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Finite-time scaling in local 
bifurcations
Álvaro Corral1,2,3,4, Josep Sardanyés1,2 & Lluís Alsedà3,2

Finite-size scaling is a key tool in statistical physics, used to infer critical behavior in finite systems. 
Here we have made use of the analogous concept of finite-time scaling to describe the bifurcation 
diagram at finite times in discrete (deterministic) dynamical systems. We analytically derive finite-time 
scaling laws for two ubiquitous transitions given by the transcritical and the saddle-node bifurcation, 
obtaining exact expressions for the critical exponents and scaling functions. One of the scaling laws, 
corresponding to the distance of the dynamical variable to the attractor, turns out to be universal, in the 
sense that it holds for both bifurcations, yielding the same exponents and scaling function. Remarkably, 
the resulting scaling behavior in the transcritical bifurcation is precisely the same as the one in the 
(stochastic) Galton-Watson process. Our work establishes a new connection between thermodynamic 
phase transitions and bifurcations in low-dimensional dynamical systems, and opens new avenues to 
identify the nature of dynamical shifts in systems for which only short time series are available.

Bifurcations separate qualitatively different dynamics in dynamical systems as one or more parameters are 
changed. Bifurcations have been mathematically characterized in elastic-plastic materials1, electronic circuits2, 
or in open quantum systems3. Also, bifurcations have been theoretically described in population dynamics4–6, in 
socioecological systems7,8, as well as in fixation of alleles in population genetics and computer virus propagation, 
to name a few examples9,10. More importantly, bifurcations have been identified experimentally in physical11–14, 
chemical15,16, and biological systems17,18. The simplest cases of local bifurcations, such as the transcritical and the 
saddle-node bifurcations, only involve changes in the stability and existence of fixed points.

Although, strictly speaking, attractors (such as stable fixed points) are only reached in the infinite-time 
limit, some studies near local bifurcations have focused on the dependence of the characteristic time needed 
to approach the attractor as a function of the distance of the bifurcation parameter to the bifurcation point. 
For example, for the transcritical bifurcation it is known that the transient time, τ, diverges as a power law19, as 
τ ~ |μ − μc|−1, with μ and μc being the bifurcation parameter and the bifurcation point, respectively, while for the 
saddle-node bifurcation20 this time goes as τ ~ |μ − μc|−1/2 (see12 for an experimental evidence of this power law 
in an electronic circuit).

Thermodynamic phase transitions21,22, where an order parameter suddenly changes its behavior as a response 
to small changes in one or several control parameters, can be considered as bifurcations23. Three important 
peculiarities of thermodynamic phase transitions within this picture are that the order parameter has to be 
equal to zero in one of the phases or regimes, that the bifurcation does not arise (in principle) from a simple 
low-dimensional dynamical system but from the cooperative effects of many-body interactions, and that at ther-
modynamic equilibrium there is no (macroscopic) dynamics at all. Non-equilibrium phase transitions24,25 are also 
bifurcations and share these characteristics, except the last one. Particular interest has been paid to second-order 
phase transitions, where the sudden change of the order parameter is nevertheless continuous and associated to 
the existence of a critical point.

A key ingredient of second-order phase transitions is finite-size scaling26,27, which describes how the sharp-
ness of the transition emerges in the thermodynamic (infinite-system) limit. For instance, if m is magnetization 
(order parameter), T temperature (control parameter), and  system’s size, then for zero applied field and close to 
the critical point, the equation of state can be approximated as a finite-size scaling law,
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with Tc the critical temperature, β and ν two critical exponents, and g[y] a scaling function fulfilling g[y] ∝ (−y)β 
for y → −∞ and g[y] → 0 for y → ∞.

It has been recently shown that the Galton-Watson branching process (a fundamental stochastic model for 
the growth and extinction of populations, nuclear reactions, and avalanche phenomena) can be understood 
as displaying a second-order phase transition28 with finite-size scaling29,30. In a similar spirit, in this article we 
show how bifurcations in one-dimensional discrete dynamical systems display “finite-time scaling”, analogous 
to finite-size scaling with time playing the role of system size. We analyze the transcritical and the saddle-node 
bifurcations for iterated maps and find analytically well-defined scaling functions that generalize the bifurcation 
diagrams for finite times. The sharpness of each bifurcation is naturally recovered in the infinite-time limit. The 
finite-size behavior of the Galton-Watson process becomes just one instance of our general finding for the tran-
scritical bifurcation. And as a by-product, we derive the power-law divergence of the characteristic time τ when 
μ is kept constant, off criticality19,20.

