
J. Differential Equations 219 (2005) 1–19

www.elsevier.com/locate/jde

Analytic continuation in the case of non-regular
dependency on a small parameter with an

application to celestial mechanics

Josep M. Corsa,∗,1, Conxita Pinyolb,2, Jaume Solerc,1
aDepartament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, 08240 Manresa, Spain

bDepartament d’Economia i Història Econòmica, Universitat Autònoma de Barcelona, 08193
Bellaterra, Spain

cDepartament d’IMA, Universitat de Girona, 17071 Girona, Spain

Received 1 April 2004; revised 4 July 2005

Available online 10 October 2005

Abstract

We consider a non-autonomous system of ordinary differential equations. Assume that the
time dependence is periodic with a very high frequency 1/ε, where ε is a small parameter
and differentiability with respect to the parameter is lost whenε equals zero. We derive
from Arenstorf’s implicit function theorem a set of conditions to show the existence of periodic
solutions. These conditions look formally like the standard analytic continuation method, namely,
checking that a certain minor does not vanish. We apply this result to show the existence of
a new class of periodic orbits of very large radii in the three-dimensional elliptic restricted
three-body problem for arbitrary values of the masses of the primaries.
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1. Introduction

In the study of non-integrable dynamical systems it is very difficult to obtain com-
plete information on the behaviour of solutions for all values of time unless they are
asymptotic, periodic or almost periodic. Hence the interest to show the existence of
periodic solutions.
A classical tool to show the existence of periodic solutions in non-integrable systems

is Poincare’s analytic continuation method, which ultimately comes down to solving a
system of equations with a small parameter by means of the implicit function theorem.
This method has been widely used in Celestial Mechanics for analytical studies. We

call attention to the works of Poincare[13], Arenstorf [1], Hadjidemetriou [5], Meyer
[10,7], Jefferys [8,9] and Guillaume [4].
Meyer and Howison show in [7] the existence of periodic solutions to the spatial

circular restricted three-body problem, for all values of the mass parameter and large
inclination. The solutions found are of very large radii compared to that of the primaries.
When treating this as a perturbation problem the difficulty arises that the unperturbed
orbits are not defined when the small parameter vanishes. This difficulty is overcome
by using the implicit function theorem of Arenstorf [1]. We showed the existence of
periodic solutions of this type in the case of elliptic motion of the primaries in [12].
As the elliptic case is non-autonomous, the period of the solution cannot be solved as a
function of the small parameter, which results in making the problem more degenerate.
In order to reduce the degeneracy we considered in that paper the very special case of
primaries of equal mass.
In the present paper we get rid of this restriction and consider any possible value

of the mass parameter. The fact that the masses are arbitrary precludes the use of a
certain symmetry and adds to the degeneracy of the equations: one more equation is
degenerate in this case.
To give some insight into the physics of the problem we recall that for moderate

eccentricities of the primaries, the gravitational potential as seen from a body very far
from the primaries resembles that of a slightly oblate planet. Circular orbits of a satellite
undergo a slow rotation of their orbital plane around thez-axis, if the equatorial bulge
is on thexy-plane. In astronomical terms this is known asprecession of the line of
nodes, the line of the nodes being the intersection of the orbital plane with the reference
plane. Of course, this is not well defined for coplanar orbits. The velocity of precession
depends on the inclinationi of the orbit, being positive fori < �/2, zero (in a first
approximation) forpolar orbits, i.e.i = �/2, perpendicular to the equatorial plane, and
negative if i > �/2. It seems then that periodic solutions of arbitrary inclination do
not exist due to the fact that they tend to precess, so that they need a whole turn of
the precession to fit into the original position. Of course, this is not a problem if the
primaries move on circular orbits, because then all the positions of the primaries are
equivalent (that is, the problem is invariant by rotations around thez-axis and we can
think of a reduced phase space). This is not the case in the elliptic problem, where there
is a privileged direction given by the major axes of the primaries and the infinitesimal
body should come to exactly the same position in the inertial frame in order to have
a periodic solution.
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If the unperturbed orbit is a polar one, the precession induced by a small variation
of the inclination can hopefully be used to compensate for any variation of the orbital
plane due to the perturbation.
As precession is not defined for orbits coplanar with the primaries, the question of

their existence is quite a different one. Another kind of variables and another transver-
sality should be used in that case.
In the first two sections we deal with the analytic continuation in the case of non-

regular dependency on the small parameter. We show that Arenstorf’s theorem allows
the problem to be solved by checking that a certain minor is non-vanishing, formally
the same argument as in the classical method. The use of Arenstorf’s theorem in this
paper is slightly different from that in[7].
In the next sections we establish the existence of a discrete family of periodic

solutions to the spatial restricted elliptic three-body problem. These solutions exist
for all values of the mass ratio parameter and eccentricity of the primaries and are
perturbations of circular solutions of the Kepler problem having very large radii on
a plane perpendicular to that of the primaries. By the Kepler problem we mean the
spatial central force problem with the inverse square law of attraction.
The small parameterε is roughly the inverse of the distance to the primaries and

it is introduced as a scale parameter. The perturbation problem is degenerate in the
sense that forε = 0 the solutions are not defined, their period tends to infinity and the
minor relevant to the analytic continuation vanishes. These difficulties are overcome
by first averaging on the fast variable (motion of the primaries) so that the problem is
similar to the motion of a satellite around an oblate planet and then using an analytic
continuation argument.

