at every
positive energy level H = h we find the following periodic solutions (x(t),y(t), z(t), pz(t), py(t), p=(t)):
(a) for each b € (—1,0)U (0,1) the two unstable periodic solutions
h -cos (2wt
Vh (2 cos(wit), 0, (—1) cos(2wit)
V3 V2
with § = 0,1;
(b) for each b € R\ {0} the one unstable periodic solution
vh

va (0, 0, sin(2wit), 0,0, 2 cos(2w1t)) +O():

V2

,—2sin(wit), 0, (—1)71v/2 sin(2w1t)) +0(e),
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(c) and for each b € (—oo,—1) U (1,400) the four unstable periodic solutions

1)
% (o, 2 cos(@(t)), < \/15) cos(20(t)), 0, —2sin(@ (1)), (~1)+1v/2 sin(2cb(t))) +0(e),
with j = 0,1, where &(t) = wit — (—1) arccos(1/b)/2 with k = 0,1.

(ii) If wg = 2wg and w3 # 2wy > 0, or w3 # 2wy and ws = 2wy > 0 the normal form of the Hamiltonian system
(2) with ¢ = 1 that we use for applying the averaging theory of first does not provide any information about
the periodic orbits of the system.

(iii) If wy # 2wo and ws # 2wy then the averaging of first order is identically zero, and we can apply the
averaging theory of second order.

Theorem 2. Consider the Hamiltonian system (2) with ¢ = 1. If ws # 2wy and w3 # 2wy and (we — w3)? + (w1 —
w3)? # 0 the normal form of the Hamiltonian system (2) with ¢ = 1 that we use for applying the averaging theory
of second order does not provide any information about the periodic orbits of the system, and we cannot go to the
third order averaging theory because the second averaged function is not identically zero.

Note that the condition w3 # 2wy and ws # 2wy in Theorem 2 is statement (iii) of Theorem 1. The condition
(wo — w3)? + (w1 — w3)? = 0 corresponds to w; = we = Swz and we shall see this is the unique case where we can
apply second order averaging so we treat it in Theorem 4.

We introduce some notation. Let
—45a® + 18ab + 4b*

3b(a — 2b)
2(7b% 4 3b + 9a(b — 2) + 1))

b(1 — 18a + 21b) ’
T — 6(1—-9a%)h 2(3a — 1)ph
= 7“1_’ R:(_),ﬁ:(a )/21
(3a — 7)1 T2 (3a —7)r2
71=—72(a —2)(3a + 1)(6a + 1)h, Ty = 63a* — 1594 — 83a — 17,

p1 = 63a® — 964 — 5a — 26,

2(b% +3b — 5)>

), Bb:arccos< b(1 — 30)

A, p = arccos (

Cqp = arccos ( —

F - R 20h(2b — a)p.
f: o ~ R:~_17 ﬁ: ( g)plv
(b — 1)7‘2 T9 (b — 1)7‘2
ClA C1B
Co = Ch = ——,
2c241C242 6capcaa2

71 =2(2 — a)(9a%(2 + b) + 2b(1 + 11b) — a(1 + 40b + 18b?))h,
o = 18a®(b 4 1) — b(4 4 53b + 4b*) — a*(37 4 80b + 37b?)
+ 2a(1 + 45b + 45b% 4+ b*),

Ry = 2b(—3a? — 5b + 6a(b + 1))h,

p1 = —18a?b — 9a® + ab® + 40ab + 18a — 2b* — 220,

= 239 — 1936a + 3703a? + 189643 + 9153a* — 12096a° + 3969a°

4(1 4 3a)(1 + 6a)(—26 — 5a — 96a? + 63a?) ’
C— 33 — 283a + 274a® + 18a® + 945a* — 1323a°
12(1 + 3a)2(1 + 6a) ’

c1a = 162a*(2 + ) (1 + 2b) — 18a®(1 + b)(2 + b(173 + 2b)) — 16ab(1 + b)(16
+ (145 4 16b)) + b?(263 + b(626 + 263b)) + a*(1 + b(1718 + b(6116
+ (1718 +1)))),

coa1 = 2b(11 + b) + 9a*(1 + 2b) — a(18 + b(40 + b)),

caa2 = 9a*(2 + b) + 2b(1 + 11b) — a(1 + 2b(20 + 9b)),

c1p = 162a* (2 + b) — 156%(17 + 47b) + 18a3(—2 + 11b + 34b%) 4 8ab(31 + 302b
+ 166b%) — a®(—1 + 1413b + 2601b> + 647b°),

cop = 3a* 4 5b — 6a(1 +b).
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Moreover, we also set

Diap=1+b0+b*+3a(1+Db), Doap=1+54a>+7b+b> — 21a(1 +b)),
D3ap =1+ 54a® + 7b + 36b% — 350> + 25b* + 3a(—7 — b — 35b + 25b%),
Dyop = —a+ 18a* + 9b — 80ab + 36a*b + 39b* — 37ab?,

D5 ap = 25 — 35b + 36b% + 54ab* + 7b> + b* — 3a(—25 + 35b + 76* + Tb%),
Dgap = 37a — 36a* — 390 + 80ab — 18ab — 9b? + ab?,

D7.p = 364D + 18a* — 37ab* — 80ab — a + 39b* + 9b,

Dgap = 184D + 36a* — ab?® — 80ab — 37a + 9b* + 390,
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Finally, we define the domains
S = {(a, b) e R?:a e (—1/3,2/15) U (1/3,2/3),

(3a — 2b)(3a +b) (15a — 2b)(3a — b)
Sa—2006 " 3(a—2n)p 0}

Sy = {(a,, b) €R?:a e (—o00,—1/3) U(—1/3,2/3),b € (—o0, ~2) U (1,2) U (5,+oo)},

S3 = {(a,b) €R?:a < 2/15,
—2 + 36a — Tb — 35b° - (b—1)(—2+ 36a + 7b) - 0}
b(—21b + 18a — 1) " ob(—21b+18a — 1) ’
143a)(2+0) b

= b R2 : (

S {(a, ) € (6= 1Dy <0, Dros <0,
b(3a + b)(1 + 2b)
0 -
®—1Dray a7 b+1}’
—1+ 3a)(—2 + 36a — 7b) b

= b R2 : (

Ss {(a, ) € (b~ 1D <0, Daas >0,

b(3a — b)(—T7 + 36a — 2b) 9
0,a — 18 5b+ ab # 0
CE > 0,a a” + 5b+ ab # },
—1)(-2 — Tb — 35b? b b)(2b — 1)(5b — 1
S5 — {(a,b) CR? (3a — 1)(—2 + 36a — 7b — 35b%) S0, (3a +b)( )(5 ) S0,
D3,a,b Dg,a,b
(5) b(7 — 36a + 32b — 35b%))

>0, (b — 1)D4,a,b 75 0},
D3,a,b

(3a+1)(b—2)(b—5) b(3a — b)(—35 — Tb + 36ab — 2b%)
>0,
D5,a,b D5,a,b

b(—35 — 4(—8 + 9a)b + Tb?
( (=8 +9a)b + )>0,(b—1)D6,a7b7é0},

57:{(a,b)eR2: > 0,

D5,a,b
Sg = {(a,, b eR2:be (~1/2,1/5) U (1/2,1), (3a —2b)(a—b) >0, b(b—a) >0,
a # 2b, 3a # —b },
b—1)(—7+4 36a — 20b) —35 — Tb + 36ab — 2b*
= b) € R?: (
59 {(“’)E —21+ 18a — b BT R T A

b(3b — 5a) > 0, (15a — 2b)(5a — 3b) > 0, a # b/3,a # Qb},
Sio = {(a,b) cR?:b=(3a—1)/6,1/21 < a < 1/3},

S11 = {(a,b) €R2: b+ (3a—1)/6, b+#3(a®—2a)/(6a—5), 7 >0,

~ _ 18a® — ab — a — 5b)(ab -b D+ D
R>o,p>o,( @’ —ab—a—5b)(abta )<0, ZTabZ8ab -
C2A1C2A2 C2A1C2A2
(ab+a —b) D7 ap >0, (18a% —ab—a — 5b)Dg 4 _ 0}.
CoBC2A2 C2BC2A2

The domains S; are not empty and they are plotted in the Appendix.

Theorem 3. Consider the Hamiltonian system (2) with ¢ = 1 and w1 = we = ws. Using averaging theory of
second order for |e| # 0 sufficiently small at every positive energy level H = h we find the following periodic

solutions (z(t), y(t), 2(t), pa(t), py(t), p=(t)):
(i) for (a,b) € Si the two unstable periodic solutions

\/TZ (O, 0, cos(2wit — (—1)7 A4 /2),0,0, —2sin (w1t — (_1)jAa,b/2)) +O0(e),

with j =0,1;
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(i) for (a, b) € Sy the two unstable periodic solutions

-3 2 . 1 )
1” cos(wit — (1) By/2), == cos(wrt — (~1)' By/2),0.
\/ . =

—13a_+ 2 sin(wyt — (—1)ij/2)) +0(e),

S

sin(wit — (=1 By/2), —

ﬁ
| =
S|

with j = 0,1;
(iii) for (a, b) € S3 the two unstable periodic solutions

2—-1 ,
\/ 5asm (wit — (= JC’ab/2 \/ cos (wit = (=1)’Cqp/2), 0,
2—-15
3_5jcos(w1t—(— Y Cap/2), \/ sm (wit — (— JCab/2)) O(e),

with j = 0,1;
(iv) for (a,b) € Sy the unstable periodic solution

R R
\/E( L cos(wit), cos(wit), cos(wit), L sin(wit),
Dlab lab 1ab 1,a,b
sin(w1t), sin wlt + O(e),
Dy ,a,b Dy ,a,b

where Ry = (1 +3a)(2+40)/(1 —b) and Ry = b(3a + b)(1 +2b)/(b—1);
(v) for (a,b) € S5 the unstable periodic solution

R R 5b
Vh 3cosout, 4coswt, sin(w1t),
( D2ab ( 1) DQab ( 1) D2ab ( 1)
5b
’/ sin(w1t), ’/ sin(wit), 1/ cos(wlt)) + O(e),
2ab 2ab ,a,b

D,
where Ry = (3a — 1)(—2 4+ 36a — 7b) /(1 — b) and R4 = b(3a — b)(—7 + 36a — 2b)/(b — 1);
(vi) for (a,b) € Sg the pemodzc solution

\/E(\/R—5 cos(wit), /R sin(wit), /Ry cos(wit),
— /Rs sin(wit), \/Rg cos(wit), —\/R_7$in(w1t)) + O(e),

where Rs = (3a — 1)(—2 + 36a — 7b — 35b%) /D3 45, Re = 5b(3a + b)(2b — 1)(5b — 1)/ D3 45, Rz = b(7 —
36a + 32b — 35b%) /D3 45, where for different values of (a,b) € Sg the solution can be either linearly stable
or unstable;

(vii) for (a,b) € S7 the periodic solution

\/ﬁ(\/ Rg cos(wit), \/ Ry sin(wit), / Rip sin(wit),
— v/ Rgsin(wit), v/ Rg cos(wit), v/ Rio cos(wlt)) + O(e),
where Ry = 5(3a + 1)(b —2)(b — 5)/Ds.ap, Ry = b(3a — b)(—35 — 7b + 36ab — 2b®) /D5 4., Rio = b(—35 —
4(—=8+9a)b+ Tb?)/ D5 o, where for different values of (a,b) € Sy the solution can be either linearly stable

or unstable;
(viii) for (a,b) € Ss the unstable periodic solution

3a — 2b
cos(wit), cos (w1t),
a— a—
3a —
sm wlt
a —

sm wlt + O(e),
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(ix) for (a,b) € Sy the unstable periodic solution
%( 15a — 2b D, n(wit),
V5 Y B g st \/5a—3bS (wf)
15a — 2b
T sin(wyt), ”5@— T wlt + O(e),

(x) for (a,b) € Sio the eight unstable periodic solutions

(\/% cos(wit), (—1)175 cos(@a(t)), (—1) \/ﬁcos(wb(t)), —V/Fsin(wit),
(=115 sin (@ (t) 12+1\/7$1n (cp(t ) + O(e),

where 7, R, B as in (4), @a(t) = wit — (—1)7t arccos(Ca)/2, Wy(t) = wit + (—1) arccos(Cp)/2, Ca and
Cp as in (4) and j1,11,1s € {0,1}.
(xi) for (a,b) € Si1 the eight periodic solutions

(\/?cos(wlt), (= 1)1 Feos(@a(t)), (—1)2 VR cos(@(t)), —v/Fsin(wyt),
(—1)2 1 5sin (@, (1) 12+1\/_sm (wp(t ) + O(e);

where 7, R, p as in (4), @a(t) = wit — (—1)7 arccos(cy) /2, @p(t) = wit + (—1)7 arccos(cp)/2, co and cp
as in (4), ji,l1,le € {0,1}. For different values of (a,b) € Si1 the solution can be either linearly stable or
unstable.