Universality of Convergence to Attractive Fixed Points
In this paper, we consider a one-dimensional discrete dynamical system, or iterated map, xn+1 = f(xn), where 
x is a real variable, f(x) is a univariate function (which will depend on some non-explicit parameters) and n is 
discrete time. It is assumed that the map has an attractive (i.e., stable) fixed point at x = q, for which f(q) = q, with 
|f ′(q)| < 1, where the prime denotes the derivative20. Moreover, the initial condition, x0, is assumed to belong to 
the basin of attraction of the fixed point. Additional conditions on x0 will be discussed below.

We are interested in the behavior of xn = f n(x0) for large but finite n, where f n(x0) denotes the iterated applica-
tion of the map n times. Naturally, for sufficiently large n, f n(x0) will be close to the attractive fixed point q and we 
will be able to expand f(f n(x0)) around q, resulting in
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By rearranging and introducing the variable cn+1, the inverse of the “distance” to the fixed point at iteration 
n + 1, we arrive at

=
−

= + + −+ +c
q f x

c
M

C
M

q f x1
( )

( ( )),n n
n n

1 1
0

2 0

(we may talk about a distance because we calculate the difference in such a way that it is always positive). 
Iterating this transformation  times leads to
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where only the lowest-order terms have been considered29. When the variable z, defined as = −αz M( 1) , is kept 
finite (with  → ∞ and M → 1) a non-trivial limit of the previous expression exists if α = 1. It is found that the 
right-hand side of the expression is dominated by the second term, which grows linearly with . Therefore, for 
large , we arrive at c C e e z( 1) /n
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− , and taking the inverse, we obtain
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Observe that the sequence 

=
∞f x{ ( )}0 1 is convergent and thus, for  large enough with respect to n, 

�� �f x f x( ) ( )n
0 0

+ . Consequently,
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This is exactly the same result as the one derived in ref.29 for the Galton-Watson model, leading to the reali-
zation that this model is governed by a transcritical bifurcation (but restricted to a fixed initial condition x0 = 0).

The scaling law (4) means that any attractor of a one-dimensional map is approached in the same universal 
way, as long as a Taylor expansion as the one in Eq. (2) holds, in particular if f ″(q) ≠ 0. In this sense one may talk 
about a “universality class”, as displayed in Fig. 1. The idea is that for each value of the number of iterations  one 
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has to pick a value of M (which depends on the parameters of f(x)) for which = −z M( 1) (the rescaled differ-
ence concerning the point M = 1) remains constant. Note that, in order to have a finite z, as  is large, M = f ′(q) 
will be close to 1, implying that the system will be close to its bifurcation point, corresponding to M = 1 (where 
the attractive fixed point will lose its stability). Therefore, in the scaling law, C can be replaced by its value at the 
bifurcation point C∗, so, we write C C= ∗ in Eq. (4).

In principle, the value of the initial condition x0 is not of fundamental importance. The same results can be 
obtained, for example, by taking x1 = f(x0) as the initial condition and then replacing  by  − 1 because, for very 
large , � � � 1− . Therefore, as  grows, memory of the initial condition is erased, as  can be made as large as 
desired. However, x0 has to fulfill x0 < q if >∗C 0 and x0 > q if C 0<∗ , in the same way that all the iterations xn must 
also satisfy these inequalities (i.e., all the iterations have to be on the same “side” of the point q, see the caption of 
Fig. 1 for the concrete conditions). The scaling law implies that plotting 

− ∗q f x C[ ( )]0  as a function of  −M( 1) 
must yield a data collapse of the curves corresponding to different values of  onto the scaling function G.

