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ABSTRACT

Finite-size scaling is a key tool in statistical physics, used to infer critical behavior in finite systems. Here we have made use
of the analogous concept of finite-time scaling to describe the bifurcation diagram at finite times in discrete (deterministic)
dynamical systems. We analytically derive finite-time scaling laws for two ubiquitous transitions given by the transcritical and
the saddle-node bifurcation, obtaining exact expressions for the critical exponents and scaling functions. One of the scaling
laws, corresponding to the distance of the dynamical variable to the attractor, turns out to be universal, in the sense that it
holds for both bifurcations, yielding the same exponents and scaling function. Remarkably, the resulting scaling behavior in the
transcritical bifurcation is precisely the same as the one in the (stochastic) Galton-Watson process. Our work establishes a new
connection between thermodynamic phase transitions and bifurcations in low-dimensional dynamical systems, and opens new
avenues to identify the nature of dynamical shifts in systems for which only short time series are available.

Introduction
Bifurcations separate qualitatively different dynamics in dynamical systems as one or more parameters are changed. Bifurcations
have been mathematically characterized in elastic-plastic materials [1], electronic circuits [2], or in open quantum systems
[3]. Also, bifurcations have been theoretically described in population dynamics [4, 5, 6], in socioecological systems [7, 8], as
well as in fixation of alleles in population genetics and computer virus propagation, to name a few examples [9, 10]. More
importantly, bifurcations have been identified experimentally in physical [11, 12, 13, 14], chemical [15, 16], and biological
systems [17, 18]. The simplest cases of local bifurcations, such as the transcritical and the saddle-node bifurcations, only
involve changes in the stability and existence of fixed points.

Although, strictly speaking, attractors (such as stable fixed points) are only reached in the infinite-time limit, some studies
near local bifurcations have focused on the dependence of the characteristic time needed to approach the attractor as a function
of the distance of the bifurcation parameter to the bifurcation point. For example, for the transcritical bifurcation it is known
that the transient time, τ , diverges as a power law [19], as τ ∼ |µ−µc|−1, with µ and µc being the bifurcation parameter and
the bifurcation point, respectively, while for the saddle-node bifurcation [20] this time goes as τ ∼ |µ−µc|−1/2 (see [12] for an
experimental evidence of this power law in an electronic circuit).

Thermodynamic phase transitions [21, 22], where an order parameter suddenly changes its behavior as a response to
small changes in one or several control parameters, can be considered as bifurcations [23]. Three important peculiarities of
thermodynamic phase transitions within this picture are that the order parameter has to be equal to zero in one of the phases
or regimes, that the bifurcation does not arise (in principle) from a simple low-dimensional dynamical system but from the
cooperative effects of many-body interactions, and that at thermodynamic equilibrium there is no (macroscopic) dynamics at all.
Non-equilibrium phase transitions [24, 25] are also bifurcations and share these characteristics, except the last one. Particular
interest has been paid to second-order phase transitions, where the sudden change of the order parameter is nevertheless
continuous and associated to the existence of a critical point.

A key ingredient of second-order phase transitions is finite-size scaling [26, 27], which describes how the sharpness of
the transition emerges in the thermodynamic (infinite-system) limit. For instance, if m is magnetization (order parameter), T
temperature (control parameter), and ` system’s size, then for zero applied field and close to the critical point, the equation of
state can be approximated as a finite-size scaling law,

m' 1
`β/ν

g[`1/ν(T −Tc)], (1)



with Tc the critical temperature, β and ν two critical exponents, and g[y] a scaling function fulfilling g[y] ∝ (−y)β for y→−∞

and g[y]→ 0 for y→ ∞.
It has been recently shown that the Galton-Watson branching process (a fundamental stochastic model for the growth and

extinction of populations, nuclear reactions, and avalanche phenomena) can be understood as displaying a second-order phase
transition [28] with finite-size scaling [29, 30]. In a similar spirit, in this article we show how bifurcations in one-dimensional
discrete dynamical systems display “finite-time scaling”, analogous to finite-size scaling with time playing the role of system
size. We analyze the transcritical and the saddle-node bifurcations for iterated maps and find analytically well-defined scaling
functions that generalize the bifurcation diagrams for finite times. The sharpness of each bifurcation is naturally recovered in
the infinite-time limit. The finite-size behavior of the Galton-Watson process becomes just one instance of our general finding
for the transcritical bifurcation. And as a by-product, we derive the power-law divergence of the characteristic time τ when µ is
kept constant, off criticality [19, 20].

