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Abstract

We consider a non-autonomous system of ordinary differential equations. Assume that the
time dependence is periodic with a very high frequengy, where ¢ is a small parameter
and differentiability with respect to the parameter is lost wherequals zero. We derive
from Arenstorf’s implicit function theorem a set of conditions to show the existence of periodic
solutions. These conditions look formally like the standard analytic continuation method, namely,
checking that a certain minor does not vanish. We apply this result to show the existence of
a new class of periodic orbits of very large radii in the three-dimensional elliptic restricted
three-body problem for arbitrary values of the masses of the primaries.
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1. Introduction

In the study of non-integrable dynamical systems it is very difficult to obtain com-
plete information on the behaviour of solutions for all values of time unless they are
asymptotic, periodic or almost periodic. Hence the interest to show the existence of
periodic solutions.

A classical tool to show the existence of periodic solutions in non-integrable systems
is Poincare’s analytic continuation method, which ultimately comes down to solving a
system of equations with a small parameter by means of the implicit function theorem.

This method has been widely used in Celestial Mechanics for analytical studies. We
call attention to the works of Poincafé3], Arenstorf [1], Hadjidemetriou [5], Meyer
[10,7], Jefferys [8,9] and Guillaume [4].

Meyer and Howison show in [7] the existence of periodic solutions to the spatial
circular restricted three-body problem, for all values of the mass parameter and large
inclination. The solutions found are of very large radii compared to that of the primaries.
When treating this as a perturbation problem the difficulty arises that the unperturbed
orbits are not defined when the small parameter vanishes. This difficulty is overcome
by using the implicit function theorem of Arenstorf [1]. We showed the existence of
periodic solutions of this type in the case of elliptic motion of the primaries in [12].
As the elliptic case is non-autonomous, the period of the solution cannot be solved as a
function of the small parameter, which results in making the problem more degenerate.
In order to reduce the degeneracy we considered in that paper the very special case of
primaries of equal mass.

In the present paper we get rid of this restriction and consider any possible value
of the mass parameter. The fact that the masses are arbitrary precludes the use of a
certain symmetry and adds to the degeneracy of the equations: one more equation is
degenerate in this case.

To give some insight into the physics of the problem we recall that for moderate
eccentricities of the primaries, the gravitational potential as seen from a body very far
from the primaries resembles that of a slightly oblate planet. Circular orbits of a satellite
undergo a slow rotation of their orbital plane around teis, if the equatorial bulge
is on thexy-plane. In astronomical terms this is known a®cession of the line of
nodes the line of the nodes being the intersection of the orbital plane with the reference
plane. Of course, this is not well defined for coplanar orbits. The velocity of precession
depends on the inclination of the orbit, being positive foi < n/2, zero (in a first
approximation) forpolar orbits, i.e.i = n/2, perpendicular to the equatorial plane, and
negative ifi > /2. It seems then that periodic solutions of arbitrary inclination do
not exist due to the fact that they tend to precess, so that they need a whole turn of
the precession to fit into the original position. Of course, this is not a problem if the
primaries move on circular orbits, because then all the positions of the primaries are
equivalent (that is, the problem is invariant by rotations aroundzthgis and we can
think of a reduced phase space). This is not the case in the elliptic problem, where there
is a privileged direction given by the major axes of the primaries and the infinitesimal
body should come to exactly the same position in the inertial frame in order to have
a periodic solution.
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If the unperturbed orbit is a polar one, the precession induced by a small variation
of the inclination can hopefully be used to compensate for any variation of the orbital
plane due to the perturbation.

As precession is not defined for orbits coplanar with the primaries, the question of
their existence is quite a different one. Another kind of variables and another transver-
sality should be used in that case.

In the first two sections we deal with the analytic continuation in the case of non-
regular dependency on the small parameter. We show that Arenstorf’s theorem allows
the problem to be solved by checking that a certain minor is non-vanishing, formally
the same argument as in the classical method. The use of Arenstorf’s theorem in this
paper is slightly different from that ifi7].

In the next sections we establish the existence of a discrete family of periodic
solutions to the spatial restricted elliptic three-body problem. These solutions exist
for all values of the mass ratio parameter and eccentricity of the primaries and are
perturbations of circular solutions of the Kepler problem having very large radii on
a plane perpendicular to that of the primaries. By the Kepler problem we mean the
spatial central force problem with the inverse square law of attraction.