For example, for the logistic (lo) map20, f(x) = flo(x) = μx(1 − x), a transcritical bifurcation takes place at μ = 1 
and the attractor is at q = 0 for μ ≤ 1 and at q = 1 − 1/μ for μ ≥ 1, which leads to μ= =′M f q( )lo lo  for μ ≤ 1 and 
Mlo = 2 − μ for μ ≥ 1, and also to ⁎ = −C 1lo . Therefore,   μ= − = − | − |z M( 1) 1  and � �� − −f x q( )lo 0

1

G( 1 )μ− | − |  for x0 > q. Thus, in order to verify the collapse of the curves onto the function G, the quantity 
− 

f x q[ ( ) ]lo 0  must be displayed as a function of − 1 μ| − |; if the resulting plot does not change with the value of 
 the scaling law can be considered to hold. Alternatively, the two regimes μ  1, can be observed by writing 



 −f x q[ ( ) ]lo 0  as a function of  μ= −y ( 1). In the latter case the scaling function turns out to be G(−|y|). 
Figure 1(b) shows precisely this; the nearly perfect data collapse for large  is the indication of the fulfillment of 
the finite-time scaling law. For comparison, Fig. 1(a) shows the same data with no rescaling (i.e., just the distance 
to the attractor as a function of the bifurcation parameter μ). In the case of the normal form of the transcritical 
(tc) bifurcation (in the discrete case), ftc(x) = (1 + μ)x − x2, the bifurcation takes place at μ = 0 (with q = 0 for 
μ ≤ 0 and q = μ for μ ≥ 0). This leads to exactly the same behavior for z  μ= − | | (or for μ=y   in order to sepa-
rate the two regimes, as shown overimposed in Fig. 1(b), again with very good agreement).

For the saddle-node (sn) bifurcation (also called fold or tangent bifurcation31), in its normal form (discrete 
system), fsn(x) = μ + x − x2, the attractor is at q μ=  (only for μ > 0), so the bifurcation is at μ = 0, which leads 
to μ= −M 1 2sn  and C 1sn = −⁎ . The scaling law can be written as

�
�

�� μ μ− − .f x G( ) 1 ( 2 ) (5)sn 0

To see the data collapse onto the function G one must represent μ−f x[ ( ) ]sn 0 

  as a function of 
z 2 μ= −  

(or as a function of y = −z for clarity sake, as shown also in Fig. 1(b)). In order to create a horizontal axis that is 
linear in μ, we first define = −z u , in which case f x F( ) (4 )/sn 0

2� � �� μ μ− , with a transformed scaling func-
tion F u G u u e( ) ( ) /( 1),u= − = −  and then use u z 42 2

 μ= − =  for the horizontal axis of the rescaled plot.
Although the key idea of the finite-time scaling law, Eq. (4), is to compare the solution of the system at “corre-

sponding” values of  and μ (such that z is constant, in a sort of law of corresponding states21), the law can also be 
used at fixed μ. At the bifurcation point (μ = μc, so z = 0), we find that the distance to the attractor decays hyper-
bolically, i.e., 

| − | = | |∗
−f x q C( )0

1, as it is well known, see for instance ref.19. Out of the bifurcation point, for 
non-vanishing μ − μc we have z → −∞ (as  → ∞) and then G(z) → e−z, which leads to − −� ��f x q( )0

1

� �e ez /τ− − , where, from the expression for z, we find that the characteristic time τ diverges as τ = 1/|μ − μc| for 

Figure 1.  (a) Distance between the –th iteration of the logistic map (lo) and its attractor, as a function of the 
bifurcation parameter μ, for different values of . (b) The same data under rescaling (decreasing the density of 
points, for clarity sake), together with data from the transcritical bifurcation in normal form (tc) and the saddle-
node bifurcation (sn). The collapse of the curves into a single one validates the scaling law, Eq. (4), and its 
universal character. The scaling function is in agreement with G(−|y|). Note that the initial condition x0 is taken 
uniformly randomly between 0.25 and 0.75, which is inside the range necessary for all the iterations to be above 
the fixed point. This range is, below the bifurcation point, 0 < x0 < 1 (lo), 0 < x0 < 1 + μ (tc), and, above, 
1 − μ−1 < x0 < μ−1 (lo), μ < x0 < 1 (tc), μ μ< < −x 10  (sn).
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the transcritical bifurcation (both in normal form and in the logistic form) and as 1/(2 )cτ μ μ= −  for the 
saddle-node bifurcation (with μc = 0 in the normal form)12. These laws, mentioned in the introduction, have been 
reported in the literature as scaling laws20, but in order to avoid confusion we propose calling them power-law 
divergence laws, and keep the term scaling law for behaviors such as those in Eqs (1), (4) and (5). Note that this 
sort of law arises because G(z) is asymptotically exponential for z → −∞; in contrast, the equivalent of G(z) in the 
equation of state of a magnetic system in the thermodynamic limit is a power law, which leads to the Curie-Weiss 
law32.