1 Universality of convergence to attractive fixed points
In this paper, we consider a one-dimensional discrete dynamical system, or iterated map, xn+1 = f (xn), where x is a real
variable, f (x) is a univariate function (which will depend on some non-explicit parameters) and n is discrete time. It is assumed
that the map has an attractive (i.e., stable) fixed point at x = q, for which f (q) = q, with | f ′(q)|< 1, where the prime denotes the
derivative [20]. Moreover, the initial condition, x0, is assumed to belong to the basin of attraction of the fixed point. Additional
conditions on x0 will be discussed below.

We are interested in the behavior of xn = f n(x0) for large but finite n, where f n(x0) denotes the iterated application of the
map n times. Naturally, for sufficiently large n, f n(x0) will be close to the attractive fixed point q and we will be able to expand
f ( f n(x0)) around q, resulting in

f n+1(x0) = f ( f n(x0)) = q+M( f n(x0)−q)

+ C( f n(x0)−q)2 +O(q− f n(x0))
3, (2)

with

M = f ′(q) and C =
f ′′(q)

2
.

By rearranging and introducing the variable cn+1, the inverse of the “distance” to the fixed point at iteration n+1, we arrive at

cn+1 =
1

q− f n+1(x0)
=

cn

M
+

C
M2 +O(q− f n(x0)),

(we may talk about a distance because we calculate the difference in such a way that it is always positive). Iterating this
transformation ` times leads to

cn+` =
cn

M`
+

C(1−M`)

M`+1(1−M)
,

where only the lowest-order terms have been considered [29]. When the variable z, defined as z = `α(M−1), is kept finite
(with `→ ∞ and M → 1) a non-trivial limit of the previous expression exists if α = 1. It is found that the right-hand
side of the expression is dominated by the second term, which grows linearly with `. Therefore, for large `, we arrive at
cn+` 'C`(ez−1)e−z/z, and taking the inverse, we obtain

q− f `+n(x0) =
1

c`+n
' 1

C`
G(z),

with scaling function

G(z) =
zez

ez−1
. (3)

Observe that the sequence { f `(x0)}∞
`=1 is convergent and thus, for ` large enough with respect to n, f `+n(x0) ' f `(x0).

Consequently,

q− f `(x0)'
1

C`
G(z). (4)

This is exactly the same result as the one derived in Ref. [29] for the Galton-Watson model, leading to the realization that this
model is governed by a transcritical bifurcation (but restricted to a fixed initial condition x0 = 0).
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The scaling law (4) means that any attractor of a one-dimensional map is approached in the same universal way, as long as a
Taylor expansion as the one in Eq. (2) holds, in particular if f ′′(q) 6= 0. In this sense one may talk about a “universality class”,
as displayed in Fig. 1. The idea is that for each value of the number of iterations ` one has to pick a value of M (which depends
on the parameters of f (x)) for which z = `(M−1) (the rescaled difference concerning the point M = 1) remains constant. Note
that, in order to have a finite z, as ` is large, M = f ′(q) will be close to 1, implying that the system will be close to its bifurcation
point, corresponding to M = 1 (where the attractive fixed point will lose its stability). Therefore, in the scaling law, C can be
replaced by its value at the bifurcation point C∗, so, we write C =C∗ in Eq. (4).

In principle, the value of the initial condition x0 is not of fundamental importance. The same results can be obtained,
for example, by taking x1 = f (x0) as the initial condition and then replacing ` by `−1 because, for very large `, ` ' `−1.
Therefore, as ` grows, the memory of the initial condition is erased, as ` can be made as large as desired. However, x0 has to
fulfill x0 < q if C∗ > 0 and x0 > q if C∗ < 0, in the same way that all the iterations xn must also satisfy these inequalities (i.e.,
all the iterations have to be on the same “side” of the point q, see the caption of Fig. 1 for the concrete conditions). The scaling
law implies that plotting [q− f `(x0)]C∗` as a function of `(M−1) must yield a data collapse of the curves corresponding to
different values of ` onto the scaling function G.