The proof of Theorems 1, 2 and 4 are given in sections 3, 4 and 5, respectively.

In section 2 we present a summary of the results on the averaging theory that we shall need for proving our
results.

2. THE AVERAGING THEORY OF FIRST AND SECOND ORDER

Now we present the averaging theory of second order that we need for proving the results of this paper.
This theory provides sufficient conditions for the existence of periodic solutions for a periodic differential system
depending on a small parameter. See the paper [2] for more information about these theorem and for the proofs
of the results here stated.

Theorem 4. Consider the non—autonomous differential system
(6) i(t) = eFy(t,z) + 2Fo(t, ) + 3G (t, 2, ¢),

where € is a small parameter, D is an open subset of R", and Fi, Fo :Rx D = R", G:R x D x (—ef,6f) = R"
are continuous and T-periodic functions in the first variable. Supose that the following conditions hold.

(i) Fi(t,-) € CY(D) for all t € R, Fy, F», G and D,F, are locally Lipschitz with respect to x, and G is
differentiable with respect to €. The functions fy, fo : D — R™ are

T
(7) fl(z):/o Fi(s,2)ds,

T s
(8) folz) = /O (D.Fi(s, 2) /0 Fy(t, 2)dt + Fy(s, 2)]ds.

(i) For each € € (—e¢,e¢)\{0} and for V.C D an open and bounded set, there exist a € V such that
(ii.1) if fi(z) £ 0, then fi(a) =0 and dp(fi,a) # 0 (here dg(f1,a) is the Brouwer degree of the function
f1:V = R" at the fized point a); and
(ii.1) if fi(2z) =0 and fa(z) # 0, then fo(a) =0 and dp(fa,a) # 0.

Then for |e| > 0 small enough, there is a T—periodic solution xz(t,e) of the system such that x(0,e) — a when

e — 0. The kind of linear stability or instability of the periodic solutions xz(t,e) is given by the eigenvalues of the
Jacobian matriz D,(f1(2) + €f2(2))|2=a-
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We recall that a sufficient condition in order that the Brouwer degree of a C! function f at a zero a is non-—zero,
is that the Jacobian of the function f at a is non-—zero, see for more details [18].

Under the assumption (ii.1) Theorem 4 provides the averaging theory of first order, and it provides the averaging
theory of second order when assumption (ii.2) holds.

3. PROOF OF THEOREM 1

For proving Theorem 1 we shall use Theorem 4, so the first step is to write system (2) in such a way that
conditions of Theorem 4 be satisfied.

We observe that system (2) is invariant by the symmetries

(.%',y’ z7p$7py7pz) — (_xvyvzv _vapy7p2)7
(x7y7 z7p$7py7pz) — (.’IJ, —Y,2,Px, _pyvpz)-

This implies that if (x(t),y(t), 2(t), pz(t), py(t), p=(t)) is a solution of system (2) then
(—(L‘(t), y(t)7 Z(t), _pm (t)’py(t)vpz (t))7 (.’L’(t), _y(t)v Z(t),pz (t)7 _py(t)apz(t))

are also solutions of system (2).

Without loss of generality we can assume that w; = 1. Indeed, taking the change of variables
X =wiz, Y =wy, Z =wiz, Pp = py, Py = Py, P, =p.,

rescaling the time by 7 = w;t, and proceeding in a similar way as in (3) we transform system (2) with ¢ = 1 into
the system

X' = Px, Py = —-X — 23X Z,
Y' = Py, P, = —@3Y — 28Y Z,
7' = Py, Pl = —&3Z —(bX?*+ Y%+ 3aZ?),

where the prime denotes derivative with respect to the variable 7, and in which & = ¢/w?, @y = wy/w; and
W3 = ws/wi. From now on in order to avoid heavy notation we denote again (X,Y, Z, Px, Py, Pz,&,09,03) as
(@Y, 2, Py Py, P2, €, W2, w3), i.e. we work with system (2) with ¢ =1 and wy = 1; more precisely with the system

T = pg, Py = —x — 2ebxz,
(9) = py, Py = —wiy — 2eyz,
Z=ps, p. = —w3z — e(bz? + y? + 3a2?).

The Hamiltonian associated to system (9) is

2?2 + wiy? + wi2?
2

1
(10) H=—(p:+p,+12)+ +e(az® + z(ba® + y?)).

2

First we write system (9) and the Hamiltonian (10) in cylindrical coordinates (7, p, R, 8, c, ) defined by

T =71 cosb, Pz =17 sind,
p cos(a + wob .
(11) y= # py = p sin(a + ws0),

- R cos(f + wsb)

w3

, p. = R sin(f + wsh),
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and we get the system of equations

7= _cbrit cos(f + wsf) sin(260),
w3
. 2eb
f=-1-% r cos? 0 cos( + wsh),
w3
. eRp .
p=— cos(f 4 wsf) sin(2(a + wab)),
Wolws
(12) &= v (bw; cos”® § — cos® (o + wab)) cos(B + wsb),
R=— 26 5 (br?wiw; cos? O + p®w; cos® (a + wab)
wWats
+ 3aw3 R? cos?(B + w3f)) sin(B + wsf),
. 0
g = _M;;ug) (b(r? — 2R*)w3w3 cos® O + p®w3 cos? (e + wab)
Ruwsws
+ 3aR*wj cos®(B + wsh)),
and the Hamiltonian (10) becomes
1 0 ? cos? 0
H= B (r* + R*+p*) + eRcos (P + ws) <br2 cos? 0+ 222 (a2+w2 :
w3 w3

2

N aR?cos?(B + wsf)
w3 '

Note that in system (12) the equations of 7, 6 and & do not depend on p, and the equations of R and 8 depend
on p? instead of p. We thus introduce the new variable I' = p?. In this new variable system (12) becomes

b
= rit cos(f + wsf) sin(20),
w3
: 2¢eb
f——1-2= i cos? 0 cos(f + wsh),
w3
. 2e RT’
= — 2 6(8+ wsh) sin(2(ar + wa)),
Wolws
&= 2he (bw3 cos? O — cos®(a + wab)) cos(B + w3b)
(13) s 2 ,
R=— 26 5 (br*w3w3 cos? O + Tw; cos? (a + wof)
WaWs
+ 3awj R? cos® (B + w3f)) sin(B + wsh),
: 9
B = —% (b(r? — 2R*)w3w3 cos® § + T'wj cos® (a + wsf)
2%3
+ 3aR*w3 cos®(B + wsf)),

and the Hamiltonian (10) becomes

I cos?(a + wab)
2 9
(br cos” 0 + 5

)+ eR cos(ff + wsb)
w2

w3

1
H:§(r2+R2+F

n aR? cos? (B + wsb)
w3 ’
Now in system (13) we take as independent variable the angular variable § and the system becomes

(14) 7«/::7 F/:_'v O/:gv R/:_'7 6/227

0 0 0
where the prime denotes derivative with respect to §. We note that the right hand part of system (14) is 7—periodic
in the variables 6 and w90, and it is 27-periodic in the variable w3f. Hence in order to have a periodic orbit we
must have

0 =Fkim, wof = kom and w3l = 2ksm for some ki, ko, k3 € N,
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and then " or
(.U2=—2 and (.U3=—3, ki, ko, ks € N,
k1 ky
with k1 and kg coprime and &y and ks coprime. So system (14) is kym—periodic in the variable 6.
By fixing an energy level H = h we can compute I' by solving the equation H = h, and we get
L w3 ((2h — r? — R?)w§ — e(2br? Rw3 cos? § cos(B + wsb) + 2aR? cos®(B + wsh))
(15) B w3 (wiws + 2e R cos?(a + wab) cos(B + wsh))

=T +T1e+ O(?),

where
o= 2h—1r?— R?,
2
r=-— R cos(f + ws0) (erwgwg cos? 0 4 (2h — 1% — R?)w? cos? (o + wob)

2 3
Waws

+ aR*wj cos?(B + wsh)).

We substitute the expression of I' into (14) and we develop the right-hand side in power series of € up to second

order. Therefore at each energy level H = h the equations of motion can be written as

r'=eF +2F +0(e), o =eFi+ e Fag + O(e%),

16
(16) R =eFi3+e’Fs+0(e%), B =cFu+eFu+0(e),
where
brR
= :— cos(f + wsf) sin(20),
3
2
Fio=— i (bw% cos® 0 — cos?(a + wgﬁ)) cos(f + wsb),
095109k
1
Fi3=—5— (erwgwg cos® 0 + (2h — r? — R?)w3 cos®(a + wab)
+ 3aR*w3 cos? (B + (.U3(9)> sin(f + wsb),
1
Fiy = —m (b(QR2 — r?)wiw3 cos? O 4 (R% + 12 — 2h)w3 cos? (o + wob)
— 3aR%w3 cos? (B + w3¢9)> cos(f + wsb),
4b2 2
Fy = — TQR sin @ cos® 0 cos? (8 + wsh),
w3
AR 1 5 2 2 2
Fyy = 5 (bw2 cos” 0 — cos”(a + w2¢9)> cos” 0 cos* (B + wsb),
Wng
Foz3 = ——— <b2r2w§w§ cos? 0 + (2h — r? — R?)w? cos’ (a + woh)
Wos3
+ aR%w3 cos? (o + wah) cos? (B + wsh)
+ bw3 cos® B((2h — R*)w? cos? (o + wob)
+ 3aR*w3 cos? (B + (.U3(9)> sin(2(8 + wsb)),
2
Foy=——— (bz(r2 — 2R*)wyw? cos® 6 + (2h — 12 — R?)w3 cos? (o + woh)
wyws

+ aR*w3 cos? (o + waf) cos? (B + wsh)
+ bw3 cos® O((2h — R*)w? cos? (o + wob)
+ 3aR%w3 cos® (B + w39))) cos?(B + wsb).

In order that the differential system (16) be in the normal form (6) for applying the averaging theory, this system
must be periodic in the variable 6. Since system (14) is kym—periodic in the variable § for wy = ko/k; and
ws = 2k3/ky with k1, ke, ks € N, we have that also system (16) is kjm—periodic. Then system (16) is in the normal
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form (6) for applying the averaging theory with T' = kym, x = (r,a, R, 8), t = 0, F1(0,x) = (F11, F12, F13, F14),

Fy(0,%x) = (Fa1, Fao, Fog, Foy) and 2G(0,x, ) is O(e3). We also observe that F and G are C? in x and kj7—periodic
in 0. After some computations from (7) we get

kim
fi(x) = /0 F1(0,x)d0 = (f11(x), f12(x), f13(x), f14(x)),

where i
1T
flj(x):/ Flj(H,x)dH, j:1,...,4
0
with
(0 ki # k3, ko # ks,
bkimr R sin
) —%ﬁ ki = k3, ko # ks,
X =
H 0 ki # k3, kg = ks,
_bklm“Rsmﬁ by = ko = ks,
\ 4
0 ki # ks, ko # ks,
bkom R cos
—%ﬁ ki = k3, ko # ks,
fi2(x) = k37 R cos(2c —
L 4];2 5) ki # ks, ko = ks,
k:mR(cos%%z — ) — bcos )
{ 1 k1 = kg = ks,
(0 ki # k3, ko # ks,
blkymr?
Tr sin k1 = ks, ko # ks,
fi3(%) = § k3 (r? + R? — 2h) sin(2a — B)
2 ki # k3, ko = ks,
2
kim((r? + R? — 2h) sin(2ac — B) + br?sin 3)
1 k1 = ko = ks,
(0 k1 # k3, ko # ks,
bkim(r?2 — 2R?) cos
17 0 ) cos B k1 = ks, ko # ks,
fua(x) = E3m(r? + R? — 2h) cos(2a — f3)
_ . ki # k3, ko = ks,
1K2R
kim((r? + R? — 2h) cos(2a — 3) — b(r? — 2R?) cos jB)
- — by = kg = ks,

If ki # k3 and ko # k3, then fij(x) =0 for j = 1,...,4, we need to consider averaging of second order.