The small parameter is roughly the inverse of the distance to the primaries and
it is introduced as a scale parameter. The perturbation problem is degenerate in the
sense that for = 0 the solutions are not defined, their period tends to infinity and the
minor relevant to the analytic continuation vanishes. These difficulties are overcome
by first averaging on the fast variable (motion of the primaries) so that the problem is
similar to the motion of a satellite around an oblate planet and then using an analytic
continuation argument.

2. Analytic continuation with non-regular dependency on the small parameter

Poincare’s method of analytic continuation reduces ultimately to solving a system
of equationsf(x,e) = 0, with f(0,0) = 0, for x as function ofe. If the system is
analytic or differentiable enough anfj (0, 0) # 0, then the implicit function theorem
guarantees the existence of such a solution.

There are cases, however, where the funcfios not differentiable with respect to
¢, so the classical implicit function theorem does not apply. A result of Arenstorf can
be used to show that differentiability with respectda@an be dropped provided that
the functionf satisfies some mild regularity conditions. Arenstorf’s fixed point theorem
is as follows:

Theorem 1 (Arenstorj. We assume X and P to be Banach spaces with elements x and
p. Let g be a mapping from the product spakex P into X, given by (x,&) —
g(x,e) € X, and defined for x in a balB = {x € X such that|x| <«,« > 0}, and ¢
in a region V of P containing = 0, with g(0,0) = 0.

If, for everye € V, g is differentiable with respect to € B and

lgx(x. )| <{<5 onBxV
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(where g, denotes the partial derivative of g with respect toaxd the norm of this
linear operator from X into itself is the sup noyrand if

lg@.&)|<3 onV,
then there exists a functian(e) with
gx(e),e) =x(e), x()eB foreeV, x(0) =0.

See[1] for more detalils.

By means of this theorem it can be seen that a sufficient condition for the existence
of solution of f(x, &) = 0 in a neighbourhood af = 0, ¢ = 0 is that the determinant
of f,(0,0) does not vanish (formally the same condition as in the regular case) together
with some regularity conditions, as stated in the following proposition.

Proposition 2. Let U be an open domain iR", I C R an open neighbourhood of the
origin and f : U x I — R" with f(0,0) = 0, differentiable with respect ta € U,
and f,(0,0) non-singular. Assume that there exist- 0, k > 0 such that forx € U,
eel

@) I fi(x.8) = £:0, 0 <e(lxll + o),
@) 1£0, o) <ke.

Then there exists a function(e) € U, defined fore € I’ C I, such thatf(x(¢),e) =0
and x(0) = 0.

Proof. Let

~ k 5o 1
T oemk+12)" " T dmemk + 1/2)°

wherem = || £71(0, 0)].
We consider the function

gx,e) =x — £, 10,0) f(x, ).
If |lx|| <o ande<f we have

lgx (e, )l = 1d = £750,0) f (x, &) < 1740, 0l filx, &) — £2(0, 0]

< mo(flx || + &) <mox + f) < 3.

whereld is the identity matrix.



J.M. Cors et al. / J. Differential Equations 219 (2005) 1-19 5

On the other hand, the following inequality holds,
lg(0, &)l = I £y (0, 0) £ (0, )| <mke <mkB < 30

Therefore,g satisfies the hypothesis of Arenstorf’s fixed point theorem and there exists
a neighbourhood of the origi' c I and a functionx(¢) € U such thatf (x(e),e) =0
forein . O

This result will be used to show the existence of periodic solutions in the three-
dimensional elliptic restricted three-body problem, when the infinitesimal body is at
great distance from the primaries and the perturbation can be seen as a fast periodic
forcing.

3. Two lemmas on differential equations

We consider the differential equation
z=F(z, &), Q)
wherez € R" and
F(z,e,1) = Fo@) + eFu(z, & 1) + 2 Fr(z, &, 1).
Let zo be initial conditions such that© (z, zg) is a solution of
£9(, 20) = Foz'?) ©)

which remains bounded and bounded away from the singularitie.dfet C ¢ R”
be a compact neighbourhood of? (¢, zg) without singularities. We assume that the
functions Fo, ¢F1, €2Fg are continuous forz € C, ¢ € [0,¢1], ¢ € R. Furthermore,
Fo, F1 and Fg together with all their derivatives with respect zaare bounded or®
by a constantC; independent ok. In particular, Fo is Lipschitz with a constanCs.
In what follows the maximum nornfjv|| = max |v;| for vectorsv € R" and the usual
norm of the supreme on the unit ball for linear operators will be used.