2. Analytic continuation with non-regular dependency on the small parameter

Poincare’s method of analytic continuation reduces ultimately to solving a system
of equationsf (x, ε) = 0, with f (0,0) = 0, for x as function ofε. If the system is
analytic or differentiable enough andfx(0,0) �= 0, then the implicit function theorem
guarantees the existence of such a solution.
There are cases, however, where the functionf is not differentiable with respect to

�, so the classical implicit function theorem does not apply. A result of Arenstorf can
be used to show that differentiability with respect to� can be dropped provided that
the functionf satisfies some mild regularity conditions. Arenstorf’s fixed point theorem
is as follows:

Theorem 1 (Arenstorf). We assume X and P to be Banach spaces with elements x and
p. Let g be a mapping from the product spaceX × P into X, given by (x, �) →
g(x, �) ∈ X, and defined for x in a ballB = {x ∈ X such that‖x‖��, � > 0}, and �
in a region V of P containing� = 0, with g(0,0) = 0.

If, for every � ∈ V , g is differentiable with respect tox ∈ B and

‖gx(x, �)‖��� 1
2 on B × V
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(wheregx denotes the partial derivative of g with respect to x, and the norm of this
linear operator from X into itself is the sup norm) and if

‖g(0, �)‖� 1
2 on V,

then there exists a functionx(�) with

g(x(�), �) = x(�), x(�) ∈ B for � ∈ V, x(0) = 0.

See[1] for more details.

By means of this theorem it can be seen that a sufficient condition for the existence
of solution of f (x, �) = 0 in a neighbourhood ofx = 0, � = 0 is that the determinant
of fx(0,0) does not vanish (formally the same condition as in the regular case) together
with some regularity conditions, as stated in the following proposition.

Proposition 2. Let U be an open domain inRn, I ⊂ R an open neighbourhood of the
origin and f : U × I → Rn with f (0,0) = 0, differentiable with respect tox ∈ U ,
and fx(0,0) non-singular. Assume that there existc > 0, k > 0 such that forx ∈ U ,
� ∈ I
(1) ‖fx(x, �)− fx(0,0)‖�c(‖x‖ + �),
(2) ‖f (0, �)‖�k�.
Then there exists a functionx(�) ∈ U , defined for� ∈ I ′ ⊂ I , such thatf (x(�), �) = 0
and x(0) = 0.

Proof. Let

� = k

2c(mk + 1/2)
, � = 1

4mc(mk + 1/2)
,

wherem = ‖f−1
x (0,0)‖.

We consider the function

g(x, �) = x − f−1
x (0,0)f (x, �).

If ‖x‖�� and ��� we have

‖gx(x, ε)‖ = ‖Id − f−1
x (0,0)fx(x, �)‖ � ‖f−1

x (0,0)‖‖fx(x, �)− fx(0,0)‖
� mc(‖x‖ + �)�mc(� + �)� 1

2,

where Id is the identity matrix.
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On the other hand, the following inequality holds,

‖g(0, �)‖ = ‖f−1
x (0,0)f (0, �)‖�mk��mk�� 1

2�.

Therefore,g satisfies the hypothesis of Arenstorf’s fixed point theorem and there exists
a neighbourhood of the originI ′ ⊂ I and a functionx(�) ∈ U such thatf (x(�), �) = 0
for � in I ′. �

This result will be used to show the existence of periodic solutions in the three-
dimensional elliptic restricted three-body problem, when the infinitesimal body is at
great distance from the primaries and the perturbation can be seen as a fast periodic
forcing.

3. Two lemmas on differential equations

We consider the differential equation

ż = F(z, �, t), (1)

wherez ∈ Rn and

F(z, �, t) = F0(z)+ �F1(z, �, t)+ �2FR(z, �, t).

Let z0 be initial conditions such thatz(0)(t, z0) is a solution of

ż(0)(t, z0) = F0(z
(0)) (2)

which remains bounded and bounded away from the singularities ofF . Let C ⊂ Rn

be a compact neighbourhood ofz(0)(t, z0) without singularities. We assume that the
functions F0, �F1, �2FR are continuous forz ∈ C, � ∈ [0, �1], t ∈ R. Furthermore,
F0,F1 andFR together with all their derivatives with respect toz are bounded onC
by a constantC1 independent of�. In particular,F0 is Lipschitz with a constantC2.
In what follows the maximum norm‖v‖ = maxi |vi | for vectorsv ∈ Rn and the usual
norm of the supreme on the unit ball for linear operators will be used.
The next two lemmas show that the solution of Eq. (1) can be written as the solution

of (2) plus terms which are of order�, and the same is true about its partial derivatives
with respect to the initial conditions.