When ki # ks and ko = k3 since f11(x) = 0 and fi2(x) are not identically zero, we cannot go to second order
in the averaging theory and so we do not get any information on the periodic solutions in this case.

If ki = k3, kg # k3 we first note that the functions f1;(x), j =1,...,4 do not depend on « and so the Jacobian
of the function fi(x) at any of the solutions of fi(x) = (fi1(x), f12(x), f13(x), f1a(x)) = 0 will be zero, so we
cannot go to second order averaging theory. Hence in this case we also do not get any information on the periodic
solutions. This completes the proof of statements (ii) and (iii).

Finally we compute the solutions of the system f1(x) = 0 when k; = ko = k3. Since the pairs (ki, k3) and
(k1,ks) are coprime, we have k1 = ko = k3 = 1. Notice that we are not interested in the solutions with R = 0
because at these solutions the function Fiy is not defined. Moreover we consider b # 0 otherwise fi1(x) = 0 and
fi2(x) is not identically zero and we cannot go to the second order.

Now we compute the solutions of system fi(x) = 0 with R # 0 and b # 0. From f11(x) = 0 we get either 8 = jr
for j = 0,1, or r = 0. By substituting 3 = jr into f12(x) = 0 we get the equation fi»(x) = $(—1)? R(cos(2a) —b) =
0, whose solutions o = (—1)¥ arccos(b)/2 + ¢x with k,¢ = 0,1 are defined when b € [~1,0) U (0, 1]. We substitute
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a into fi4(x) = 0 and we obtain R = /2h/3. Finally substituting these values into fi3(x) = 0 we get equation

f13(x) = (—1)7TF+1 (4h — 3r2) V1 —5b2/12 = 0, which provides solutions for » whenever b # +1. In short we have
the following solution

(T(j,k,ﬁ)a a(j,k,é)a R(j,k,ﬁ)a 6(j,k,€)) = (2\/ h/3, (—1)k arccos(b)/2 + €7T, 2h/3,j7T) s
for b€ (—1,0) U (0,1) and j,k,l =0, 1.

Now we substitute » = 0 into fi3(x) = 0 and we get either R = v/2h, or 8 = 2a — jn for j = 0,1. First we
substitute r = 0 and R = v/2h into the remaining equations fi2(x) = 0, fi4(x) = 0 and we get the solution

(TE}?E)’ a?j,()a R?jyﬁ)’ sz],é)) = (Oa 671-/2’ \ 2h’ 7T/2 + jﬂ-)a
with j,¢ = 0,1 which is defined for all b # 0.

We substitute r = 0 and 8 = 2a— j7 into fi2(x) = 0 and we get the equation fi2(x) 2(=1)7R(bcos(2a) — 1),
whose solution a = (—1)¥ arccos(1/b)/2 + ¢r with k,£ = 0,1 is defined for all b € (—oco, —1] U[1, +00). Finally we
compute the value of R from equation f14(x) = 0 and we get the solution

(Fij.0,0)s 0500 By Biiy) = (0, (—1)F arccos(1/b) /2 + £, \/2h/3, (—1)" arccos(1/b) — j),
defined for b € (—o0, —1] U [1,4+00) and j, k,Il = 0, 1.
Now we compute the Jacobian matrix of f;

dofun O0fun Ofun Jdfm
or 9o OR 08
0fi2 0fiz2 0Ofiz Ofi2
or 9o OR 08
0fis Ofis 0Ofiz Ofi3
or 9o OR 08
Ofia Ofia Ofia Ofia
or 9o OR 08

The determinant of J evaluated at the solutions (’I“(]kg) a(JH) Rj k.0 Bijk,ey) is equal to R2(b% — 1)b%/12.
The determinant of J evaluated at the solutions (rz‘j 0> %0 Bl B ) is b2h?/8. Finally the determinant J
evaluated at the solutions (F(j’g),a(jyk’g),R(jyk’g),ﬁ(jﬁ’z ) is —h2(b? — 1)/24 Hence the averaging theory can be
applied for the two first solutions and it can be applied for the third solution when b € (—oo, —1) U (1, +00).

It follows from Theorem 4 that for any given h > 0 and for |¢| sufficiently small, system (16) for b € (—1,0)U(0, 1)
has eight 7 periodic solutions, U9 (0, &) = (r@k0 (0, ¢), aliF0 (0, ), RUFD (9, ¢), ﬁ(j”“z)(ﬂ,s)) for j,k, 0 =0,1
such that @(j,k,f) (O, 6) tend to (T(j,k,ﬁ)a a(j’kyg), R(j,k,ﬁ)a ﬁ(j,k,é)) when ¢ — 0.

For any given h > 0 and for |¢| sufficiently small, it follows also from Theorem 4 that system (16) for b # 0 has
four 7periodic solutions ¢*U9 (0, ¢) = (r*30(8, ), a*00 (8, ), R3O (8,¢), 50:0(0,¢)) for j, ¢ = 0,1 such that
©*0:9(0, ¢) tend to (rE‘M), az‘ﬂ), RE‘M), 62}7@)) when € — 0.

Again it follows from Theorem 4 that for any given h > 0 and for |¢| sufficiently small, system (16) for
b € (—o0o,—1) U (1,+00) has eight 7 periodic solutions, U (9, ) = (FIEO(0,¢), alkb (g, e), }_%(j’k’g)(ﬁ,&?),
B(]’k’g)(H,e)) for j, k,¢ = 0,1 such that pU*9(0,¢) tend to (F(Lk,g),a(j,k.l),R(j7k7g),3(j’k7€)) when ¢ — 0.

The eigenvalues of the matrix J evaluated at (v(; x.¢), Q(jk,0)> B(j,k.0)s Bjike)) for g, ki, € = 0,1 are

i(—l)kb\/gi, +(—1)F MT%Q).

In this case b € (—1,0) U (0, 1), so two of them are complex and the other two are real with opposite sign. Since
the eigenvalues of the matrix (17) evaluated at the solutions (7; ¢, (k.00 B(jk.0), Bijk,e)) Provide the linear
stability of the fixed point corresponding to the Poincaré map defined in a neighborhood of the periodic solution
associated to (7(j k.e), @(j k,0)s B(jk,0)5 Bijk,e)) (see for instance the proof of Theorem 11.6 of [20]), the eight periodic

U0 (8, ) solutions are linearly unstable.
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The eigenvalues of the matrix J evaluated at (rz‘j o) of(kj 0 RZ‘]. o) ﬁ?j K)) for 7,4 =0,1 are

i(—l)j“\/g, —(—1)jb\/§, (—1)J’b\/§

They are all real: two positive and two negative. Arguing as above we have that for all b € R\ {0}, the four
periodic solutions ¢*7) (0, ) are linearly unstable.

The eigenvalues of the matrix J evaluated at (F(j,kl),a(j’k,g),E(Lk,g),ﬁ(j’k?@) for j,k,£ =0,1
] i 21 . 2_ 1
+(-1)7 \/gz (—1)7*sign (b) %’ (=1 +gign (b) %’

where sign is the sign function. In this case b € (—oo0, —1) U (1,400), so two of them are complex and the other
two are real with opposite sign. So the eight periodic solutions G(j’k’z)(ﬁ, e) will be linearly unstable.

Now we shall go back through the changes of variables in order to see how the m—periodic solutions go(j7k’£)(9, e),
©*30(0,e) and BUFD (9, ) with j,k,£ = 0,1 of the differential system (16) are written in the original variables
(2,Y, 2, Pz, Py, P-). Here we shall do the computations for @Bk (9, ¢), the other two cases can be done in a similar
way.

By substituting U050 (6, ) into (15) we get TUFO (G, ). Then k0 = (pUk0O (0, ), TUFD (G, ¢)) is a 7
periodic solution for the differential system (14). This solution provides the 2r—periodic solution for the differential
system (13)

WO (1) = (p(0UMI(t,2),2), 600201, )
= (r(g.0) + O(€), aj0) + O(€), Rjpe) + O(2), By + O(e),
2h — (r(ipe)’ — (Rio)? + O(e), —t + O(e)).
Now we introduce the variable

pUIROOURD (1, e), ) = \[TGRD(OGLO (1, e), ).

Going back to the change of variables (11) we get the 2r—periodic solutions of system (9) given in Theorem 1.
We note that the terms of order zero of the solutions of system (9) are the same for the solutions with ¢ = 0,1
and k£ = 0,1. So in principle for || sufficiently small we can only guarantee that we have two different solutions of
system (9) for any of the solutions W50 (¢ ¢), i.e. the ones for j = 0,1. This completes the proof of statement
(a) of Theorem 1.

4. PROOF OF THEOREM 2

We write again
ko _ 2k3

kTR
1 1
and we recall that we are under the assumptions k1 # k3, ko # k3 and also (k; — ko)? + (k1 — 2k3)? # 0.

w2

Since we proved in Theorem 1 that f;(x) =0 fori =1,...,4, we shall apply the averaging of second order. We
compute for our system the integral f; Fi(t,z)dt of (8), and after tedious computations we compute the integrals
of (8). The values of fa(x) = (f21(x), fa2(x), f23(X), f24(x)) that we obtain depend on the values of ki, ko, k3. So
we need to consider different cases.

a) If Ky 7& 2ks, kq 7& ko, k1 —ko—2ksg 7& 0, k1+ko—2k3 7& 0, ko 7& 2ks, k1 7& 4ks, k1 —ko+2ks 7& 0, and ko 7& 4ks,
then fo1(x) = 0, fa3(x) = 0 but foo(x) and fo4(x) are functions depending on a,b, h, k1, ko, k3,7, R. We
prove that there are no integer values of k;, ko and k3 and no real values of a, b such that fae(x) and foq(x)
are identically zero. Therefore we cannot go to third order in the averaging theory and so we do not get
information on the periodic solutions in these cases.

b) If k1 = ko we must distinguish the following cases k1 = ks, k1 = 2k3 (both are not possible by assumptions),
k‘l = 4](53, and k‘l 7& 2](53, k‘3,4k‘3. When either k‘l = 4]{13 or kjl 75 2]{13,]{13,4]{13 we have that ng(X) = 0, but
we cannot find integer values of ko, k3 and real values of a, b such that fo1(x), fa2(x), fo4(x) be identically
zero, we cannot go to third order in the averaging theory and so we do not get information on the periodic
solutions in this case.
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If k1 = 2ks, then we must distinguish the following cases ko = ks, ko = 2ks (both are not possible by
assumptions), kg = 4ks, and ko # ks, 2ks, 4k3. In the last two cases we have that the functions fo;(x) for
j=1,...,4 do not depend on « and so the Jacobian of the function fs(x) at any of the solutions of

J2(x) = (f21(x), fo2(x), fo3(x), f24(x)) =0

will be zero, so we cannot go to third order in the averaging theory, and so we do not get information on
the periodic solutions in this case.

If ko = 2ks then either ky = k3 or k1 = 2ks (both are not possible by assumptions), or ki = 4ks, or
ky # ks,2ks,4ks. In the last two cases we have that fa1(x) = 0 but there are no integer values of k1, k3
and no real values of a,b such that fao(x), fa3(x) and fos(x) are identically zero. Hence we cannot go to
third order in the averaging theory and so we do not get information on the periodic solutions in this case.
If ky = 4ks then either ko = k3 (which is not possible by assumptions), or ko = 4ks (this implies
k1 = ko, and it was studied in case b), or ko = 2ks (which was studied in case d), or ky = 6ks, or
ko # ks, 2ks,4ks, 6ks. In the last two cases we get that fo1(x) = fos(x) = 0, but there are no integer values
of ko, ks and real values of a,b such that foo(x) and fo4(x) are identically zero. Again we cannot go to
third order in the averaging theory and we do not get information on the periodic solutions in this case.
If ky = 4ks then either k1 = ks (which is not possible by assumptions), or k1 = 2ks (which was studied
in case c), or k1 = 4ks (that was studied in case e), or k1 = 6ks3, or k1 # ks, 2ks, 4ks, 6ks. In the last two
cases we have that fo;(x) = fo3(x) = 0, but there are not integer values of ki, ks and real values of a,b
so that fya(x) and fo4(x) are identically zero. Hence we cannot go to third order in the averaging theory
and we do not get information on the periodic solutions in this case.