The next two lemmas show that the solution of EL). ¢an be written as the solution
of (2) plus terms which are of order and the same is true about its partial derivatives
with respect to the initial conditions.

Lemma 3. For ¢ # O let z(z, zo, &) be a solution of Eq(1) with initial condition zg
and letz M (z, zo, ¢) be the solution of

D, z0,0) = F1zQ, e, 1) + DFoz O, z0) 2P (¢, 20, &) (3)
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with initial condition zP(0, zg, &) = 0, where D is the matrix whose entries are the
partial derivatives ofF with respect to the z variables. Then we can write

2(t, 20, &) = 291, z0) + 62V (1, 20, &) + zr (1, 20, €)

and zz (7, 20, ¢) is O(&2) in a finite interval of time

Proof. We first definezi(z, zo, ¢) = z(t, zo, €) — 29 (¢, zo) and we see that it i€(¢).
Let C be a compact neighbourhood ¢ (¢, zg). Then

t
lza(t, z0, &)l < /0 IFo(z(1)) — Foz @ ()]
t
te / 1P, 6 1) + eFr(2(D), &, D)l d

0

t
< / Callz(, 20, &) — 29z, zo) | + C1(1 + &)t

0

and, applying Gronwall’s inequality, we get
Cy C1
llza(t, zo, &) | <e(l + &) — exp Cat — (1 + &) — <&C3
Co C2

if r €[0, To]. We see now that
2r(t.20,8) = 2(t, 20, &) — 291, 20) — &z (2, 20, &)

is O(£2). Let & be such that the ball of radiusand centrez© (¢, zo) is contained inC

for all ¢+ € [0, To]. By continuity with respect to the initial conditions and parameters,
there existse, such that if[z§ — zo| < 2 and ¢ < &2 then z(z, zj), ¢) lies inside the
ball of radiusd and centrez@ (¢, zo) for all ¢ € [0, To] (see[6]). Then we can write
Taylor's formula,

I Fo(z(0), 1) — Foz 9 (1), 1) — DFo(z (1, 20))z21(1, 20, )| <&2Ca

and, sinceFi(z, t, ¢) and all its derivatives with respect toare bounded by a constant
independent o, we have

IF1(z(2), &, 7) — F1(z 9 (2), &, DI < Csllz1(x, 20, &) | <eCe.
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Now we have
t
lzr (1, 20, &) || < / I12(z, 2o, &) — 29(1, z0) — e2P (1, 20, &) || dt
0

t
< / 1Fo(z(), ) — Foz®(0), )
0
—DFo(z% (1, 20))[z1(1, 20, €) — z& (1, 20, )]
+e[F1(z(0), &, 1) — F12Q (1), &, D] + e2Fr(z2(0), &, 7| d7,

so we finally get

t
26, 20, &)]| < Cae®t + / Collzx (. 20. 8)l| dt
0

and Gronwall's inequality gives

2 2

Cge Cge
t,z0,8)|| <—— exp Cot —
lzr(t, zo, &)l Co p Co Co

if te[0,Tp]. O

The next Lemma shows that similar bounds hold for the partialsgofvith respect
to z

Lemma 4. Let zg(z, zo, ¢) be as in Lemma. Then
Dozr (1. 20, &) = O(?)
for r € [0, To].

Proof. Let z1(¢, zo, &) be as in LemmaB. We first see that

| Dyz1(2, 2o, &) | <eCro.

We have
t
| Dzpz1ll < /0 | D[ F(z(t, z0, €)) — Foz @ ()]l dr

and the integral in the right-hand side is bounded/by) + I2(¢), where

t
11(t)=/0 1D F ()1 Dzpzall dr,
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! 0 0
() = f 1D Fo(z) — D:Fo(z'®) + eD.[F1 + eFr1@)1 D202 dx.
0
and then the inequality

IDoz1ll < [
0

holds because all the functions involved, as well as their first and second order deriva-
tives, are bounded on the compdattGronwall's inequality readily gives

t t

C11ll Dzl dT+8/ Crodt
0

Cr2

C12
1 Dpzall Se——eC12 — e—=.
Cu Cu

In order to see thaD, zr (¢, zo, &) iS O(¢?), we write, as in Lemma,

t
1 D2ozr (2, 20, )| < /0 I D[ F(z(z, 20, ), T, &) — Foz P (z, z0))
—eD, Fo(z (1, 20)2P (1, 20, &) — eF1(z P (1), &, D]|| d7.