Lemma 3. For ε �= 0 let z(t, z0, �) be a solution of Eq. (1) with initial condition z0
and let z(1)(t, z0, �) be the solution of

ż(1)(t, z0, �) = F1(z
(0), �, t)+DF0(z

(0)(t, z0))z
(1)(t, z0, �) (3)
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with initial condition z(1)(0, z0, �) = 0, where D is the matrix whose entries are the
partial derivatives ofF with respect to the z variables. Then we can write

z(t, z0, �) = z(0)(t, z0)+ �z(1)(t, z0, �)+ zR(t, z0, �)

and zR(t, z0, �) is O(�2) in a finite interval of time.

Proof. We first definez1(t, z0, �) = z(t, z0, ε)− z(0)(t, z0) and we see that it isO(�).
Let C be a compact neighbourhood ofz(0)(t, z0). Then

‖z1(t, z0, �)‖ �
∫ t
0

‖F0(z(�))− F0(z
(0)(�))‖

+�
∫ t
0

‖F1(z(�), �, �)+ �FR(z(�), �, �)‖ d�

�
∫ t
0
C2‖z(�, z0, �)− z(0)(�, z0)‖ + �C1(1+ �)t

and, applying Gronwall’s inequality, we get

‖z1(t, z0, �)‖��(1+ �)
C1

C2
expC2t − �(1+ �)

C1

C2
��C3

if t ∈ [0, T0]. We see now that

zR(t, z0, �) = z(t, z0, �)− z(0)(t, z0)− �z(1)(t, z0, �)

is O(�2). Let � be such that the ball of radius� and centrez(0)(t, z0) is contained inC
for all t ∈ [0, T0]. By continuity with respect to the initial conditions and parameters,
there exists�2 such that if |z∗0 − z0| < �2 and � < �2 then z(t, z∗0, �) lies inside the
ball of radius� and centrez(0)(t, z0) for all t ∈ [0, T0] (see[6]). Then we can write
Taylor’s formula,

‖F0(z(�), �)− F0(z
(0)(�), �)−DF0(z

(0)(�, z0))z1(�, z0, ε)‖��2C4

and, sinceF1(z, t, �) and all its derivatives with respect toz are bounded by a constant
independent of�, we have

‖F1(z(�), �, �)− F1(z
(0)(�), �, �)‖�C5‖z1(�, z0, �)‖��C6.
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Now we have

‖zR(t, z0, �)‖ �
∫ t
0

‖ż(�, z0, �)− ż(0)(�, z0)− �ż(1)(�, z0, �)‖ d�

�
∫ t
0

‖F0(z(�), �)− F0(z
(0)(�), �)

−DF0(z
(0)(�, z0))[z1(�, z0, ε)− zR(�, z0, ε)]

+�[F1(z(�), �, �)− F1(z
(0)(�), �, �)] + ε2FR(z(�), �, �)‖ d�,

so we finally get

‖zR(t, z0, �)‖�C8�2t +
∫ t
0
C9‖zR(t, z0, �)‖ d�

and Gronwall’s inequality gives

‖zR(t, z0, �)‖� C8�
2

C9
expC9t − C8�

2

C9

if t ∈ [0, T0]. �

The next Lemma shows that similar bounds hold for the partials ofzR with respect
to z.

Lemma 4. Let zR(t, z0, �) be as in Lemma3. Then

Dz0zR(t, z0, �) = O(�2)

for t ∈ [0, T0].
Proof. Let z1(t, z0, ε) be as in Lemma3. We first see that

‖Dz0z1(t, z0, �)‖��C10.

We have

‖Dz0z1‖�
∫ t
0

‖Dz0[F(z(�, z0, ε))− F0(z
(0)(�))]‖ d�

and the integral in the right-hand side is bounded byI1(t)+ I2(t), where

I1(t) =
∫ t
0

‖DzF(z)‖‖Dz0z1‖ d�,
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I2(t) =
∫ t
0

‖DzF0(z)−DzF0(z
(0))+ �Dz[F1 + �FR](z)‖‖Dz0z(0)‖ d�,

and then the inequality

‖Dz0z1‖�
∫ t
0
C11‖Dz0z1‖ d� + �

∫ t
0
C12d�

holds because all the functions involved, as well as their first and second order deriva-
tives, are bounded on the compactC. Gronwall’s inequality readily gives

‖Dz0z1‖��
C12

C11
eC12t − �

C12

C11
.