For example, for the logistic (lo) map [20], f (x) = flo(x) = µx(1− x), a transcritical bifurcation takes place at µ = 1 and
the attractor is at q = 0 for µ ≤ 1 and at q = 1−1/µ for µ ≥ 1, which leads to Mlo = f ′lo(q) = µ for µ ≤ 1 and Mlo = 2−µ

for µ ≥ 1, and also to Clo∗ =−1. Therefore, z = `(M−1) =−`|µ−1| and f `lo(x0)−q' `−1G(−`|µ−1|), for x0 > q. Thus,
in order to verify the collapse of the curves onto the function G, the quantity [ f `lo(x0)−q]` must be displayed as a function of
−`|µ−1|; if the resulting plot does not change with the value of ` the scaling law can be considered to hold. Alternatively,
the two regimes µ ≷ 1, can be observed by writing [ f `lo(x0)−q]` as a function of y = `(µ−1). In the latter case the scaling
function turns out to be G(−|y|). Figure 1(b) shows precisely this; the nearly perfect data collapse for large ` is the indication
of the fulfillment of the finite-time scaling law. For comparison, Fig. 1(a) shows the same data with no rescaling (i.e., just the
distance to the attractor as a function of the bifurcation parameter µ). In the case of the normal form of the transcritical (tc)
bifurcation (in the discrete case), ftc(x) = (1+µ)x− x2, the bifurcation takes place at µ = 0 (with q = 0 for µ ≤ 0 and q = µ

for µ ≥ 0). This leads to exactly the same behavior for z =−`|µ| (or for y = `µ in order to separate the two regimes, as shown
overimposed in Fig. 1(b), again with very good agreement).

For the saddle-node (sn) bifurcation (also called fold or tangent bifurcation [31]), in its normal form (discrete system),
fsn(x) = µ + x− x2, the attractor is at q =

√
µ (only for µ > 0), so the bifurcation is at µ = 0, which leads to Msn = 1−2

√
µ

and Csn∗ =−1. The scaling law can be written as

f `sn(x0)−
√

µ ' 1
`

G(−2`
√

µ). (5)

To see the data collapse onto the function G one must represent [ f `sn(x0)−
√

µ]` as a function of z =−2`
√

µ (or as a function
of y =−z for clarity sake, as shown also in Fig. 1(b)). In order to create a horizontal axis that is linear in µ , we first define
z =−

√
u, in which case f `sn(x0)−

√
µ ' F(4`2µ)/`, with a transformed scaling function F(u) = G(−

√
u) =

√
u/(e

√
u−1),

and then use u =−z2 = 4`2µ for the horizontal axis of the rescaled plot.
Although the key idea of the finite-time scaling law, Eq. (4), is to compare the solution of the system at “corresponding”

values of ` and µ (such that z is constant, in a sort of law of corresponding states [21]), the law can also be used at fixed µ . At the
bifurcation point (µ = µc, so z = 0), we find that the distance to the attractor decays hyperbolically, i.e., | f `(x0)−q|= |C∗`|−1,
as it is well known, see for instance Ref. [19]. Out of the bifurcation point, for non-vanishing µ−µc we have z→−∞ (as
`→ ∞) and then G(z)→ e−z, which leads to f `(x0)−q' `−1e−z ' e−`/τ , where, from the expression for z, we find that the
characteristic time τ diverges as τ = 1/|µ−µc| for the transcritical bifurcation (both in normal form and in the logistic form)
and as τ = 1/(2

√
µ−µc) for the saddle-node bifurcation (with µc = 0 in the normal form) [12]. These laws, mentioned in the

introduction, have been reported in the literature as scaling laws [20], but in order to avoid confusion we propose calling them
power-law divergence laws, and keep the term scaling law for behaviors such as those in Eqs. (1), (4), and (5). Note that this
sort of law arises because G(z) is asymptotically exponential for z→−∞; in contrast, the equivalent of G(z) in the equation of
state of a magnetic system in the thermodynamic limit is a power law, which leads to the Curie-Weiss law [32].