Let

My = D, Fo(z(t)) — D;Fo(z9(1)) — Do.Fo(z 0 (. 200)(z — 2°)
+¢[D, F1(z(1)) — D.F1(z 9 ()] + 2D, Fr(z(t)) + D, Fo(z¥)zr,

My = D, Fo(z(1)) — D, Fo(z% (1)) + eD, F1(z(1)) + £ D, Fr(z(1)),

where D, F(p)h stands forD.. F(p)(h,-) : R"* — R" and D,.F(p) is the second
differential of 7. We then have

t
| D2ozr (2, 20, &) || < / 1D, Fo(z @z, 20)) Do z1(1, 20, &) dt
0

t
+/0 (IM1]|[1 D2z (x. z0) | + M2l D=2k (. 20, &)I)) d,

where ||[E|| = sup|lExyl]l, llx]l = |yl =1, x, y € R" is the norm of a bilinear contin-
uous operatole mappingR" x R" into R". As D, Fr(z), D.Fi1(z) and D, Fo(z(¢))
are all bounded, we obtain

IM1ll < C2llz — 2 Q2 + eCuallz — 2@ + £2C14< C1562
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and
1M2]| < C16llz — 2 Q|| + £Ca7 + 2 C18< C1e.
From Lemma3 we deduce
lz — 2@ 1< Cse,

so that
5 t
| Dazr (t. 20, £)]| < Ca06% + / CorDoyzr(%, 20, &) .
0

Then the Lemma follows from Gronwall’'s inequality[]

4. The elliptic three-dimensional restricted three-body problem

The elliptic restricted three-body problem describes the motion of a body of in-
finitesimal massis, in the gravitational field created by two bodieg andm called
primaries. The primariesn; and my are, respectively, of mass 1 u and g, with
u € [0,1), and are moving in elliptic orbits with eccentricity € [0, 1) and semima-
jor axis u and 1— u, around their centre of mass which remains fixed at the origin.
The equations of motion are usually written in dimensionless coordinates, in such a
way that the semimajor axis of each primary around the other is unity [(<dg If
the infinitesimal body is far away from the primaries, its motion must be close to a
Keplerian motion although in the limit the orbit would be of infinite radius. Another
system of units can be taken, in which the infinitesimal body is at distance unity from
the origin and both primaries are very close to one another. Thus, the small parameter
is the semimajor axis of the primaries and when it takes very small values the orbit of
the infinitesimal body tends to a Keplerian circle of radius unity and the perturbation
gives rise to a very fast periodic forcing, thus losing differentiability.

The equations of motion of the elliptic three-dimensional restricted three-body prob-
lem can be derived from the non-autonomousp2riodic Hamiltonian

1 2, 2 o 1-p n
- = — — 4
H(q, p, 1) 2(p1 + p5+ pg) R R’ 4)

whereq = (q1, g2, g3) andp = (p1, p2, p3) are, respectively, the position and momen-
tum of mz and R1, Ry are the distances from the infinitesimal body to the primaries

RZ = (g1 — up cosp)? + (g2 — ppsing)? + ¢4,

R3 = (q1+ (1 — 0pcosp)® + (g2 + (L — wpsine)? + ¢3,
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where p(¢) is the distance between the primaries amd) is the angular position of
m1 measured from the pericenter. The following expressionspfoy and ¢(¢) can be
found in [14]

__A-n?
P 1+ncosp’

do (14 ncosp)?
dt — (1-n?32 "

It is easily seen that the equations of motion are invariant by the symmetry

S : (CIl, q27 q3, pla PZ’ p35 (/77 t) — (‘Zl, _CIZ, _q3a _1717 p27 p37 _(Pv _t)

which can be used to show the existence of periodic solutions, in a way similar to that
in [10,8,12], as stated in the following proposition.