Scaling Law for the Distance to the Fixed Point at Bifurcation in the Transcritical 
Bifurcation
In some cases, the distance between f x( )0  and some constant value of reference will be of more interest than the 
distance to the attractive fixed point q, as the value of q may change with the bifurcation parameter. For the tran-
scritical bifurcation we have two fixed points, q0 and q1, and they collide and interchange their character (attrac-
tive to repulsive, and vice versa) at the bifurcation point. It will be assumed that q0 is constant independent of the 
bifurcation parameter (naturally, q1 will not be constant), and that “below” the bifurcation point q0 is attractive 
and q1 is repulsive, and vice versa “above” the bifurcation. We will be interested in the distance between q0 and 
f x( )0 , i.e., −q f x( )0 0 , which, below the bifurcation point corresponds to the quantity calculated previously in 

Eq. (4), but not above. The reason is that, there, q was an attractor, but now q0 can be attractive or repulsive. Note 
that, without loss of generality, we can refer − q f x( )0 0  as the distance of f x( )0  to the “origin”.

Following ref.29, we seek a relationship between both fixed points when the system is close to the bifurcation 
point. As, in that case, q q1 0

, we can expand f(q1) around q0 to obtain

f q q q M q q C q q q q( ) ( ) ( ) ( ) ,1 1 0 0 1 0 0 1 0
2

1 0
3= = + − + − + −

which leads directly to

− = −M C q q1 ( ), (6)0 0 0 1

to the lowest order in (q1 − q0). Naturally, M0 = f ′(q0) and C0 = f ″(q0)/2. We also seek a relationship between 
M1 = f ′(q1) and M0. Expanding f ′(q1) around q0, ′ = = + − + −f q M M C q q q q( ) 2 ( ) ( ) ,1 1 0 0 1 0 1 0

2  which, using 
Eq. (6), leads to

− = −M M1 1 , (7)0 1

to the first order in (q1 − q0).
We now write  − = − + −q f x q q q f x( ) ( )0 0 0 1 1 0 . For q0 − q1 we will apply Eq. (6), and for q f x( )1 0−  we 

can apply Eq. (4), as q1 is of attractive nature “above” the bifurcation point; then

q f x M
C C

G M( ) 1 1 ( ( 1)),0 0
0

0 1
1�

�
��−

−
+ −

(with C1 = f ″(q1)/2), and defining y M( 1)0= −  we obtain (with the form of the scaling function, Eq. (3)),
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Using Eq. (7) it can be shown that

z M M y( 1) ( 1) , (8)1 0= − = − − = − 

(so, the y introduced here is the same y introduced in the previous section), and therefore,
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where we have also used that C C C1 0= = ∗, to the lowest order, with ∗C  being the value at the bifurcation point. 
Therefore, we obtain the same scaling law as in the previous section:

q f x
C

G y( ) 1 ( ),
(9)0 0−

∗
�

�
�

with the same scaling function G(y) as in Eq. (3), although the rescaled variable y is different here (y ≠ z, in 
general). This is possible thanks to the property y + G(−y) = G(y) that the scaling function satisfies. Note that 
the scaling law (1) has the same form as the finite-time scaling (9) with y given by Eq. (8), and therefore we can 
identify β = ν = 1. Note also that we can identify M0 = f ′(q0) with a bifurcation parameter, as it is M0 < 1 “below” 
the bifurcation point (M0 = 1) and M0 > 1 “above”. In fact, M0 can be considered as a natural bifurcation param-
eter, as the scaling law (4) expressed in terms of M0 becomes universal. M defined in the previous section cannot 
be a bifurcation parameter as it is never above one because it is defined with respect to the attractive fixed point.