2 Scaling law for the distance to the fixed point at bifurcation in the transcritical bifurca-
tion

In some cases, the distance between f `(x0) and some constant value of reference will be of more interest than the distance to
the attractive fixed point q, as the value of q may change with the bifurcation parameter. For the transcritical bifurcation we
have two fixed points, q0 and q1, and they collide and interchange their character (attractive to repulsive, and vice versa) at
the bifurcation point. It will be assumed that q0 is constant independent of the bifurcation parameter (naturally, q1 will not be

3/9



constant), and that “below” the bifurcation point q0 is attractive and q1 is repulsive, and vice versa “above” the bifurcation. We
will be interested in the distance between q0 and f `(x0), i.e., q0− f `(x0), which, below the bifurcation point corresponds to
the quantity calculated previously in Eq. (4), but not above. The reason is that, there, q was an attractor, but now q0 can be
attractive or repulsive. Note that, without loss of generality, we can refer q0− f `(x0) as the distance of f `(x0) to the “origin”.

Following Ref. [29], we seek a relationship between both fixed points when the system is close to the bifurcation point. As,
in that case, q1 ' q0, we can expand f (q1) around q0 to obtain

f (q1) = q1 = q0 +M0(q1−q0)+C0(q1−q0)
2 +O(q1−q0)

3,

which leads directly to

M0−1 =C0(q0−q1), (6)

to the lowest order in (q1−q0). Naturally, M0 = f ′(q0) and C0 = f ′′(q0)/2. We also seek a relationship between M1 = f ′(q1)
and M0. Expanding f ′(q1) around q0, f ′(q1) = M1 = M0 +2C0(q1−q0)+O(q1−q0)

2, which, using Eq. (6), leads to

M0−1 = 1−M1, (7)

to the first order in (q1−q0).
We now write q0− f `(x0) = q0−q1 +q1− f `(x0). For q0−q1 we will apply Eq. (6), and for q1− f `(x0) we can apply Eq.

(4), as q1 is of attractive nature “above” the bifurcation point; then

q0− f `(x0)'
M0−1

C0
+

1
C1`

G(`(M1−1)),

(with C1 = f ′′(q1)/2), and defining y = `(M0−1) we obtain (with the form of the scaling function, Eq. (3)),

q0− f `(x0)'
y

C0`
+

1
C1`

(
zez

ez−1

)
.

Using Eq. (7) it can be shown that

z = `(M1−1) =−`(M0−1) =−y, (8)

(so, the y introduced here is the same y introduced in the previous section), and therefore,

q0− f `(x0)'
1

C∗`

(
y+
−ye−y

e−y−1

)
=

1
C∗`

yey

ey−1
,

where we have also used that C1 =C0 =C∗, to the lowest order, with C∗ being the value at the bifurcation point. Therefore, we
obtain the same scaling law as in the previous section:

q0− f `(x0)'
1

C∗`
G(y), (9)

with the same scaling function G(y) as in Eq. (3), although the rescaled variable y is different here (y 6= z, in general). This is
possible thanks to the property y+G(−y) = G(y) that the scaling function satisfies. Note that the scaling law (1) has the same
form as the finite-time scaling (9) with y given by Eq. (8), and therefore we can identify β = ν = 1. Note also that we can
identify M0 = f ′(q0) with a bifurcation parameter, as it is M0 < 1 “below” the bifurcation point (M0 = 1) and M0 > 1 “above”.
In fact, M0 can be considered as a natural bifurcation parameter, as the scaling law (4) expressed in terms of M0 becomes
universal. M defined in the previous section cannot be a bifurcation parameter as it is never above one because it is defined with
respect to the attractive fixed point.

For the transcritical bifurcation of the logistic map we identify q0 = 0 and M0 = µ , so y = `(µ−1). For the normal form of
the transcritical bifurcation, q0 = 0 but M0 = µ +1, so y = `µ . Consequently, Fig. 2(a) shows f `(x0) (the distance to q0 = 0)
as a function of µ , for the logistic map and different `, whereas Fig. 2(b) shows the same results under the corresponding
rescaling, together with analogous results for the normal form of the transcritical bifurcation. The data collapse supports the
validity of the scaling law (9) with scaling function given by Eq. (3).
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3 Scaling law for the iterated value xn in the saddle-node bifurcation
In the case of a saddle-node bifurcation, the `−th iterate can be isolated from Eq. (5) to obtain

f `(x0)'
1
`

[
2`
√

µ

2
+G(−2`

√
µ)