Proposition 5. Let r(¢) = (q1(1), q2(t), q3(t), p1(t), p2(t), p3(t), ¢(t)) be a solution of
the equations of motion fams. If (¢2(¢), q3(t), p1(t), @(t)) are zero att = 0 and if
(q2(1), q3(t), p1(2)) is zero andep(t) = kn att = T /2, thenr(¢) is a periodic solution
of period T

These periodic orbits agymmetric periodic orbitef the elliptic restricted three-body
problem. Note that in order to hawe(T/2) = kxn, we must takel' = 2kn.

As we intend to show the existence of symmetric periodic orbits close to infinity,
we scale the variables by = ¢ 72§, p = ¢p, H = .

Expanding ¥R1 and 1/ R in terms of Legendre polynomials (as [b2]) and drop-
ping tildes, we get the following expression for Hamiltoniah

oo
M@ p.t,e) =) eH, P, 1), (5)
i=0

0

where the non-zero terms agd(q, p, t) and Hoit

H3 and HY are given by

1(d. p. 1), for i>3. The functions

1 1
H3(@.p) = SIpl” ~ i

1 /—1+3co€ S
HQ, p, 1) = —p(L — pp? <—) .

EE 2
with

q1COSQ + g2Sing
[s]

cosS =
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Notice that Hg is the Hamiltonian of the Kepler problem and therefore Hamilto-
nian @) can be seen as a small perturbation?cﬁ. The functions?—[?(q, p,t) and
HO(@, p, 1, 8) = Y529 € HO(q, p, t) are bounded i1 — W i <k, for somek < 1.

5. Continuation of symmetric periodic solutions

In this section we show that circular solutions of the unperturbed Kepler problem can
be continued to symmetric periodic solutions of the spatial elliptic restricted three-body
problem for small values of. We introduce the Poincaré—Delaunay variables defined
as

Or=1l+g, Pi=1L,

02 = —V/2(L — G)sing, P2 =+/2(L —G)cosg,

Q3 =h, P3=H, (6)

where L = /a, H = G cosi, a is the semimajor axis of the infinitesimal mass,its
angular momentume = /1 — G2/L? is the eccentricity of the infinitesimal body,
the inclination of the orbital plane to thggo reference pland, the mean anomalyg
the argument of the pericenter measured from the ascending node thedlongitude
of the ascending node. These variables are defined on a neighbourhood of the circular
Kepler orbits which occur aD; = 0, P, = 0. If P3 = 0 the orbit lies in a plane
perpendicular to theig> one, sed14] for more details.

The periodicity conditions given by Proposition 5 in Poincaré variables state that at
time r = 0 we must have

Q1 =0modr, Q2=0, Qz3=0modr and¢e =0
and at timer = 7/2
Q1 =0modr, Q2=0, Q3z3=0modr and¢ = kn.

The condition Q2> = 0 implies eitherg = O0modr or L = G, so thatmg is on an
elliptic orbit with its pericenter on thgi axis or on a circular orbit.
Applying the symplectic change of variable8),( Hamiltonian (5) becomes

o0

H(Q.P.t.e) = Y eHNQ. P.1)

i=0

3HIQ, P) +e"HYQ, P, 1) + °H%(Q, P, 1, ¢), (7)
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where

HY(0. P = o
=T 2py

1/-1 3
HUQ, P, 1) = —pu(1— H)Pzr—s (7 + > <COS‘// cos Q3 — @)

P3 . . 2
—EsmlPSln(Qs—w)) ,

r is the distance fromm3z to the origin andy is the position ofm3 measured from the
node.

The function?—lg(Q, P, t) is 2r-periodic int and it can be expanded as a Fourier
series

o0

HY(Q. P, 1) = —ﬂ(l—u)r% Y a(Q. P)explike),
k=00
where
ao(Q, P) = %(z+ 3?) ( 2+3cod y + 3P3;'n2¢)
82122( G P3sin 203sin 2 4 cos 203(G2co  — PZsin?y)). (8)

In this expressiorG is clearly a function of(Q, P), see 6), and so is)y but a closed
expression in terms of) and P does not exist because it needs solving Kepler's
equation. In the proof of Lemma 6 we will use an expansion as power series (see
Appendix for details).