If ko = 2ks — k1. In this case either k; = 3ks or ky = 2ks, or k1 = 4ks, or k1 = 6k3 (all of them
are not possible because then ko < 0), or ky = k3 (which is not possible by assumptions), or k; #
k1,2ks, 3ks, 4ks, 6ks. In the last case we get that fa1(x) = fa3(x) = 0, but there are not integer values of
k1, ks and real values of a,b so that foo(x) and fo4(x) are identically zero. We cannot go to third order in
the averaging theory.

If ky = k1 — 2ks. In this case either k; = k3 (which is not possible by assumptions), or k; = 3ks (which
implies k1 = ko and it was studied in case b), or k; = 2ks (which is not possible because then ks = 0), or
k1 = 4ks (that was studied in case d), or k1 = 6k3 (that was studied in case f), or k1 # ki, 2ks, 3ks, 4ks, 6k3.
In the last case we get that fo1(x) = fa3(x) = 0, but there are not integer values of ki, k3 and real values
of a,b so that foo(x) and fou(x) are identically zero. We cannot go to third order in the averaging theory.
If ko = k1 + 2ks. In this case either k1 = k3 (which is not possible by assumptions), or k; = 2ks (that was
studied in case c), or k; = 4ks (that was studied in case e), or k; # ki, 2ks,4ks. In the last case we get
that fo1(x) = fa3(x) = 0, but there are not integer values of ki, k3 and real values of a,b so that fos(x)
and fou(x) are identically zero. We cannot go to third order in the averaging theory.

This completes the proof of the theorem.

5. PROOF OF THEOREM 4

The case w; = wy = wsy corresponds to k1 = ky = 2k3. We apply the averaging of second order. By computing

for our system the integral [ Fi(t,z)dt of
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, and after tedious computations we compute , and we get fo(x) and we get
8 d af di i 8 d d
1
for(x) = éﬂbkgr(sin@a)(rz + R? — 2h) — 3R*(a — 2b) sin(28)),

1

for(x) = 6ﬂk3(18abR2 — 18aR? + 5b*r? + 46> R? + 12bh — 12br? — 6bR?

2 2 1 2 1 2

—10h +5r° + R%) — Eﬂbk‘gR (a — 2b) cos(2) + §7r(a — 2)ksR

cos(2(a — B)) — %wbkg cos(20)(2h — 22 — R),

fos(x) = %Wk‘gR(er(a —2b)sin(28) + (2 — a)sin(2(a — B))(2h — 1% — R2)),

15

1
foa(x) = —éwk3(45a2R2 + 18abr? — 18abR? + 36ah — 18ar* — 18aR* — b*r?

1
— 4b” R? — 12bh + 6br® + 6bR? + 8h — 4r* — 4R?) + 57bks(a — 20)

cos(26)(r — R)(r + R) + %ﬂ(a — 2)k3 cos(2(a — B))(2h — r* — R?)

1
- éﬂbk‘g cos(2a)(2h — r? — R?).

It follows from fo1(x) = O that there are three cases to consider: b =0, r = 0 and s = sin(2a)(r? + R? — 2h) —

3R%(a — 2b)sin(28) = 0. We study them separately.

Case 1: b= 0. In this case the functions fy;(x) for j = 2,3,4 only depend on the variables r, R, — . Therefore

the Jacobian of the function f(x) at any of the solutions of

fQ(X) = (fgl(X),f22(X),f23(X),f24(X)) =0

will be zero, so we cannot go to third order in the averaging theory, and so we do not get
periodic solutions in this case.

information on the

Case 2: b# 0 and r = 0. In this case, from fa3(x) = 0 we get three subcases: a =2, R = V2h or 2(a — ) = km
with k& € {0,1}. The case a = 2 does not provide any solution because if fao(x) = fa4(x) = 0 then foo(x)— fos(x) =

35k3m(2h + 3R?)/6 = 0 which is not possible. So a # 2.

Case 2.1. It b # 0, r = 0, a # 2, and R = V2h, then from fou(x) = 0 we get that either a = 2b, or if a # 2b

then 8 = :E%Aayb + gm with j € {0,1} where A, is given in (4). In the first case, i.e.
faa(x) = —140b%hk37 /3 which is not zero, so this case is not possible. Hence a # 2b and

(=17 L
/8 = /8]'1,]' = TA(I,I) +.]7T) J1,] € {Oa 1}
Imposing this value of 3;, ; in faa(x) = 0 we get that
—1)72 ) —1)92 —1)
O = Qo b = uAa,l +jsm+ By = X %A“’b e

9 2 a,l
with ji,j2,¢ € {0,1}. In order that §;, ; and «y, j, ¢ are well-defined we must have

4b% + 18ab — 45a* —45a” + 18a + 4
18 —-1< <1 d —-1< <1.
(18) =" 3a—20p - ™ =" 3a-2 -
The second condition in (18) is equivalent to
(Bo—2@atl) o Ba-1(Ba-2)
3(a—2) 3(a—2)

(19)

when a = 2b then

This implies that a € [—-1/3,2/15] U [1/3,2/3]. Going back to (19) we see that this is indeed the set of values for

which (19) holds. Moreover the first condition in (18) is equivalent to

(3a — 2b)(3a +b) (15a — 2b)(3a — b)
Sa—ap =0 and Sa—20 =
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This yields that the set of parameters (a,b) € R? for which there exist aj, j, ¢ and 3, ; is the set (a,b) € R? such
that

{a € [-1/3,2/15] U[1/3,2/3), 3= 20)Batb) ., (15a = 2)(Ba=b) 0}.

3(a—2b)b T 3(a — 2b)b
The determinant of the Jacobian matrix of fy(x) evaluated at (0, cvj, j,.0, V2h, B}, ;) is
200

h4k 4(3a — 2)(3a — 1)(3a + 1)(15a — 2)(3a — 2b)(15a — 2b)(3a — b)(3a + b).
Since this determinant must be different from zero, we have that the set of parameters (a,b) € R? for which the
second averaging order provides a solution is S; given in (5).

Moreover the eigenvalues are

L 212 hkyw hk37r

Ao = VvV —5(3 )(3a — 1)(3a + 1)(15a — 2),
]1
= D hk37fSl§n \/ 5(3a — 2b)(15a — 2b)(3a — b)(3a + b),
M= —2)3,

where sign(z) denotes the sign of x. By the definition of S; we have that A2 € R with different sign and A3, A\
are also real with different sign.

It follows from Theorem 4 that for any given h > 0 and for |e| sufficiently small, system (16) has eight linearly
unstable kqm-periodic solutions

Pt (05 €) = (T ja,,0(0, ), 1 4 50(0,€), Ry s 5,000 €), Bjy o j,0(6:€)),

that tend to (0, a;, j,.¢, V2h, Bj, ;) when e — 0.

Now we go back through the changes of variables in (11). Substituting ¢;, j, j ¢(6,€) in (15) we get I';, ;, j ¢(0,€)
and so pj, j, ;¢(0,€). Therefore @;, i, ;¢(6,€) is a 2m-periodic solution for the differential system (13). This solution
provides the 27 /w;-periodic solutions for the differential system (9) given in the statement of the theorem. Note
that the terms of order zero of the solutions in (9) are the same for the solutions (¢j, j, j.¢(0,€), pj, j»,i(6,€)) with
j2 = 1 and jo = 0. Moreover the terms of order zero of the solution with j = 1 correspond to the terms of order
zero of the solution with j = 0 taking as initial angle A,;/2 4+ m/(2w1) instead of Agp/2. So in principle for |g]
sufficiently small we can only guarantee that we have one solution of system (9) which is the one given in the
statement of the theorem.

Case2.2. Ifb#0,r =0, 2(a— ) =0 then a = ﬁ Moreover setting fao(x) = fa4(x) = 0 we get that either a = 1,
ora#1,b=1/3,ora#1,b#1/3, R= (1 a) with @ < 1 and cos(2) = 2(5 — 3b — b%)/(b(3b — 1)). The first
case, i.e. a = 1 does not provide any solution because if faa(x) = faa(x) = 0 then foa(x) — foa(x) = 20kswh/3 = 0,
which is not possible. So a # 1. If b = 1/3 then fas(x) + fos(x) = 5ksm(3a + 1)(2h — 3R? — 3aR?)/6, so either
a=-1/3or R=,/ 3(12fa) with @ < 1. When a = —1/3 then fy2(x) = fa4(x) are not identically zero and depend
on R and (. Therefore the Jacobian matrix of fy(x) evaluated at any solution of fao(x) = fa4(x) will be zero and

3(12—10 then we cannot find values of a,b and k3

such that fao(x) = 0. So this case is not possible which implies a # 1 and b # 1/3. Therefore R = 3(12h j with

we cannot go to third order in averaging theory. When R =

a<1and B =8, ="UB, + kr with ji, k € {0,1} that is well-defined if and only if

2 _
AP35
=13

This condition is equivalent to

(b-DE+b) _, o (b=50-2) _

(20) b(1—3b) — - MY Tha—sp) o

Moreover

p1=1/2h—r} —R? =
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must be well defined, so we must have

3a —2
>0
a—1
This yields that a < 2/3 and b € (—o0, —2] U [1,2] U [5, +00). Imposing that it satisfies (20) we get that indeed
this is the set of parameters for which 3;, j is well-defined, i.e. for which (20) holds. In this case the solution is

(0, Bjy ks 3(12—2),@-17;9). The Jacobian matrix of fo(x) evaluated at (0, 3, k. 3(12—%)’53’1,/0 is

800h* kit

m((a —2)(3a — 2)(1 +3a)(b— 5)(b—2)(b — 1)(b +2).

Therefore the set of parameters (a,b) € R? for which the second averaging order provides a solution is a €
(—o00,—1/3)U(—1/3,2/3) and b € (—o0, —2) U (1,2) U (5, +00). The eigenvalues are

)\172 = :I:;;L%\/S(a - 2)(30, - 2)(1 + 3&)1',
Az = (1)1 2"53“2?;(_“;() —Y) AR -0 T2,
A= —2)

Note that A3 and A4 are real eigenvalues with different sign. It follows from Theorem 4 that for any given h > 0
and for |e| sufficiently small, system (16) has four linearly unstable kj7-periodic solutions

SOjl,e,k(H’ E) - (le,e,k(ea 8)7 ajl,f,k(ev 6)7 le,f,k(ev 6)7 5j1,f,k(07 8))7

that tend to (0, a;, ¢, 4 /3(12—11),63'1,;9) when € — 0.

Now we go back through the changes of variables in (11). Substituting ¢;, ,x(6,¢) in (15) we get I';, ¢ 1(0,€)
and so pj, 01x(0,€). Therefore (pj, 1 x(0,¢), pj,.0x(0,€)) is a 2m-periodic solution for the differential system (13).
Moreover the terms of order zero of the solution with k£ = 1 correspond to the terms of order zero of the solution
with k£ = 0 taking as initial angle By,/2 + 7/(2w;) instead of By/2. So in principle for |¢| sufficiently small we can
only guarantee that we have two different solutions of system (9), which are the ones given in the statement of
the theorem.