In order to see thatDz0zR(t, z0, �) is O(�2), we write, as in Lemma3,

‖Dz0zR(t, z0, �)‖ �
∫ t
0

‖Dz0[F(z(�, z0, �), �, �)− F0(z
(0)(�, z0))

−�DzF0(z
(0)(�, z0))z

(1)(�, z0, �)− �F1(z
(0)(�), �, �)]‖ d�.

Let

M1 = DzF0(z(t))−DzF0(z
(0)(t))−DzzF0(z

(0)(�, z0))(z− z0)
+�[DzF1(z(t))−DzF1(z

(0)(t))] + �2DzFR(z(t))+DzzF0(z
(0))zR,

M2 = DzF0(z(t))−DzF0(z
(0)(t))+ �DzF1(z(t))+ �2DzFR(z(t)),

whereDzzF(p)h stands forDzzF(p)(h, ·) : Rn −→ Rn andDzzF(p) is the second
differential of F . We then have

‖Dz0zR(t, z0, �)‖ �
∫ t
0

‖DzF0(z
(0)(�, z0))Dz0z1(�, z0, �)‖ d�

+
∫ t
0
(‖M1‖‖Dz0z(0)(�, z0)‖ + ‖M2‖‖Dz0zR(t, z0, �)‖) d�,

where‖E‖ = sup‖Exy‖, ‖x‖ = ‖y‖ = 1, x, y ∈ Rn is the norm of a bilinear contin-
uous operatorE mappingRn × Rn into Rn. As DzFR(z), DzF1(z) andDzzF0(z(t))

are all bounded, we obtain

‖M1‖�C12‖z− z(0)‖2 + εC13‖z− z(0)‖ + ε2C14�C15ε2
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and

‖M2‖�C16‖z− z(0)‖ + �C17+ �2C18�C19�.

From Lemma3 we deduce

‖z− z(0)‖�C3�,

so that

‖Dz0zR(t, z0, �)‖�C20�2t +
∫ t
0
C21Dz0zR(�, z0, �) d�.

Then the Lemma follows from Gronwall’s inequality.�

4. The elliptic three-dimensional restricted three-body problem

The elliptic restricted three-body problem describes the motion of a body of in-
finitesimal mass,m3, in the gravitational field created by two bodiesm1 andm2 called
primaries. The primariesm1 and m2 are, respectively, of mass 1− � and �, with
� ∈ [0,1), and are moving in elliptic orbits with eccentricity	 ∈ [0,1) and semima-
jor axis � and 1− �, around their centre of mass which remains fixed at the origin.
The equations of motion are usually written in dimensionless coordinates, in such a
way that the semimajor axis of each primary around the other is unity (see[14]). If
the infinitesimal body is far away from the primaries, its motion must be close to a
Keplerian motion although in the limit the orbit would be of infinite radius. Another
system of units can be taken, in which the infinitesimal body is at distance unity from
the origin and both primaries are very close to one another. Thus, the small parameter
is the semimajor axis of the primaries and when it takes very small values the orbit of
the infinitesimal body tends to a Keplerian circle of radius unity and the perturbation
gives rise to a very fast periodic forcing, thus losing differentiability.
The equations of motion of the elliptic three-dimensional restricted three-body prob-

lem can be derived from the non-autonomous 2�-periodic Hamiltonian

H(q,p, t) = 1

2
(p21 + p22 + p23)−

1− �

R1
− �

R2
, (4)

whereq = (q1, q2, q3) andp = (p1, p2, p3) are, respectively, the position and momen-
tum of m3 andR1, R2 are the distances from the infinitesimal body to the primaries

R21 = (q1 − �
 cos�)2 + (q2 − �
 sin�)2 + q23,

R22 = (q1 + (1− �)
 cos�)2 + (q2 + (1− �)
 sin�)2 + q23,
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where
(t) is the distance between the primaries and�(t) is the angular position of
m1 measured from the pericenter. The following expressions for
(t) and�(t) can be
found in [14]


 = (1− 	2)

1+ 	 cos�
,

d�

dt
= (1+ 	 cos�)2

(1− 	2)3/2
.

It is easily seen that the equations of motion are invariant by the symmetry

S : (q1, q2, q3, p1, p2, p3,�, t) −→ (q1,−q2,−q3,−p1, p2, p3,−�,−t)
which can be used to show the existence of periodic solutions, in a way similar to that
in [10,8,12], as stated in the following proposition.

Proposition 5. Let r(t) = (q1(t), q2(t), q3(t), p1(t), p2(t), p3(t),�(t)) be a solution of
the equations of motion form3. If (q2(t), q3(t), p1(t),�(t)) are zero att = 0 and if
(q2(t), q3(t), p1(t)) is zero and�(t) = k� at t = T/2, then r(t) is a periodic solution
of period T.