We will use the technique of the Lie transforms in order to simplify the Hamiltonian
(7). As the Hamiltonian is non-autonomous, the new Hamiltorfie= Y2 Hi will
be givenH = Lw(H) — Lw(0W/dr) where Ly is the Lie transform generated by a
function W(P, Q,t) as defined in [11], Section VII, 2. The functid' is given by a
series expansio = 2 &' Wi41. We chooseW such thatow,/or = ’H?(Q, P, )+
w1 — wr=3ap(Q, P) and W; = 0 for i # 7. In this way,H3 = HJ and the periodic

terms are removed fror9 and thrown intofig = Y24 ¢'#Hi. Notice that we only

rewrite the Hamiltonian in such a way that the teﬁﬁ does not depend ohbut all
the terms in7{z do depend on.

H(Q, P.t,6) = SHI(Q. P) + e H{(Q. P) + e%HR(Q. P. 1, ).
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If we change the scale of the time variable- ¢3¢, the equations of motion for the in-
finitesimal mass are hamiltonian and the Hamiltoni&Q, P, t, e):g%H(Q, P,1/e3, ¢)
is of the form

K(Q. P, t,e) = Ko(Q, P) + *K1(Q, P) + e®Kr(Q. P, 1, ¢). )
where Ko(Q, P) = —2—1{,2, andK1(Q, P) is given by
1
1
K1(Q, P) = —u(1— M)r—3610(Q, P). (10)

The functionz(Q, P, 7, ¢) is bounded by a constant independent decause the term
7/e3 appears only as the argument of circular functions. Note 4Pt is continuous
ate = 0, butKy is not so because the smaller getéhe faster oscillate the terms cps
and sinp. Note also that in the particular case of zero eccentricity of the primaries,
the angley is given by ¢ = ¢~37. This is the reason why expansions in power series
in ¢ cannot be used but the results of Sect®ian be applied.

Let z = (Q, P), then the equations of motion derived from thes2-periodic Hamil-
tonian (9) can be written as

2= Fo(z) + eFi1(z, &) + 2 Fr(z, &, 1), (11)
where

Fo(z) = (P;,0,0,0,0,0),
3 (0K1 0Ky 0K1 0Ky  0K1  0Ka
fl(zvg):‘c; An ' A s A ) s T - .
0Py 0P, 0P3 0Q1 0Q2 0Q3
A solution of the Kepler problem with initial conditiong=(Qg, P;)=(0,0,0, 1,0, 0)
and ¢p* =0 is

’

29, z5) = (£,0,0,1,0,0).

If &3 = 1, then at timet = T/2 = 2kne3/2 = = we haveg(n) = kn and we look
for initial conditions in a neighbourhood afj, of form zo = (0,0, 0, P1, P2, P3), in
such a way that the solutiof(z, zg, ¢) of system {1), with ¢ # 0 small enough, is a
symmetric periodic orbit.

From Lemma 3, we have thait, zo, ¢) = 29 (1, z0) + e2P (1, z0, €) + zr (1, 20, €)
where 7@ (¢, z0) = (P31, 0,0, P1, P2, P3) and zP(x, z0, ¢) satisfies Eq. (3) and can
be obtained through the formula

T
(1, 20,8) = 2(x, zo)f 27 R, 6, u) du, (12)
0
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where Z(z, zo) is the matrix

079 (1, &)

Z(t,20) = PE

&=20
Then we have, correct to ordef

Q1(t.20.8) = P; 1+ 0(e?),
and correct to orde®

02(t, 20, &) = €057 (x, 20, &) + O (&%),

03(1, 20, &) = £05 (1, 20, £) + O(&),

where Q(Zl)(r, z0, €) and Q(Sl)(r, 70, €) are bounded on any fixed interval of time if

¢ # 0 is small enough and are given in the following lemma.

Lemma 6. Let 6P = (P1 — 1, P>, P3) = (AP1, P>, P3). Then

3
oM (n, z0,6) = —&° <§u(1 — 1) (AP — P2 4 6(9A Py + Po)n?) + 0<||5P||2>) :

3
0P (n, 20, 6) = —&3 ({u(l — W@ —rP)P3+ 0<||5P||2>) .

Proof. From Egs. 12) and (10) we have

T (oK
0 (1. 20.8) = 3 / (—1) dt
0 \0P; J 0z

— B /” <i (M)) di. i=23
0 6P, r3 20 (z,20)

(13)

Now, ag(Q, P) is given explicitly in @) as function ofG, yy, P and Q. Expressions of
G andy as functions ofP and Q must, of course, be substituted.