Case 2.3. It b # 0, r = 0, 2(aw — 8) = 7 then o = § 4 /2. Moreover setting foo(x) = foa(x) = 0 we get

that either a = 3/5, or a # 3/5, b = (18a — 1)/21, or a # 3/5, b # (18a — 1)/21 and R = | /g%y with

a < 3/5 and cos(28) = 2(1 — 18a + 3b + 9ab + Tb%)/(b(—21b + 18a — 1)). The first case, i.e. a = 3/5 does
not provide any solution because if foo(x) = fos(x) = 0 then foo(x) — fosa(x) = 28hksmw/15 = 0 which is not
possible. So a # 3/5. In a similar manner if a # 3/5 and b = (18a — 1)/21 then if foo(x) = fos(x) = 0 we get

fa2(x) = faa(x) = (3a — Dksm(14h — (9 — 15a) R*) /6 = 0, 50 either a = 1/3, or R = | /gg¥ty with a < 3/5. When

a = 1/3 then faa(x) = fa4(x) depend on R, § and are not identically zero. Therefore the Jacobian matrix of fa(x)
evaluated at any solution of fyo(x) = fos(x) = 0 will be zero, so we cannot go to third order in the averaging

theory, and we do not get information on the periodic solutions in this case. When R = ,/ 3(:&%@) with a < 3/5,

then faa(x) + faa(x) = 40(9a — 11)(1 — 18a)hksm/(567(5a — 3)) = 0. Note that a # 11/9 because a < 3/5 and
a # 1/18, otherwise b = 0 which is not possible. So this case is not possible_ which implies that a # 3/5 and

b # (18a — 1)/21. Therefore R = /=14 with a < 3/5 and 8 = 8, ; = “CLy + jim with j, 51 € {0,1} and

3(3—5a)
Cq,p was introduced in (4). In order that £, ; it is well defined we must have

2(1 — 18a + 3b + 9ab + Tv?)

-1< <1.
- b(—21b+ 18a — 1) -
This condition is equivalent to
_ —7h — 2 _ _
2+ 36a — 7b — 350 >0 and (b—1)(—2 + 36a + 7b) > 0.
b(—21b+ 18a — 1) b(—21b+ 18a — 1)

Moreover

2(15a — 2)h
pr= 2= B =\ SE )
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must be well defined, so we must have
15a — 2
5a — 3

This yields that the set of parameters (a,b) € R? for which there exist solutions is: a < 2/15 and b such

—2+436a—"7b—35b> (b—1)(—2+436a+7b)
b—2tbrisa—1) = 0 and Sromrrs

= 0.

> 0. In this case the solution is

that for these values of a it is satisfied

(0,0, 5, 3(%’&), Bj,,;) where o, ¢ = B;, o+7/2. The Jacobian matrix of fa(x) evaluated at (0, oy, 5, %, Bir.j)

is
224h* kit
729(3 — 5a)3

Therefore the set of parameters (a,b) € R? for which the second averaging order provides a solution is S3 (see
(5)). The eigenvalues are

((a —2)(3a — 1)(15a — 2)(b — 1)(—2 + 36a — 7b)(—2 + 36a — 7b — 35b°)

2hkgm [7(a —2)(3a — 1)(15a — 2)
A2 == 7
7 3 3 —5a
Ns = (—1)in+1 2iksTsign(b(1 — 18a + 21b))
9(5a — 3)
V(b= 1)(—2 + 36a — 7b)(—2 + 36a — 7b — 35b%),
)\4 = —2)\3.

Notice that the eigenvalues A3 and A4 are real with different sign. It follows from Theorem 4 that for any given
h > 0 and for || sufficiently small, system (16) has four linearly unstable k;m-periodic solutions

©j1,5(0,€) = (r5,,5(0,€), 5,50, €), Rjy 5(0,€), Bj, 5(0,€)),

that tend to (0, oy, j, ﬁ’ﬁjlaj) when ¢ — 0.

Now we go back through the changes of variables in (11). Substituting ¢;, ;(#,¢) in (15) and taking the square-
root we get pj, j(6,¢). Therefore (¢;, ;(6,¢),pj,,(0,€)) is a 2m-periodic solution for the differential system (13).
Moreover the terms of order zero of the solution with 7 = 1 correspond to the terms of order zero of the solution
with j = 0 taking as initial angle C,;/2 4+ 7/(2w1) instead of C, /2. So in principle for || sufficiently small we
can only guarantee that we have two different solutions of system (9), which are the ones given in the statement
of the theorem.

From now one we can consider that rb # 0. Moreover we distinguish between the cases sin(2«) = 0 and
sin(2a) # 0.
Case 3: vb # 0 and sin(2a) = 0. Hence a = jn/2 with j € {0,1} and fo1(x) = —bksmr(a — 2b)R?sin(23) /2.
Setting f21(x) = 0 we have two possible cases: either sin(23) = 0, or sin(23) # 0 and a = 2b. We separate the
study in these two cases.

Case 3.1 Assume rb # 0, sin(2a) = 0, and sin(28) = 0. In this case we write § = kn/2 with k € {0,1}. We
consider the different values of j and k separately.

Assume first that j = k = 0, i.e. a = 8 = 0. In this case fos(x) = bk3m(b—1)(2h+ (b—1)r?2 +(2b+3a+1)R?)/6.
If b =1 then fo4(x) = 5ksm(—2(1 + 3a)h + 3(1 + 2a — 3a®)R?)/6 = 0. Any solution of fo(x) = 0 does not depend
on 7 and so the Jacobian will be zero. This case is not possible. If b # 1 then solving foa(x) = fa4(x) = 0 we get
that either Dy 5 = 0, or Dy 45 # 0 and

[—a+3w@+bh [ —bh
e \/ (b - 1)D1,a,b ’ = RO B Dl,a,b.

If Digp=0,ie a= —’?J)‘%l)l then solving fae(x) = 0 we get 7 = \/(2(b+ 1)h + b(b + 2)R%) /(b2 — 1) but then

Joa(x) = 10bhksm/3 # 0, so this case is not possible. We note that if b = —1 then D; 45 # 0. If Dy 43 # 0, then
the set of parameters (a,b) € R? for which there exists solution must satisfy

(+30)@+0)h _ _bh
(b—1)D1apr  Diap

(21) <0,
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and the solution is (rg, 0, Ry,0). Moreover

P \/2h - RE= \/b(3a +0)(1+20)h/((b — 1)Dy ),

must be well defined, so we must have

b(3a + b)(1 + 2b)

(22) (b—1)Dy 44

In addition the Jacobian matrix of fo(x) evaluated at (rg,0, Ry, 0) must be different from zero, i.e,

—1400(1 + 3a)b*(2 + b)(3a + b)(1 + 2b)(a — b + ab)h*kjr!

23
(23) 27D3 b

£0.

All these conditions (equations (21), (23) and (22)) define the domain S4. The eigenvalues of the Jacobian matrix
at (ro,0, Rp,0) are

Moo — jE\/5771€:3h|b|\/T1 + VT
= WD
where
T = —Ba+1)(3a + b)(—9a2 — 27ab — 27a + 16b? + 49b + 16),
and

Ty = (1 + 3a)(3a + b)(2112a + 3744a* — 6453a> + 5427a* + 4617a°
+ 729a% — 1088b + 6624ab + 19575a%b — 28053a>b + 8181a*b
+ 4617a°b — 313602 + 6573ab® 4 33957ab? — 28053a°b* + 5427a*b>
— 3135b + 6573ab> + 19575a%b> — 6453a°b® — 3136b* + 6624ab’
+ 3744a%b* — 1088° + 2112ab°).

Clearly the set of solutions of equation T¢ — T = 0 contains the sets of solutions of the two equations Ty 4+/T5 = 0,
moreover

TE — Ty = —672(3a + 1)(b +2)(3a + b)(1 + 2b)(a — b+ ab) Dy 4 p.

Therefore the solutions of equation T} 4 v/T5 = 0 belong to the boundary of the domain S;. Computing the sign
of Ty + /T at a point in each connected component of S; we get that in all domain Sy the eigenvalues A1, are
complex while A3 4 are real with different signs. It follows from Theorem 4 that for any given h > 0 and for ||
sufficiently small, system (16) has one unstable k;m-periodic solution

300(‘9’ 5) = (TO(H’ 5)a aO(‘g’ 5)a RO(H’ 5)a /80(‘9’ 5))’

that tend to (rg,0, Rp,0) when ¢ — 0. Now we go back through the changes of variables in (11). Substituting
©o(f,¢) in (15) we get (0, ¢) and so po(0,¢), where po(0,0) = pg. Then in the domain Sy, (po(0,¢), po(0,¢)) is a
2m-periodic solution for the differential system (13) and for |e| sufficiently small, we have the solution of system
(9) in the statement of the theorem.

Now we consider the case j =0, k = 1, i.e. @ =0, 8 =7/2. In this case fao(x) = (b— 1)(10h + 5(b — 1)r% —
(7 —21a+2b)R?)ks7/6. If b = 1 then foy(x) = (2(7 —21a)h + 3(—3 + 14a — 15a%) R?)hk3w/6 = 0. Any solution of
fa(x) = 0 does not depend on r and so the Jacobian will be zero. This case is not possible. If b # 1 then solving
J22(x) = faa(x) = 0 we get that either Dy ,; =0, or Dy qp # 0 and

—(—1+ 3a)(~2 + 36a — Tb)h 50h
= = R == R = .
" " \/ (b - 1)D2,a,b 7 ! D2,a,b

If Dygyp = 0, then b = (=7 + 21la &+ 15v/3 — 14a + 15a2) /2. When b = (=7 + 2la — v/15v/3 — 14a + 15a2) /2
we compute r from equation fao(x) = 0 and we substitute it into fa4(x) and we get fos(x) = (7 — 21la +
V15./(3a — 1)(5a — 2))hksm/3 = 0 which implies a = 1/3. So when a = 1/3 we obtain a solution in function of
R. When b = (=7 + 2la + v/15v/3 — 14a + 15a2) /2 we compute r from equation fas(x) = 0 and we substitute
it into fos(x) we get fos(x) = —(—7+ 21a + V15y/(3a — 1)(5a — 2))hks7/3 = 0 which implies either a = 1/3 or
a = 1/18. So when a = 1/3 and a = 1/18 we obtain solutions that are functions of R. Therefore the Jacobian
matrix of fy(x) evaluated at the solutions with b = (—7 + 2la &+ v/15v/3 — 14a + 15a2)/2 will be zero and we
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cannot go to third order in the averaging theory. If Dy, # 0, then the set of parameters (a,b) € R? for which
there exists solution must satisfy

(~1+3a)(-2+36a-7b) _ ~  5b

24 SZ
( ) (b_l)DZa,b D2,a,b

> 0,

and the solution is (r1,0, Ry, 7/2). Moreover

(3a — b)(—7+ 36a — 2b)h
2h — 2 __
h 7"1 R7 \/ CEN

must be well defined, so we must have

b(3a — b)(—7 + 36a — 2b)

25 = 0.

2 (b—1)D2ap

In addition the Jacobian matrix of fa(x) evaluated at (r1,0, Ri,7/2) must be different from zero, i.e,
4

(26) —Q—QT%p%R%b%b —1)%(a — 18a* + 5b + ab)hksn?.

Taking into account the conditions in (24), (26) and (25) we get the domain S5. The eigenvalues of the Jacobian

matrix at (ry,0, Ry, 7/2) are
A \/_Wkgh‘b‘\/ T3 T4
1,234 =
3fD2 ,a,b

where
T3 = 49(3a — 1)(3a — b)(117a* — 63ab — 63a + 8b* + 11b + 8)
and
Ty = (3a — 1)(3a — b)(416737953a® — 501142545a°b — 501142545a°

+ 252000315a*b? + 491523309a*b + 252000315a* — 6577267543 b°

— 193668867a°b* — 193668867a>b — 65772675a° + 87271204 b*

+ 38785311a2b® 4 54305037ab? + 38785311ab + 87271204

— 462336ab° — 3868128ab* — 6942549ab — 6942549ab* — 3868128ab

— 462336a + 146944b° + 350096b* + 406329b + 350096b? + 146944b).
Now

T3 — Ty = —96(3a — 1)(36a — 7b — 2)(36a — 2b — 7)(3a — b) (18a® — ab — a — 5b) Do 4,

so all the solutions of equation T3 £ v/T; = 0 belong to the boundary of the domain S5. Computing the sign
of T3 + /Ty at a point in each connected component of S5 we get that for different values of (a,b) € S5 the
eigenvalues Aj 2, A3 4 are all complex, or two complex and two real (with different signs). It follows from Theorem
4 that for any given h > 0 and for |¢| sufficiently small, system (16) has one kjm-periodic solution

@1((9, 5) = (rl(ﬂ, 5), al(«9, 5), R1 ((9, 5), ,81 ((9, 5)),

that tend to (r1,0, Ry,7/2) when ¢ — 0. Now we go back through the changes of variables in (11). Substituting
©(0,¢) in (15) we get I'1(0,¢) and so p1(0,e) where p1(0,0) = p1. Then in Ss (¢1(6,¢),p1(0,¢)) is a 2m-periodic
solution for the differential system (13) and for |e| sufficiently small, we have the solution of system (9) in the
statement of the theorem.