These periodic orbits aresymmetric periodic orbitsof the elliptic restricted three-body
problem. Note that in order to have�(T /2) = k�, we must takeT = 2k�.
As we intend to show the existence of symmetric periodic orbits close to infinity,

we scale the variables byq = ε−2q̃, p = εp̃, H̃ = εH.
Expanding 1/R1 and 1/R2 in terms of Legendre polynomials (as in[12]) and drop-

ping tildes, we get the following expression for HamiltonianH.

H(q,p, t, ε) =
∞∑
i=0
εiH0

i (q,p, t), (5)

where the non-zero terms areH0
3(q,p, t) andH0

2i+1(q,p, t), for i�3. The functions
H0
3 andH0

7 are given by

H0
3(q,p) = 1

2
|p|2 − 1

|q|

H0
7(q,p, t) = −�(1− �)
2

1

|q|3
(−1+ 3 cos2 S

2

)
,

with

cosS = q1 cos� + q2 sin�

|q|
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Notice thatH0
3 is the Hamiltonian of the Kepler problem and therefore Hamilto-

nian (5) can be seen as a small perturbation ofH0
3. The functionsH0

7(q,p, t) and
H0
R(q,p, t, ε) = ∑∞

i=9 εiH0
i (q,p, t) are bounded if(1− �) 


|q| �k, for somek < 1.

5. Continuation of symmetric periodic solutions

In this section we show that circular solutions of the unperturbed Kepler problem can
be continued to symmetric periodic solutions of the spatial elliptic restricted three-body
problem for small values ofε. We introduce the Poincaré–Delaunay variables defined
as

Q1 = l + g, P1 = L,
Q2 = −√2(L−G) sing, P2 = √

2(L−G) cosg,
Q3 = h, P3 = H, (6)

whereL = √
a, H = G cosi, a is the semimajor axis of the infinitesimal mass,G its

angular momentum,e = √
1−G2/L2 is the eccentricity of the infinitesimal body,i

the inclination of the orbital plane to theq1q2 reference plane,l the mean anomaly,g
the argument of the pericenter measured from the ascending node andh the longitude
of the ascending node. These variables are defined on a neighbourhood of the circular
Kepler orbits which occur atQ2 = 0, P2 = 0. If P3 = 0 the orbit lies in a plane
perpendicular to theq1q2 one, see[14] for more details.
The periodicity conditions given by Proposition 5 in Poincaré variables state that at

time t = 0 we must have

Q1 = 0mod�, Q2 = 0, Q3 = 0mod� and� = 0

and at timet = T/2

Q1 = 0mod�, Q2 = 0, Q3 = 0mod� and� = k�.

The conditionQ2 = 0 implies eitherg = 0mod� or L = G, so thatm3 is on an
elliptic orbit with its pericenter on theq1 axis or on a circular orbit.
Applying the symplectic change of variables (6), Hamiltonian (5) becomes

H(Q, P, t, ε) =
∞∑
i=0
εiH0

i (Q, P, t)

= ε3H0
3(Q, P )+ ε7H0

7(Q, P, t)+ ε9H0
R(Q,P, t, ε), (7)
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where

H0
3(Q, P ) = − 1

2P 21
,

H0
7(Q, P, t) = −�(1− �)
2

1

r3

(−1
2

+ 3

2

(
cos� cos(Q3 − �)

−P3
G
sin� sin(Q3 − �)

)2)
,

r is the distance fromm3 to the origin and� is the position ofm3 measured from the
node.
The functionH0

7(Q, P, t) is 2�-periodic in t and it can be expanded as a Fourier
series

H0
7(Q, P, t) = −�(1− �)

1

r3

∞∑
k=−∞

ak(Q, P )exp(ikt),

where

a0(Q, P ) = 1

8
(2+ 3	2)

(
−2+ 3 cos2 � + 3P 23 sin

2�

G2

)

+15	
2

8G2
(−GP3 sin 2Q3 sin 2� + cos 2Q3(G

2 cos2 � − P 23 sin2�)). (8)

In this expressionG is clearly a function of(Q, P ), see (6), and so is� but a closed
expression in terms ofQ and P does not exist because it needs solving Kepler’s
equation. In the proof of Lemma 6 we will use an expansion as power series (see
Appendix for details).
We will use the technique of the Lie transforms in order to simplify the Hamiltonian

(7). As the Hamiltonian is non-autonomous, the new HamiltonianH̄ = ∑∞
i=0 H̄i0 will

be givenH̄ = LW(H) − LW(�W/�t) whereLW is the Lie transform generated by a
functionW(P,Q, t) as defined in [11], Section VII, 2. The functionW is given by a
series expansionW = ∑∞

i=0 εiWi+1. We chooseW7 such that�W7/�t = H0
7(Q, P, t)+

�(1− �)r−3a0(Q, P ) andWi = 0 for i �= 7. In this way,H̄3
0 = H0

3 and the periodic

terms are removed fromH0
7 and thrown intoH̄R = ∑∞

i=9 εiH̄i0. Notice that we only
rewrite the Hamiltonian in such a way that the term̄H0

7 does not depend ont but all
the terms inH̄R do depend ont.