For the transcritical bifurcation of the logistic map we identify q0 = 0 and M0 = μ, so y ( 1) μ= − . For the nor-
mal form of the transcritical bifurcation, q0 = 0 but M0 = μ + 1, so y μ= . Consequently, Fig. 2(a) shows f x( )0  (the 
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distance to q0 = 0) as a function of μ, for the logistic map and different , whereas Fig. 2(b) shows the same results 
under the corresponding rescaling, together with analogous results for the normal form of the transcritical bifurca-
tion. The data collapse supports the validity of the scaling law (9) with scaling function given by Eq. (3).

Scaling Law for the Iterated Value xn in the Saddle-Node Bifurcation
In the case of a saddle-node bifurcation, the –th iterate can be isolated from Eq. (5) to obtain

�
�
�

�
�

� μ
μ







+ −






=f x G H y( ) 1 2
2

( 2 ) 1 ( )0

with μ= − =y z 2  and H(y) = y(ey + 1)(ey − 1)−1/2. Therefore, the representation of f x( )0

  as a function of 
μ2  unveils the shape of the scaling function H. In terms of μ= = u y 42 2 ,

�
�

�f x I u I u H u u e
e

( ) 1 ( ), with ( ) ( )
2

( 1)
( 1)

,
(10)

u

u0 = =
+
−

and, therefore, plotting  f x( )0  as a function of  μ4 2  must lead to the collapse of the data onto the scaling function 
I(u), as shown in Fig. 3. Comparison with the finite-size scaling law (1) allows one to establish β = ν = 1/2 for this 
bifurcation (and bifurcation parameter μ, not μ ).

Conclusions
By means of scaling laws, we have made a clear analogy between bifurcations and phase transitions23, with a direct 
correspondence between, on the one hand, the bifurcation parameter, the bifurcation point, and the finite-time 
solution f x( )0 , and, on the other hand, the control parameter, the critical point, and the finite-size order param-
eter. However, in phase transitions, the sharp change of the order parameter at the critical point arises in the limit 
of infinite system size; in contrast, in bifurcations, the sharpness at the bifurcation point shows up in the 
infinite-time limit,  → ∞. So, finite-size scaling in one case corresponds to finite-time scaling in the other. 
Specifically, we conclude that the finite-size scaling behavior derived in ref.29 can be directly understood from the 

Figure 2.  (a) –th iteration of the logistic map as a function of the bifurcation parameter μ, for different values 
of . Same initial conditions as in previous figure. (b) Same data under rescaling (decreasing density of points), 
plus analogous data coming from the transcritical bifurcation in normal form. The data collapse shows the 
validity of the scaling law, Eq. (9), with scaling function G(y) from Eq. (3).

Figure 3.  (a) Same as Fig. 2(a) but for the saddle-node bifurcation in normal form. (b) Rescaling of the same 
data (with decreased density of points). The data collapse supports the scaling law and the scaling function I(u) 
given by Eq. (10).
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transcritical bifurcation underlying the Galton-Watson branching process. It is remarkable that the critical behav-
ior of such a stochastic process is governed by a bifurcation of a deterministic dynamical system.

Moreover, by using numerical simulations we have tested that the finite-time scaling laws also hold for dynam-
ical systems continuous in time, as well as for the pitchfork bifurcation in discrete time, although with different 
exponents and scaling function in this case (this is due to the fact that the condition f ″(q) ≠ 0 does not hold). The 
use of the finite-time scaling concept by other authors does not correspond with ours. For instance, although ref.33 
presents a scaling law for finite times, the corresponding exponent ν there turns out to be negative, which is not in 
agreement with the genuine finite-size scaling around a critical point. In addition, we have also been able to derive 
the power-law divergence of the transient time to reach the attractor out of criticality12,19,20.

Our results could be useful for interpreting different types of fixed points found in renormalization group 
theory23. Also, they might allow to idenfity the type of bifurcations in systems for which information is limited to 
short transients, such as in ecological systems. In this way, the scaling relations established in this article could be 
used as warning signals34 to anticipate the nature of collapses or changes in ecosystems5,6,34–36 (due to, e.g., tran-
scritical or saddle-node bifurcations) and in other dynamical systems suffering shifts.
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