Note first that onz©@(z, zp) we have Q> = Q3 = 0. As we are interested in a
neighbourhood of the periodic orbit? (z, %) we can use formulas (22) in order to
expandG, r, andy as power series idP to order two.

G =1+AP —3}PZ,

r =1+ 2APy —c0SQ1P; + AP? — 3 c0SQ1APLP; + i’ Q1PZ + O(10P®),
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Y = Q1+ 2siNQ1P; —SiNQ1APLP, + 3sin201PZ + O(10P ), (14)

where Q1 = (1+APy) 3t = (1 - 3AP; + 6APZ + O(I6P %))t

These expansions are convergent in a small enough vicinity%fz, z4) because
all the functions involved are analytic iQ2, O3, AP1, P2, P3).

Then we can substitutel4) in (13) and expandio(Q, P)r—3 as power series in
(AP1, P2, P3) and coefficients periodic functions 02, 03). After a straight-forward
computation the result follows.

The conditions of symmetry which must be satisfied at time 7/2 = = for the
existence of a periodic orbit are

01(m, z0,€) =,
QZ(TE’ ZO? 8) = 0’

Q3(m, z0,€) = 0.

Let us definef = (f1, f2, f3), where f1(0P,&) = Qi(m,z0.€) — m, fi(6P,¢e) =
e74Q;(m z0,€), i = 2,3. Then

f1(0P,e) = (L+ AP 3n — n+ 0(e%),
3
f2(0P. &) = —guu — W)(BAPL — Py + 6(9APL + PP
+O(I0P)?) + O(e),

3
f3(0P, &) = —Zn#(l— WL —=n*P3+ O(I5P]%) + O(e). (15)

A sufficient condition to obtain symmetric periodic orbits of the elliptic problem is to
find 6P in such a way thatf (6P, e) = 0 for ¢ # 0. Strictly speaking, the function
f(OP,¢) is not defined fore = 0, so we cannot use the standard implicit function
theorem. We definegf (6 P, 0) and its derivatives by making formally vanish the terms
O(e) in (15). We shall see that the functions obtained meet the hypothesis of Arenstorf's
theorem (see Section 2).

Theorem 7. Consider the equations of motion for the spatial restricted three-body
problem when the mass parametere (0, 1), and the primaries move around each
other on an elliptic orbit with semiaxis? and eccentricityy € J = [0,1/+/6 — 1) U
(1//6+ 2, 1), 2 a small positive value. It = k=13 for k a positive integer large
enough then there exist initial conditions for the infinitesimal body such that its motion
is a symmetric periodic solution of peric2z, near a Keplerian circular orbit on a
plane perpendicular to that of the primaries
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Proof. We must see that the functiofi(P, ¢) satisfies the conditions stated in Propo-
sition 2 that guarantee the existence of solutionsf@éP, ¢) = 0 in a neighbourhood
of (0,0). The systemf (6P, ¢) = 0 has the solutiodP =0 for ¢ = 0.

Let f5p (0P, ¢) be the Jacobian matrix of (0P, &) with respect todP. Fore =0
we have

— (fﬂ S 0 0
u(l—p

f5p(0,0) = u(1— p) (—%(1+9n2> Fa-ep? 0 )
0 0 —31 -

Then, if the eccentricity of the primarieg € J, f5p(0,0) can be inverted and is
bounded by a constamh. In order to prove conditionl) of Proposition 2, we write

I fop(OP, &) — f5p (0, 0)I<| fop (0P, &) — f5p (6P, 0 + |l fop (6P, 0) — f5p(0,0)]|.
Now, the functionf (6P, 0) being analytic, we have

3

1 f5p (5P, 0) = f5p (0,00 < Y 1 £i.5p (8P, 0) = f;.5p(0, 0| <Call 6P,
i=1

and, on the other hand, in the inequality

3
I fsp (0P, &) = f5p (0P, 0)]| < Z I fi.op (0P, &) = fisp (6P, 0,
i=1

the first term of the sum is bounded l§ye* and the second and third are less than
Co¢e because of X5). Then, foréP in a compact neighbourhood of the circular orbit
(see Section 3),

I fsp (0P, &) = f5p (0,0 <Cs(|0P]| + €).

Condition @) of Proposition 2 is a straightforward consequence of (18).