H̄(Q, P, t, ε) = ε3H̄3
0(Q, P )+ ε7H̄7

0(Q, P )+ ε9H̄R(Q,P, t, ε).



J.M. Cors et al. / J. Differential Equations 219 (2005) 1 – 19 13

If we change the scale of the time variablet = ε−3�, the equations of motion for the in-
finitesimal mass are hamiltonian and the HamiltonianK(Q, P, �, ε)= 1

ε3
H̄(Q, P, �/ε3, ε)

is of the form

K(Q, P, �, ε) = K0(Q, P )+ ε4K1(Q, P )+ ε6KR(Q,P, �, ε), (9)

whereK0(Q, P ) = − 1
2P 21

, andK1(Q, P ) is given by

K1(Q, P ) = −�(1− �)
1

r3
a0(Q, P ). (10)

The functionKR(Q,P, �, ε) is bounded by a constant independent ofε because the term
�/ε3 appears only as the argument of circular functions. Note thatε5KR is continuous
at ε = 0, butKR is not so because the smaller getsε the faster oscillate the terms cos�
and sin�. Note also that in the particular case of zero eccentricity of the primaries,
the angle� is given by� = ε−3�. This is the reason why expansions in power series
in ε cannot be used but the results of Section3 can be applied.
Let z = (Q, P ), then the equations of motion derived from the 2�ε3-periodic Hamil-

tonian (9) can be written as

ż = F0(z)+ εF1(z, ε)+ ε2FR(z, ε, �), (11)

where

F0(z) = (P−3
1 ,0,0,0,0,0),

F1(z, �) = ε3
(

�K1

�P1
,
�K1

�P2
,
�K1

�P3
,− �K1

�Q1
,− �K1

�Q2
,− �K1

�Q3

)
.

A solution of the Kepler problem with initial conditionsz∗0=(Q∗
0, P

∗
0 )=(0,0,0,1,0,0)

and�∗ = 0 is

z(0)(�, z∗0) = (�,0,0,1,0,0).

If ε3 = 1
k
, then at time� = T/2 = 2k�ε3/2 = � we have�(�) = k� and we look

for initial conditions in a neighbourhood ofz∗0, of form z0 = (0,0,0, P1, P2, P3), in
such a way that the solutionz(�, z0, ε) of system (11), with ε �= 0 small enough, is a
symmetric periodic orbit.
From Lemma 3, we have thatz(�, z0, ε) = z(0)(�, z0) + εz(1)(�, z0, ε) + zR(�, z0, ε)

where z(0)(�, z0) = (P−3
1 �,0,0, P1, P2, P3) and z(1)(�, z0, ε) satisfies Eq. (3) and can

be obtained through the formula

z(1)(�, z0, ε) = Z(�, z0)
∫ �

0
Z−1F1(z

(0), ε, u) du, (12)
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whereZ(�, z0) is the matrix

Z(�, z0) = �z(0)(�, )
�

∣∣∣∣∣
=z0

.

Then we have, correct to orderε4

Q1(�, z0, ε) = P−3
1 � +O(ε4),

and correct to orderε6

Q2(�, z0, ε) = εQ(1)2 (�, z0, ε)+O(ε6),

Q3(�, z0, ε) = εQ(1)3 (�, z0, ε)+O(ε6),

whereQ(1)2 (�, z0, ε) and Q
(1)
3 (�, z0, ε) are bounded on any fixed interval of time if

ε �= 0 is small enough and are given in the following lemma.

Lemma 6. Let �P = (P1 − 1, P2, P3) = (�P1, P2, P3). Then

Q
(1)
2 (�, z0, ε) = −ε3

(
3�

8
�(1− �)(6�P1 − P2 + 6(9�P1 + P2)	2)+O(‖�P ‖2)

)
,

Q
(1)
3 (�, z0, ε) = −ε3

(
3�

4
�(1− �)(1− 	2)P3 +O(‖�P ‖2)

)
.

Proof. From Eqs. (12) and (10) we have

Q
(1)
i (�, z0, ε) = ε3

∫ �

0

(
�K1

�Pi

)
z(0)(�,z0)

d�

= −ε3�(1− �)
∫ �

0

(
�

�Pi

(
a0(Q, P )

r3

))
z(0)(�,z0)

d�, i = 2,3.