Now consider the case j =1, k =0, i.e. @ = 7/2 and § = 0. In this case solving fa(x) = fa4(x) = 0 we get
that either D3, =0, or D3, # 0 and

(3a — 1)(—2 + 36a — b — 35b2)h
TR D3 ap ’

b(7 — 36 32b — 35b%)h
R:Rzz\/( agg b =
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If D345 = 0, then proceeding as in the previous case we get that there is no solution. Hence D3, # 0 and the
set of parameters (a,b) € R? for which there exists solution must satisfy

(3a — 1)(—2 + 36a — Tb — 35b%) -0 b(7 — 36a + 32b — 35b%)

>0
= ) b)
Ds.ap Ds 1

and the solution is (rz,7/2, R2,0). Note that

p2 = \[2h — 13 — B3 = V5, [b(3a + b)(2b — 1)(5b — 1)h/Ds 0y

must be well defined, so we must have that

b(3a +b)(2 ~ 1)(3b~ Db
D3,a,b

The Jacobian matrix of fa(x) evaluated at (rq,7/2, Ra,0) is

40
(29) —2—7r§p§R§(b — 1)b? Dy o phkgt.

It must be different from zero. Taking into account the conditions in (25), (27) and (29) we get the domain Sg.
The eigenvalues of the Jacobian matrix are

:l:\/gﬂk‘gh‘b‘\/ Ts +VTs
3\/§D3,a,b

AM234 =

)

where

Ts = (3a — 1)(3a + b)(11664a* — 16200ab? — 36288ab — 4536a> — 26775a%b*
+ 3330002 + 98442a%b% — 20484a°b + 4653 + 33075ab + 19125ab*
— 108450ab> — 702ab* + 13455ab — 2583a — 238006° + 21525b°
— 15948b" + 33538b3 — 10092b — 855b + 368),
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Ts = (3a — 1)(3a + b)(1224440064a'° — 3401222400a”b* — 7210591488a"b
— 13604889600 — 32595048004 b* + 16439241600a°b® 4 32436324288a°b?
+ 748268928a%b + 147953174448 4 780759000047 b° + 13636382400a"b°
— 37311094800a b* — 78014803968a" b* — 70421050084 b* + 23972319364 b
— 1309575600a" + 6452105625a°6% — 23091075000a°b” — 67336782300a° b5
+ 70531770600a°b° + 121271458014a°b* + 728348565645 b® 4+ 1400627700a° b
— 2954683656a°b 4 911349873a° — 13789794375a°b” + 6832704375a°b°
+ 1127313693006 b7 + 98158635004 b° — 1826538480184 b° — 148179519184° b*
+ 172778472364°b> — 4867747812a°b? + 2409516801a°b — 491368113a°
+ 16002511875a*b'° — 2807713125a*b” — 337253240250 b® — 828272385004 b”
+ 23736107646a* b + 148014385290ab® — 561562970584 b* — 8395711564 b°
+ 3036868767a*b? — 1228397805a*b + 192591675a* — 38887931254 b*!
— 15653806875a° b0 + 2464715317500 — 23433071175a°6% + 1074428820544 b”
— 742096279264 b° — 38992058154a3b° + 336592942024 b* — 441279843343 b?
— 638016399a°b* + 354837267a>b — 493173630 — 18301500004 ">
— 3442359375a b + 4054764172502 b0 — 581323434752 b° + 4381876947602 b°
— 59563412694a%b” + 43152985926a2b% — 1509382998a2b° — 73749775324 b*
+ 159324390942 b% + 18855621a%b? — 51671511a%b + 70056004 + 6115200006
+ 2038260000ab'? — 4237211475ab'! — 9607597725ab™° + 20409022452ab’
— 15003156852ab® + 12463368246ab’ — 8118301878ab® + 1377168804ab
+ 676821084ab* — 176089371ab® — 470133ab® + 3544224ab — 4076164
+ 58016000062 — 30842700006 + 52310175756 — 26113522006*°
— 1359776484b° + 2134756440b° — 138950057467 + 5690728085°
— 56961396b° — 43497928b% + 7278159b + 767232b% — 123328b).

Now
TZ — Ts = 96(3a — 1)(b — 1)(2b — 1)(5b — 1)(3a + b) (36a — 356 — 7b — 2) (36a + 35b> — 32b — 7) Da 4 D3 0.5,

so all the solutions of equation Ty 4= /T = 0 belong to the boundary of the domain Sg. Computing the sign of
Ts 4+ /T at a point in each connected component of Sg it can be shown that for different values of (a,b) € Sg
we have that the eigenvalues \; 2, A3 4 are all complex, two complex and two real (with different signs), or all real
(also with different signs). It follows from Theorem 4 that for any given h > 0 and for |¢| sufficiently small, system
(16) has one kjm-periodic solution

@2((9, 5) = (TQ(G, 5), a2(9, 5), RQ(G, 5), ,82((9, 5)),

that tend to (72,0, R2,0) when ¢ — 0. Now we go back through the changes of variables in (11). Substituting
w2(f,¢) in (15) we get I'2(0,¢) and so pa(f,e) with p2(0,0) = pa. Then in this domain (2(6,¢), p2(6,¢)) is a
2m-periodic solution for the differential system (13) and for || sufficiently small, we have the solution of system
(9) in the statement of the theorem.

Finally we study the case j = k = 1, i.e. @« = = 7/2. In this case solving fao(x) = fos(x) = 0 we get that
either D55 = 0, or D5 43 # 0 and

51 +3a)(b—2)(b—5)h
T D5,a,b '

b(—=35 — 4(—8 + 9a)b + Tb%)h
RZRF\/( (D5+ba) + )k
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If D545 = 0, then proceeding as in the previous cases we get that there is no solution. Hence D5, 5 # 0 and the
set of parameters (a,b) € R? for which there exists solution must satisfy

(1+3a)(b—2)(b—5) _ 0 b(—35 — 4(—8 + 9a)b + 7b?)

>0
ERY) )
D5,a,b D5,a,b

and the solution is (rs,7/2, Rs,7/2). Moreover

ps = \/2h — 2 — R = \/b(3a — b)(~35 — b+ 36ab — 262)}/ Ds .
must be well defined, so we must have that

b(3a — b)(—35 — 7b + 36ab — 2b?)

31 = 0.
( ) D5,a,b
The Jacobian matrix of fa(x) evaluated at (r3, /2, R3,7/2) is
(32) _20. 2R3(b — 1)b*Dg o phks
o7 3P313 6,a,b/L3T

It must be different from zero. Taking into account the conditions in (30), (32) and (31) we get the domain S7.
The eigenvalues are

L VEhshlbl /T E VT
2\/§D5,a,b

)

where

Tr = —(1 + 3a)(—3a + b)(—23800 + 33075a — 26775a> + 21525b + 19125ab
+ 33300a%b — 16200ab — 15948b% — 108450ab* + 98442a°b* — 36288a°b*
+ 11664a*b? + 335386 — 702ab® — 204844%b® — 45364°b> — 10092b*
+ 13455ab" + 4653a%b? — 855b% — 2583ab” 4 368b°),
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Ts = (3a + 1)(3a — b)(1224440064a'b* — 13604889600 b° — 72105914884 b*
— 3401222400a°b® 4 14795317446 b° 4 748268928a°0° + 324363242884° b*
+ 16439241600a°b — 3259504800a°b? — 13095756000 b7 + 239723193647 b°
— 704210500807 b° — 78014803968 " b* — 37311094800a b> + 1363638240047 b*
+ 7807590000a" b 4+ 911349873a°b® — 2954683656a°b” 4 1400627700a° b°
+ 7283485656a°b® 4+ 121271458014a°b* + 7053177060065 b® — 67336782300a°b?
— 23091075000a°b + 6452105625a° — 491368113a°b” + 2409516801a°b®
— 4867747812a°b” 4 172778472364°b° — 148179519184 b° — 182653848018a° b*
+ 9815863500a° b® + 1127313693004’ b* + 6832704375a°b — 13789794375a°
+ 1925916750 b0 — 1228397805a*b” + 3036868767a*b® — 839571156a*b”
— 5615629705845 + 1480143852904 b° + 237361076464 b* — 828272385000 b*
— 337253240250 b — 2807713125a*b + 16002511875a* — 49317363ab'*
+ 3548372670010 — 638016399437 — 4412798433031 + 336592942024 b”
— 3899205815465 — 742096279260 b° + 1074428820540 b* — 2343307117503 b?
+ 2464715317500 — 15653806875a°b — 38887931254 + 7005600a>b"2
— 51671511ab' + 18855621a%b° 4 159324390942 b° — 737497753242 b°
— 1509382998a2b7 + 4315298592642 b° — 5956341269462 b° + 4381876947642 b*
— 58132343475a%b% + 4054764172502 b* — 34423593754 b — 1830150000a>
— 407616ab™® + 3544224ab'? — 470133ab™ — 176089371ab'® + 676821084ab’
+ 1377168804ab® — 8118301878ab’ + 12463368246ab° — 15003156852ab°
+ 20409022452ab* — 9607597725ab> — 4237211475ab? + 2038260000ab
+ 6115200000 — 12332863 + 767232b'2 + 72781596 — 43497928h*°
— 56961396b° + 569072808b% — 1389500574b7 + 213475644065 — 1359776484b°
— 2611352200b* 4 5231017575b6° — 30842700006% + 5801600000).

Now
T? — Ty = —96(3a + 1)(b — 5)(b — 2)(b — 1)(3a — b) (36ab — Tb* — 32b + 35) (36ab — 2b* — Tb — 35) Dg 4., D5. .5,

so all the solutions of equation Ty 4= /T = 0 belong to the boundary of the domain S;. Computing the sign of
Ts 4+ /T at a point in each connected component of S7 it can be shown that for different values of (a,b) € S7
we have that the eigenvalues \; 2, A3 4 are all complex, two complex and two real (with different signs), or all real
(also with different signs). It follows from Theorem 4 that for any given h > 0 and for |¢| sufficiently small, system
(16) has one kjm-periodic solution

303(‘9’ 5) = (T3(‘9’ 5)a a3(‘9’ 5)a RB(H’ 5)a /83(‘9’ 5))’

that tend to (rs,0, R3,0) when ¢ — 0. Now we go back through the changes of variables in (11). Substituting
w2(f,¢) in (15) we get I'3(0,¢) and so p3(0, ), where p3(0,0) = p3. Then in this domain (¢3(6,¢), p3(6,¢)) is a
2m-periodic solution for the differential system (13) and for || sufficiently small, we have the solution of system
(9) in the statement of the theorem.

Case 3.2 Here rb # 0, sin(2a) = 0, sin(28) # 0 and a = 2b. In this case fo3(x) = —(—1)7ksTR(1 — b)(2h — 1r? —
R?)sin(28). Setting fo3(x) = 0 we get that either b = 1, or b # 1 and 2h — r> — R?> = 0. When b = 1 solving

fo2(x) = faa(x) = 0 we obtain r = \/% and R = \/%2‘ when j =0 and r = \/% and R = \/%i when j =1

which is not possible. So b # 1. If r = /2h — R? then solving fa2(x) = fa4(x) = 0 we obtain R = \/%i which is
not possible.
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Case 4: rbsin(2a) # 0. In this case we consider that either a = 2b and r = v2h — R?, or a # 2b, sin(23) = 0
and r = v2h — R?, or a # 2b, sin(28) # 0, r # v2h — R? and k1 := bsin(2a) + 3(2 — a) sin(2(a — 3)) + 3b(2b —
a)sin(28) = 0, or a # 2b, sin(28) # 0, r # vV2h — R?, and k1 # 0.

Case 4.1 Assume rbsin(2a) # 0, a = 2b and r = v/2h — R?. Solving fa2(x) = fas(x) = 0 we get R = /2 hj which
is not possible.
Case 4.2 Assume rbsin(2a) # 0, a # 2b, sin(28) = 0 and r = V2h — R?. So 8 = kw/2 with k € {0,1}.