This theorem yields a continuum of solutions of the systé@P, ¢) = 0. In order
to have a periodic solution of the elliptic problem, the above conditions must be
satisfied simultaneously withh = k= (i.e. the primaries must be at either the pericenter
or apocenter of their orbit). Thus, for eagh= k~/3, k a large positive integer, a
periodic solution of the problem exists. Note that the solutié®, ¢) is near (0, 0)
which means thai; = G cosi is near zero and ~ 7.
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Appendix. The neighbourhood of circular solutions in the Kepler problem

In this Section some convergent expansions relative to the transformation between
polar coordinates and Poincare variables for the infinitesimal mass will be given. As
use will be made of the classical orbital elements, we first recall some formulas that
will be needed (se3] for details). LetE be the eccentric anomaly, then we have the
relation

E l—e v
tan— =,/ ——tan— 16
2 1+3 2’ (16)

wherev is the true anomaly. The mean anomédlis related to the eccentric anomaly
E through Kepler's equation

| =E —esinE. (17)

Position and velocity can be calculated in terms of the orbital elements. The distance
to the origin and the angl¢ are given by

r =a(l— eCOSE),
V=v+g. (18)
If we denote byR and ¥ momenta conjugate to andy respectively, we have
R =a %1 — ecosE) lesinE,
¥Y=0G. (19)

Notice thaty is well defined on circular orbits even thoughandg are not themselves
defined in this case.

Neither the classical orbital elements nor Delaunay elements are well defined on
circular orbits, and the same is true for any of the anomalies. In contrast to that, the
magnitudes sinv and e cosv are well defined and depend smoothly on the variations
of the initial conditions. The same can be said abosih/, ¢ cosl, eSinE, e COSE.

In passing from Poincare elements to polar coordinates, direct use of the angular vari-
ables!/, v, E will be avoided, and pairs such &ssinE, ¢ cosE) will be used instead.
Notice that in each one of the pai(gsini, e cosl), (e sinv, e cosv), (eSinE, e COSE),
both variables can be expanded as a power series in the variables of any other pair.
The differencess — E, E —1 andv — [ can be expanded in the same way as well. We
will quote a few of these expansions that will prove useful in what follows. A standard
reference for that subject [2].
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From Kepler's equation1(7) the following expansions can be derived
eSINE = esinl + esinle cosl + O3(esinl, e cosl),
¢ COSE = e cosl — (esinl)? + Oz(esinl, e cosl). (20)
The differencev — E can be expanded fronl§) as
v—E = eSiNE + esinEe cosE + Oz(esinE, e COSE)

and the differenceE — [ is just given by 17).
We also have

esinl = sinQje cosg — cosQiesing,

e coSl = cosQ1eCcosg + sinQ1esing. (22)

We look now for the formulas that change from Poincare variables to polar coordinates.
From the definition ofQ, and P, we have

. 1 B 1
esing = ——502P 1\/2P1 - 505+ P

mw-nippﬂﬁp—iy+P%
8 = NG 21 1 52 2)s
and the right-hand sides can be expanded as power serigs,iP1, P, near Qo =
0,1 = 1, P, = 0. Taking into account2l), we getesinl, ecosl as power series
in the mentioned variables and coefficients trigopnometric polynomial@srand from
(20) we eventually findesinE and e cosE, again as series of the same type. From
(18) and (19) we get the needed expansionsrfand R. The expansion ofy follows

a similar reasoning using

Y=Qi1+v—E+E—I

and expandingg — E and E — [ as before. The above procedures yield the series up
to any order if care is taken to expand to the required order in each step. We quote
the result for polar coordinates and momenta as functions of Poincare variables up to
second order.

2
3 1
r=1+2AP + APl2 + % — P,coq Q1) — EAPlPZ cos Q1) + EQ% cog2Q01)

. § . 2 . 2 .
+Q2sin(Q1) + ZAPle sin(Q1) + P3 sin® Q1+ Q2P>sin(201)
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5
Y = Q1+ 202c08Q1) — AP1Q>c09Q1) + §Q2P2 €03201)
+2P;sin(Q1) — AP1P;sin(Q1) — ZQ% sSin(2Q1) + ZPZZ sin2Q1),
3 .
R = Q2co0901) — EAPle cosQ1) +2Q2P2c082Q1) + P2sin(Q1)

—gAPle sin(Q1) — 03sin(2Q1) + P#sin(201),

2 P2
¢:1+AP1—%—72, (22)

whereAP; = P, — 1.
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