(13)

Now, a0(Q, P ) is given explicitly in (8) as function ofG,�, P andQ. Expressions of
G and� as functions ofP andQ must, of course, be substituted.
Note first that onz(0)(�, z0) we haveQ2 = Q3 = 0. As we are interested in a

neighbourhood of the periodic orbitz(0)(�, z∗0) we can use formulas (22) in order to
expandG, r, and� as power series in�P to order two.

G = 1+ �P1 − 1
2P

2
2 ,

r = 1+ 2�P1 − cosQ1P2 + �P 21 − 3
2 cosQ1�P1P2 + sin2Q1P

2
2 +O(|�P |3),
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� = Q1 + 2 sinQ1P2 − sinQ1�P1P2 + 5
4 sin 2Q1P

2
2 +O(|�P |3), (14)

whereQ1 = (1+ �P1)−3� = (1− 3�P1 + 6�P 21 +O(|�P |3))�.
These expansions are convergent in a small enough vicinity ofz(0)(�, z∗0) because

all the functions involved are analytic in(Q2,Q3,�P1, P2, P3).
Then we can substitute (14) in (13) and expanda0(Q, P )r−3 as power series in

(�P1, P2, P3) and coefficients periodic functions in(Q2,Q3). After a straight-forward
computation the result follows.�

The conditions of symmetry which must be satisfied at time� = T/2 = � for the
existence of a periodic orbit are

Q1(�, z0, ε) = �,

Q2(�, z0, ε) = 0,

Q3(�, z0, ε) = 0.

Let us definef = (f1, f2, f3), where f1(�P, ε) = Q1(�, z0, ε) − �, fi(�P, ε) =
ε−4Qi(�, z0, ε), i = 2,3. Then

f1(�P, ε) = (1+ �P1)
−3� − � +O(ε4),

f2(�P, ε) = −3�
8

�(1− �)(6�P1 − P2 + 6(9�P1 + P2)	2)

+O(‖�P ‖2)+O(ε),

f3(�P, ε) = −3�
4

�(1− �)(1− 	2)P3 +O(‖�P ‖2)+O(ε). (15)

A sufficient condition to obtain symmetric periodic orbits of the elliptic problem is to
find �P in such a way thatf (�P, ε) = 0 for ε �= 0. Strictly speaking, the function
f (�P, ε) is not defined forε = 0, so we cannot use the standard implicit function
theorem. We definef (�P,0) and its derivatives by making formally vanish the terms
O(ε) in (15). We shall see that the functions obtained meet the hypothesis of Arenstorf’s
theorem (see Section 2).

Theorem 7. Consider the equations of motion for the spatial restricted three-body
problem when the mass parameter� ∈ (0,1), and the primaries move around each
other on an elliptic orbit with semiaxisε2 and eccentricity	 ∈ J = [0,1/√6− �) ∪
(1/

√
6+ �,1), � a small positive value. Ifε = k−1/3 for k a positive integer large

enough, then there exist initial conditions for the infinitesimal body such that its motion
is a symmetric periodic solution of period2�, near a Keplerian circular orbit on a
plane perpendicular to that of the primaries.



16 J.M. Cors et al. / J. Differential Equations 219 (2005) 1 – 19

Proof. We must see that the functionf (P, ε) satisfies the conditions stated in Propo-
sition 2 that guarantee the existence of solutions off (�P, ε) = 0 in a neighbourhood
of (0,0). The systemf (�P, ε) = 0 has the solution�P = 0 for ε = 0.
Let f�P (�P, ε) be the Jacobian matrix off (�P, ε) with respect to�P . For ε = 0

we have

f�P (0,0) = �(1− �)

 − 3�
�(1−�) 0 0

−9�
4 (1+ 9	2) 3�

8 (1− 6	2) 0
0 0 −3�

4 (1− 	2)

 .
Then, if the eccentricity of the primaries	 ∈ J , f�P (0,0) can be inverted and is
bounded by a constantm. In order to prove condition (1) of Proposition 2, we write

‖f�P (�P, ε)− f�P (0,0)‖�‖f�P (�P, ε)− f�P (�P,0)‖ + ‖f�P (�P,0)− f�P (0,0)‖.

Now, the functionf (�P,0) being analytic, we have

‖f�P (�P,0)− f�P (0,0)‖�
3∑
i=1

‖fi,�P (�P,0)− fi,�P (0,0)‖�C4‖�P ‖,

and, on the other hand, in the inequality

‖f�P (�P, ε)− f�P (�P,0)‖�
3∑
i=1

‖fi,�P (�P, ε)− fi,�P (�P,0)‖,

the first term of the sum is bounded byC1ε4 and the second and third are less than
C2ε because of (15). Then, for�P in a compact neighbourhood of the circular orbit
(see Section 3),

‖f�P (�P, ε)− f�P (0,0)‖�C5(‖�P ‖ + ε).