First we study the case k = 0. If k = 0 and b = a then foy(x) = —20a?hksm/3 which is different from zero if
a # 0. When a = 0, b = 0 which is not possible.

If k=0,b%# aand b =3 then foy(x) = —15(a + 1)k3m(2h + (@ — 3)R?)/2 so either R = \/2h/(3 — a) (recall
that a # 3) or a = —1. If a = —1 then fos(x) = 0 and fa2(x) is a function of R and « which is not identically
zero, therefore we cannot go to averaging of third order. If R = \/2h/(3 — a), then fao = 140hksm/(9 — 3a) # 0.

If k=0, b# aand b# 3, then solving fa(x) = fa4(x) = 0 we get

2bh 2(—1 — 3b + 5b?)

= 20) = —
B=\l3p=gy () b—3

In order that R is well defined we must have b(b — a) > 0 and in order that « is well defined we must have

I 2
o 2A=1=3b4s)
< T— <

The condition is equivalent to

(b—1)(1 + 2b) (26— 1)(5b — 1)

>
bz =0 b—3 =
Sobe [—1/2,1/5] U[1/2,1] and we have that
—1)n 2(—1 —3b+ 5b? o
ajhj:%arccos(— ( b_3 )) +lIm, 1,7 € {0,1}

is well-defined. On the other hand 7 = v2h — R2 = /2(3a — 2b)h/(3(a — b)) which is well defined when (3a —
2b)/(a — b) = 0. The Jacobian matrix of fy(x) evaluated at the solution ( thga 3§b NIRRTy, %bha >

( ) 'h4k4 4
729(a — b)®

Therefore the set of parameters (a,b) € R? for which the second averaging order provides a solution is Sg (see
(5)). The eigenvalues are

1600 (26— a)(b— 1)(2b — 1)(1 4 2b)(5b — 1)(3a — 2b)(3a + b).

VP )Jl4bsz§n_(bb) SkST 56— 1902 — 1) (1 5 26 (56 — 1),
2bhl<:37r\/5 (a — 2b)(3a — 2b)(a — b)(3a + b)
Agq = .

3(a —b)

Analyzing these eigenvalues in each connected component of Sg it can be shown that for different values of
(a,b) € Sg we have that the eigenvalues Aj 234 are all real or two complex and two real (with different signs).
It follows from Theorem 4 that for any given A > 0 and for |¢| sufficiently small, system (16) has four unstable
kim-periodic solutions

©j1,5(0,€) = (r5,,5(0,€), 5,50, ), Rjy 5(0,€), Bj, (0, €)),

that tend to ( thia 351’ NN %bha ) when ¢ — 0.

Now we go back through the changes of variables in (11). Substituting ¢;, ;(#,¢) in (15) and taking the square-
root we get pj, j(6,¢). Therefore (¢;, ;(6,¢),pj, ;(0,¢)) is a 2m-periodic solution for the differential system (13).
Moreover the terms of order zero of the solution with j € {0,1} and j; € {0,1} are the same, so we can only
guarantee that we have the solution of system (9) given in the statement of the theorem.

Now we study the case k = 1. If k = 1 and b = 5a/3, then fou(x) = —140a%hk37/27 which is diferent
from zero if a # 0. When @ = 0, b = 0 which is not possible. If & = 1, b # 5a/3 and b = 3(6a — 7),
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then foq = 21k37(5a — 7)(—14h + 12ah + 9R? — 7aR?)/2. Thus either a = 7/5, or a = 9/7, or a # 9/7 and
R = /2(6a — 7)h/(7a —9). When a = 7/5 then fos(x) = 0 and fo2(x) is a function of R and a which is not
identically zero, therefore we cannot go to averaging of third order. When a = 9/7 then fos(x) = —60hksm/7 # 0.
When a # 9/7 and R = /2(6a — 7)h/(Ta — 9) then fas(x) = 20(—7 + 6a)(—11 + 9a)hk3m/(3(—9 + Ta)) which is
zero when a = 7/6 and a = 11/9 but in these last two cases the solutions depend on «, so they are not possible.

If k=1,b%#5a/3 and b # 3(6a — 7), then then solving faa(x) = fasa(x) = 0 we get

14bh 2(—7 —9a — 3b + 18ab — b?)
\/ 336 —5a)’ cos(2a) 21+ 18a — b

In order that R is well defined we must have b(3b — 5a) > 0 and in order that « is well defined we must have

2(—7 —9a — 3b + 18ab — b?)

—-1< <1
- —21418a —b -
The condition is equivalent to
(b—1)(—7+ 36a — 2b) —35 — Tb + 36ab — 2b*
33 <0 d > 0.
(33) 21+ 18a—b . " 21+ 18a—b
So when condition (33) holds then a = a;, ; with
(—1)7 ( 2(—7—9a — 3b + 18ab — b2)> . .
= - 1}.
Qjy g arccos YR T— +jm, j.j1 € {0,1}

If, additionally, (15a — 2b)/(5a — 3b) > 0, then we have that the solution exists and it is
( 2h(15a — 2b) 14bh 7T>
SO A e —— T
3(5a —3b) " 7"\ 3(3b — 5a)’ 2
The Jacobian matrix of fo(x) evaluated at the above solution is
(—1)7T1448h k3 m?
729(3b — 5a)?

(b*(b — 1)(b — 3a)(7 — 36a + 2b)(2b — 15a)(2b — a)(35 + 7b — 36ab + 2b%).

Therefore the set of parameters (a,b) € R? for which the second averaging order provides a solution is Sy (see
(5)). The eigenvalues are

4b(—1)71sign(21 — 18a + b)hksm

A== V/—(b—1)(=7 + 36a — 2b)(—35 — 7b + 36ab — 2b2),

9(5a — 3b)
. 2bhksmy/7(5a — 3b)(a — 2b)(15a — 2b)(3a — b)
A34=1FE )
’ 15a — 9b

Analyzing these eigenvalues in each connected component of Sy it can be shown that in all Sy they are two complex
and two real (with different signs). It follows from Theorem 4 that for any given h > 0 and for |¢| sufficiently
small, system (16) has four unstable k;m-periodic solutions

30]'1,]'(‘9’ 5) = (le,j(e’ 5)’ ajl,j(‘g’ 5)’ Rj1,j (‘9’ 5)’ IBJ'LJ'(H’ 6))’

2h(15a—2b) o [/ 14bh
that tend to ( m, ajl,jv m, %) when ¢ — 0.

Now we go back through the changes of variables in (11). Substituting ¢;, ;j(#,¢) in (15) and taking the square-
root we get pj, j(6,¢). Therefore (¢;, ;(0,¢),pj,,(0,€)) is a 2m-periodic solution for the differential system (13).
Moreover the terms of order zero of the solution with j € {0,1} and j; € {0,1} are the same, so we can only
guarantee that we have the solution of system (9) given in the statement of the theorem.

Case 4.3 Assume rbsin(2a) # 0, a # 2b, sin(28) # 0, r # V2h — R? and x; = 0. Solving k1 = 0 in sin(2«)

we get sin(2a) = 2Ua=2) Sin(Q(a_B%))_b(%_a) sin25) - Then solving fa1(x) = 0 in sin(2(c — B)) we obtain that either

a =2 ora# 2andr = v2h — R? (which is not possible by assumptions), or a # 2, r # v/2h — R? and

sin(2(a — 8)) = b(Q(l;iaQ))((zz};;fz)fﬁgﬁ). If @ = 2 then from fy;(x) = 0 we get that (b — 1)(2h — r2?)sin(23) = 0.

Since sin(28) # 0 and a # 2b we only have the case r = v/2h. But then fa3(x) = —2(b — 1)bhksmsin(23) which

is never zero, so this case is not possible. If a # 2, r # v/2h — R? and sin(2(a — 3)) = b(Q(Z__ag))(é};L__fQ)_sEgB) then

foz(x) = —b(2b — a)hkshm R sin(2/3) which is also never possible. Hence, this case is not possible.
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Case 4.4 Assume rbsin(2a) # 0, a # 2b, sin(28) # 0, r # V2h — R? and k1 # 0. Solving fo21(x) = fa3(x) = 0 in
(r, R) we get

(34)
K1

. \/—6(—2 +a)hsin(2(a — B))

and

_ [2bhsin(2a)
(35) R—,/im .

Then after removing the denominator 1 (which we know is different from zero) equation faa(x) = 0 is equivalent
to

(36)  faa(x) = (b—1)((2 + 9a + 2b) sin(2a) + 3(6 — 3a + b) sin(2(e — B)) + 3(1 — 3a + 6b) sin(28) = 0
and equation fag(x) = 0 is equivalent to
foa(x) = b(—27a + 2(=9 + b)b + 9a(1 + 2b)) sin(2a) + 3(9a® + b(1 + b)
— a(18 4+ b))sin(2(a — B)) + 3(9a® + a(2 — 21b) + 2b(—2 + 3b))sin(28) = 0.
Case 4.4.1 Assume b = 1. In this case fa(x) = 0 and~]724(x) = ((—16 + 27a — 27a?)sin(2a) + 3(2 — 19a +

9a2)(sin(2(ac — B)) + sin(23)). Note that the solution of fay(x) = 0 does not determine both variables a and 3
and so the Jacobian matrix of fo(x) at any solution of fyj(x) = 0 for j = 1,2,3,4 will be zero.

Case 4.4.2 Assume b # 1, b = 3“6_1, a = —1/3. Setting ﬁg(x) = ]724(x) =0 we get

z—;(sin(Qa) —12sin(2(a — B)) =0 and z—;(sin(Qa) +9sin(2(a — 8))) = 0,

which in particular implies that sin(2a) = 0 which is not possible.

Case 4.4.3 Assume b # 1, b= 32=1 g = —1/6. Setting for(x) = fo4(x) = 0 given in (36) we get
sin(2(a — B)) =0 and 4sin(28) = —10sin(20),

which implies that sin(2«) = 0 which is not possible.

Case 4.4.4 Assume b # 1, b = 3“6_1, a#—1/3, a+# —1/6. Setting fas(x) = fas(x) = 0 and solving in sin(23) and
sin(2(a — B)) we get

26 + 5a + 96a2 — 63a3

(37) sin(26) = 3(1 +3a)(—7+ 3a) sin(2a),
sin(2(e = f)) = % sin(2a).

We note that if @ = 7/3 then b = 1 which is not possible by assumptions, so a # 7/3. Substituting (37) into
equation

sin(2(a — B)) = cos(2f) sin(2a) — cos(2a) sin(20),
and using that sin(2«a) # 0 we get

2 + 18a + 36a> + (26 + 5a + 96a* — 63a?) cos(2q)
3(—7+ 3a)(1 + 3a) '

Then using (38) and (37) together with sin?(23) + cos?(23) = 1 we get

(38) cos(28) =

239 — 1936a + 3703a2 + 18964 + 9153a* — 12096a° + 39694°

39 20/) —
(39) cos(2a) A(1 + 3a)(1 + 6a)(—26 — 5a — 96a2 + 6343) ’
and

33 — 283a + 27442 + 184 + 945a* — 1323a°
(40) cos(28) = a+ a® + lsa” + a a.

12(1 4 3a)?(1 + 6a)
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In order that cos(2a) be well defined we need that the denominator in (39) be different from zero and that
—1 < cos(2a) < 1. The first conditions is accomplished when a # 1/63(32 + (89405 — 2521/103209)'/3 + (89405 +
2524/103209)'/3) and the second one when

7(3a—7)? (3a® + 2a + 1) (21a® — 4a + 1) - 4 (21a — 1) (3a® — 4a + 3) (63a® — 33a* — 41a — 45) -
4(3a + 1)(6a + 1) (63a® — 96a% — 5a —26) > 4(3a + 1)(6a + 1) (63a3 — 96a% — 5a — 26)  ~

The denominator of cos(2f) is different from zero by assumptions, then in order that cos(23) be well defined we
need —1 < cos(2() < 1 which is equivalent to
7(21a — 1) (3a* — 4a + 3) (3a® + 2a + 1)
12(3a + 1)2(6a + 1)

(21a* — 4a + 1) (63a® — 33a® — 41a — 45)

>0
12(3a + 1)2(6a + 1)

~

Substituting (37) into (34) and (35) we get r = /7 and R = VR with 7 and R given in (4). Then

2(3a —1)p
p = \/Qh—TQ_RQZ\/%: 7((30, )plh’

3a — 7)72

with 75 and p; as in (4). Analyzing the intervals where —1 < cos(2a) < 1, —1 < cos(28) < 1,7 > 0, R > 0 and
p =0 we get 1/21 < a < 1/3. From (39) and (40) we get

(-1

a=0qj 0 = arccos(Ca) + 01

with Cy as in (4), j1,41 € {0,1}, and
S (e
B = Bryo, = 5 arccos(Cp) + Lo

with Cp as in (4) and k1, ¢s € {0,1}. Imposing that this solution is indeed a solution of the system fa(x) = 0 for
1/21 < a < 1/3 (recall that sin(2a) = (—1)711/1 — cos?(2a) and sin(23) = (—1)*1 /1 — cos?(23)) we obtain that
in fact if j1 = 0 then k; = 1 and if j; = 1 then k; = 0. So

(1)

— arccos(Cy) + 0y, leJrLgQ, g1 la, b2 € {0, 1},

Qjy by =
with the convention that 32,52 = BO,ZQ'
We compute the Jacobian matrix of fa(x) on the solution (V7,@;, 4, VR, leJrLgQ) and we obtain

1757 (a — 2)(3a — 1)*(21a — 1) (3a® — 4a + 3) (3a® + 2a + 1) (21a® — 4a + 1) (63a® — 33a® — 41a — 45) 'k}
729733

which is different from zero in the domain Sy (see (5)). We compute the eigenvalues of the Jacobian matrix of
f2(x) on the solution (we do not write them explicitly because of the length of their expressions) and we see that
for all the different values of (a,b) € S19 we get two complex conjugate eigenvalues and two real eigenvalues with
different sign.

It follows from Theorem 4 that for any given h > 0 and for |¢| sufficiently small, system (16) has eight unstable
kim-periodic solutions

ajl,flb(e’g) = (Fjlvflvb(ev5)’aj17€1752(‘975)7Ej1,€1,52(‘975)7Bj1,€1,€2(075))7
that tend to (ﬁ, Qjy 015 \/}:%, Bj1+1752> when ¢ — 0.

Now we go back through the changes of variables in (11). Substituting @, 4, 4,(0,€) in (15) and taking the
square-root we get pj, ¢, 4,(0,¢€). Therefore (B, 4, ¢,(0,€),9;, 4, 4,(0,€)) is a 2m-periodic solution for the differential
system (13).

Case 4.4.5 Assume b # 1, b # 221 and b = 3(22:?)- Setting fos(x) = 0 given in (36) and solving in sin(23) we
have
(12a* — 9a — 2) sin(2r) — 9 (a* — 3a + 2) sin(2(a — B))

(41) sin(2f) = 92+ 3

)
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which is well-defined because if @ = —1/3 then b = —1/3 and this contradicts the assumption b # 3%1. Hence
substituting this value of sin(2f) in fo4(x) = 0, if a = 5/6 then fo4(x) = 0 has no solution, so we can assume that

a #5/6. Now taking into account that b = 3(gZ:§a)

, and using (42) we get

~ ~105(a — 2)a? (3a* — 3a + 1) sin(20)
24(x) = (5 — 6a)? '

Setting fou(x) = 0 using that sin(2a) # 0 we get that either a = 0, or a = 2 (which is not possible because b # 0,
or a = (3+1iv/3)/6 (which is not possible). If a = 0 then solution of f24(x) = 0 does not determine both variables
a and f and so the Jacobian matrix of fo(x) at any solution of fa;(x) = 0 for j = 1,2,3,4 will be zero. So this
case is not possible.

Cet o ' ’ (60’ 5 ) inc 7 2 6 Sal‘ing fQQ(X) =0 With respect to S'III(ZIB) we
g

42 — b 6 sin(2(« /6 9a + 2b + 2)sin(2
( ) Sln(218) = ( ) ( ( )) ( )Sll’l( a) .

9a — 18b — 3
Hence substituting this value of sin(2f3) in fa4(x) = 0 and solving in sin(2(a — 3)) we get
, (9a2(2 + b) + 2b(1 + 11b) — a(1 + 40b + 18b%)) sin(2a)
43 2(a — B)) =
(43) sin(2(a = £)) 3(—1 + b)(—3aZ — 5b + 6a(1 + b)) ’

which is well defined because b # 3(a? — 2a)/(6a — 5). Then from (42) and (43) we can express sin(23) in terms
of sin(2a)

(—=9a2(2b + 1) 4 a (b* 4 40b + 18) — 2b(b + 11)) sin(2cv)

3(b— 1) (—3a? 4 6a(b + 1) — 5b) '
Using sin(2(a — ) = cos(2f3) sin(2a) — cos(2«) sin(2f3) together with (42), (43) and that sin(2a) # 0 we get
(45)

cos(25) =

(44) sin(23) =

(—9a2(2b + 1) + a (b* + 40b + 18) — 2b(b + 11)) cos(2a) + 9a?(b + 2) — a (18b? + 40b + 1) + 2b(11b + 1)
3(b—1) (—3a® 4 6a(b+ 1) — 5b) '

From (45) and (44) imposing that cos?(23) + sin?(23) = 1 we obtain cos(2a) = ¢, and using again (45) we get

cos(25) = ¢ with ¢, and ¢ given in (4). In order that cos(2«a) and cos(23) be well-defined we must have that

2410242 # 0 with caa1, and coao given in (4). Note that cap # 0 because b # 3(a? — 2a)/(6a — 5). On the other
hand, —1 < ¢, < 1 which is equivalent to

1842 —ab—a —5b) (ab+a—b D7 D
( a a a ) (CL a ) < 0 and 7,a,b78,a,b 2 0’
C2A1C2A2 C2A1C2A2

and —1 < ¢ < 1 which is equivalent to
(18@2 —ab—a— 5b) Dg o,

ab+a—0b)D
( ) 7,a,b >0 and <0,
C2BC2A2 C2BC2A2

(46)

(47)

where D744, Dg o1 and cop given in (4). When conditions (46) and (47) are satisfied, we have

—1)
a=a4 4 = arccos(cq) + 01
with ¢, as in (4), j1,4 € {0,1}, and
e
B = Brys = 5 arccos(cp) + lom

with ¢, as in (4) and ky,¢5 € {0,1}.
Substituting (43) and (44) into (34) and (35) we get r = v/7 and R = V'R with 7 and R given in (4). Moreover

2bh(2b — a)jy

=V2h—r2—R=/p= | =L
p r \/; (b—l)?“g

with 7 and p; given in (4) should be well defined. Let Sy the domain (a,b) € R? where 7 > 0, R > 0 and
p = 0 and conditions (46), (47) are satisfied. Imposing the solution (\/?_‘, s \/E, 5;,31,11), is indeed a solution of
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fa2(x) = 0 in the domain Sy (recall that sin(20) = 4/1 — cos?(2a) and sin(23) = £+/1 — cos?(28)) we obtain
that in fact if j; = 0 then k; = 1 and if j; = 1 then k; = 0. So
—1)01

Q0 = arccos(cq) + 01, ﬁNjIH,gQ, g1, 01,02 € {0,1},

with the convention that @7@2 = 30752.

The Jacobian matrix of fa(x) on the solution (V/7,d;, 4, \/E, Bjis1.0,) i
280071 k4h?

8173
and we obtain that it is different from zero in the region Si; as in (5). We then compute the eigenvalues of
the Jacobian matrix evaluated at the solution on the values in the domain Si; (we do not write them explicitly

because of the length of their expressions). Depending on the values of (a,b) € S1; we get either two pairs of
complex conjugate eigenvalues or two complex conjugate eigenvalues and two real eigenvalues with different sign.

(a —2)b*(2b — a) (18a2 —ab—a-— 5b) (ab+a—0b)D74pDg ap,

It follows from Theorem 4 that for any given h > 0 and for |¢| sufficiently small, system (16) has eight unstable
kim-periodic solutions

95]'1731,52(9’6) = (7:]'1,51%2 (9’6)’djl,ﬁl,b(eﬁe)’éjl,flb (eae)’ﬁjh&,& (9,6)),
that tend to (\/?, Qjy 4y s \/E, Iéj1+17[2> when € — 0.

Now we go back through the changes of variables in (11). Substituting @;, ¢, ¢,(6,€) in (15) and taking the
square-root we get pj, ¢, ¢,(0,€). Therefore (P, ¢, 0,(0,€), P, 01,0,(0,€)) is a 2m-periodic solution for the differential
system (13).

In order to conclude this section we must study the cases in which condition co41¢242 # 0 does not hold. Solving
co410242 = 0 in a we obtain

18 + 40b + b2 + /324 + 648b2002 — 64b3 + b*

a2 = )
18 + 36b
1 4 40b + 1862 + V1 — 64b — 2002 + 648b3 + 324b%
a =
3.4 36 + 18b ’

which are not defined when b = —2 or b = —1/2.

If b = —2 then either a = —12, or a is complex. Hence b = —2 and a = —12. In this case equations (43) and
(44) become
22sin(2
sin(28) = % sin(2(a — B)) = 0,

which yields that either sin(2«) = 0, or sin(23) = 0. Both cases are not possible.

If b = —1/2 then either a = 6, or a is complex. Hence b = —1/2 and a = 6. In this case equations (43) and
(44) become

22
sin(28) =0, sin(2(a—p)) = 5 sin(2a),
which is not possible because sin(23) # 0. So b # —2 and b # —1/2.

If @ = ay then imposing the condition cos?(23) + sin?(23) = 1 using equations (45) and (44) and solving in b
we get that either b = —4, b = —1/2, b =0 or b = 16/5. Since the case b # 0 and b # —1/2 was studied before,
we only need to consider the cases a = 4/3,b = —4 and a = 16/15,b = 16/5. In the first case equations (43) and
(44) become

sin(26) =0, sin(2(a — B)) = sin(2a),
which is not possible because sin(23) # 0. In the second case equations (43) and (44) become
sin(28) =0, sin(2(a — B)) = —sin(2a),
which is also not possible because sin(23) # 0.

If a = a1 imposing the condition cos?(23) + sin?(23) = 1 using equations (45) and (44) and solving in b we get
that b = —1/2 which is not possible.

If a = a4 imposing the condition cos?(23) + sin?(23) = 1 using equations (45) and (44) and solving in b we get
that b= —2,b= —1/4, b =0 or b = 5/16. The case b = —2 was studied before and is not possible and the case
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F1GURE 1. The plot of the regions S;.

b = 0 is not possible. We only need to consider the cases a = —1/3,b = —1/4 and a = 1/3,b = 5/16. In the first
case equations (43) and (44) become

sin(283) = sin(2a), sin(2(a —B)) =0,
which is not possible because sin(2a) # 0. In the second case equations (43) and (44) become
sin(283) = —sin(2a), sin(2(a —pB)) =0,
which is also not possible because sin(2a) # 0.

Finally if @ = a3 imposing the condition cos?(23) +sin?(23) = 1 using equations (45) and (44) and solving in b
we get that b = —2, b = 0 which are both not possible.

In short if condition (37) holds we have no solutions. This concludes the proof of the theorem.

6. APPENDIX

In Figure 1 we plot the sets S; for i = 1,...,11. We have chosen the region [—2,2] x [-2,2] to show the shape
of these sets. This region is not the whole domain, is just appropriate for clearness.

The intersection of the regions 5; is a tedious set, here to illustrate how complex these regions can be we
show the regions in the parameters (a,b) in the following cases: when ﬂ%ilSi = (), when only one condition S; is
satisfied, and when 8 different conditions S; are satisfied simultaneously. There are also regions where two, three,
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FIGURE 2. Examples of the intersection of the regions S;. a) the case N'1;S; = 0. b) the case

where only one condition S; is satisfied. The top of the upper region corresponds to Sa, the bottom
of the upper region to Ss, the left hand side region to Sg and the right hand side region to S7. ¢)
the case where 8 different conditions .5; are satisfied simultaneously. The upper region corresponds
to S1NS3MN.S5MN SN .S7MNSgMNSygN S11 and the lower one to S1MNS3MN.S4 NS5 MNSgMNS7MNSgN Sq1.

four, five, six, and seven different S; are satisfied simultaneously but due to the big number of possibilities, we do
not gain any insight in including them.
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