Condition (2) of Proposition 2 is a straightforward consequence of (15).�

This theorem yields a continuum of solutions of the systemf (�P, ε) = 0. In order
to have a periodic solution of the elliptic problem, the above conditions must be
satisfied simultaneously with� = k� (i.e. the primaries must be at either the pericenter
or apocenter of their orbit). Thus, for eachε = k−1/3, k a large positive integer, a
periodic solution of the problem exists. Note that the solution(�P, ε) is near (0,0)
which means thatP3 = G cosi is near zero andi � �

2 .



J.M. Cors et al. / J. Differential Equations 219 (2005) 1 – 19 17

Appendix. The neighbourhood of circular solutions in the Kepler problem

In this Section some convergent expansions relative to the transformation between
polar coordinates and Poincare variables for the infinitesimal mass will be given. As
use will be made of the classical orbital elements, we first recall some formulas that
will be needed (see[3] for details). LetE be the eccentric anomaly, then we have the
relation

tan
E

2
=
√
1− e
1+ 3

tan
v

2
, (16)

wherev is the true anomaly. The mean anomalyl is related to the eccentric anomaly
E through Kepler’s equation

l = E − e sinE. (17)

Position and velocity can be calculated in terms of the orbital elements. The distance
to the origin and the angle� are given by

r = a(1− e cosE),

� = v + g. (18)

If we denote byR and� momenta conjugate tor and� respectively, we have

R = a−1/2(1− e cosE)−1e sinE,

� = G. (19)

Notice that� is well defined on circular orbits even thoughv andg are not themselves
defined in this case.
Neither the classical orbital elements nor Delaunay elements are well defined on

circular orbits, and the same is true for any of the anomalies. In contrast to that, the
magnitudese sinv and e cosv are well defined and depend smoothly on the variations
of the initial conditions. The same can be said aboute sinl, e cosl, e sinE, e cosE.
In passing from Poincare elements to polar coordinates, direct use of the angular vari-

ablesl, v, E will be avoided, and pairs such as(e sinE, e cosE) will be used instead.
Notice that in each one of the pairs(e sinl, e cosl), (e sinv, e cosv), (e sinE, e cosE),
both variables can be expanded as a power series in the variables of any other pair.
The differencesv−E, E − l and v− l can be expanded in the same way as well. We
will quote a few of these expansions that will prove useful in what follows. A standard
reference for that subject is[2].
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From Kepler’s equation (17) the following expansions can be derived

e sinE = e sinl + e sinle cosl +O3(e sinl, e cosl),

e cosE = e cosl − (e sinl)2 +O3(e sinl, e cosl). (20)

The differencev − E can be expanded from (16) as

v − E = e sinE + 1
2e sinEe cosE +O3(e sinE, e cosE)

and the differenceE − l is just given by (17).
We also have

e sinl = sinQ1e cosg − cosQ1e sing,

e cosl = cosQ1e cosg + sinQ1e sing. (21)

We look now for the formulas that change from Poincare variables to polar coordinates.
From the definition ofQ2 andP2 we have

e sing = − 1√
2
Q2P

−1
1

√
2P1 − 1

2
(Q22 + P 22 )

e cosg = 1√
2
P2P

−1
1

√
2P1 − 1

2
(Q22 + P 22 ),

and the right-hand sides can be expanded as power series inQ2, P1, P2 nearQ2 =
0, P1 = 1, P2 = 0. Taking into account (21), we gete sinl, e cosl as power series
in the mentioned variables and coefficients trigonometric polynomials inQ1 and from
(20) we eventually finde sinE and e cosE, again as series of the same type. From
(18) and (19) we get the needed expansions forr andR. The expansion of� follows
a similar reasoning using

� = Q1 + v − E + E − l
and expandingv − E andE − l as before. The above procedures yield the series up
to any order if care is taken to expand to the required order in each step. We quote
the result for polar coordinates and momenta as functions of Poincare variables up to
second order.

r = 1+ 2�P1 + �P 21 + Q
2
2

2
− P2 cos(Q1)− 3

2
�P1P2 cos(Q1)+ 1

2
Q22 cos(2Q1)

+Q2 sin(Q1)+ 3

2
�P1Q2 sin(Q1)+ P 22 sin2Q1 +Q2P2 sin(2Q1)
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� = Q1 + 2Q2 cos(Q1)− �P1Q2 cos(Q1)+ 5

2
Q2P2 cos(2Q1)

+2P2 sin(Q1)− �P1P2 sin(Q1)− 5

4
Q22 sin(2Q1)+

5

4
P 22 sin(2Q1),

R = Q2 cos(Q1)− 3

2
�P1Q2 cos(Q1)+ 2Q2P2 cos(2Q1)+ P2 sin(Q1)

−3
2
�P1P2 sin(Q1)−Q22 sin(2Q1)+ P 22 sin(2Q1),

� = 1+ �P1 − Q
2
2

2
− P

2
2

2
, (22)

where�P1 = P1 − 1.
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