]
=

1
`

H(y)

with y =−z = 2`
√

µ and H(y) = y(ey +1)(ey−1)−1/2. Therefore, the representation of ` f `(x0) as a function of 2`
√

µ unveils
the shape of the scaling function H. In terms of u = y2 = 4`2µ ,

f `(x0)'
1
`

I(u), with I(u) = H(
√

u) =
√

u
2

(e
√

u +1)
(e
√

u−1)
, (10)

and, therefore, plotting ` f `(x0) as a function of 4`2µ must lead to the collapse of the data onto the scaling function I(u), as
shown in Fig. 3. Comparison with the finite-size scaling law (1) allows one to establish β = ν = 1/2 for this bifurcation (and
bifurcation parameter µ , not

√
µ).

4 Conclusions
By means of scaling laws, we have made a clear analogy between bifurcations and phase transitions [23], with a direct
correspondence between, on the one hand, the bifurcation parameter, the bifurcation point, and the finite-time solution f `(x0),
and, on the other hand, the control parameter, the critical point, and the finite-size order parameter. However, in phase transitions,
the sharp change of the order parameter at the critical point arises in the limit of infinite system size; in contrast, in bifurcations,
the sharpness at the bifurcation point shows up in the infinite-time limit, `→ ∞. So, finite-size scaling in one case corresponds
to finite-time scaling in the other. Specifically, we conclude that the finite-size scaling behavior derived in Ref. [29] can be
directly understood from the transcritical bifurcation underlying the Galton-Watson branching process. It is remarkable that the
critical behavior of such a stochastic process is governed by a bifurcation of a deterministic dynamical system.

Moreover, by using numerical simulations we have tested that the finite-time scaling laws also hold for dynamical systems
continuous in time, as well as for the pitchfork bifurcation in discrete time, although with different exponents and scaling
function in this case (this is due to the fact that the condition f ′′(q) 6= 0 does not hold). The use of the finite-time scaling
concept by other authors does not correspond with ours. For instance, although Ref. [33] presents a scaling law for finite times,
the corresponding exponent ν there turns out to be negative, which is not in agreement with the genuine finite-size scaling
around a critical point. In addition, we have also been able to derive the power-law divergence of the transient time to reach the
attractor out of criticality [12, 20, 19].

Our results could be useful for interpreting different types of fixed points found in renormalization group theory [23].
Also, they might allow to idenfity the type of bifurcations in systems for which information is limited to short transients,
such as in ecological systems. In this way, the scaling relations established in this article could be used as warning signals
[34] to anticipate the nature of collapses or changes in ecosystems [5, 6, 35, 36, 34] (due to, e.g., transcritical or saddle-node
bifurcations) and in other dynamical systems suffering shifts.
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a b

Figure 1. (a) Distance between the `−th iteration of the logistic map (lo) and its attractor, as a function of the bifurcation
parameter µ , for different values of `. (b) The same data under rescaling (decreasing the density of points, for clarity sake),
together with data from the transcritical bifurcation in normal form (tc) and the saddle-node bifurcation (sn). The collapse of
the curves into a single one validates the scaling law, Eq. (4), and its universal character. The scaling function is in agreement
with G(−|y|). Note that the initial condition x0 is taken uniformly randomly between 0.25 and 0.75, which is inside the range
necessary for all the iterations to be above the fixed point. This range is, below the bifurcation point, 0 < x0 < 1 (lo),
0 < x0 < 1+µ (tc), and, above, 1−µ−1 < x0 < µ−1 (lo), µ < x0 < 1 (tc),

√
µ < x0 < 1−√µ (sn).
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a b

Figure 2. (a) `−th iteration of the logistic map as a function of the bifurcation parameter µ , for different values of `. Same
initial conditions as in previous figure. (b) Same data under rescaling (decreasing density of points), plus analogous data
coming from the transcritical bifurcation in normal form. The data collapse shows the validity of the scaling law, Eq. (9), with
scaling function G(y) from Eq. (3).
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Figure 3. (a) Same as Fig. 2(a) but for the saddle-node bifurcation in normal form. (b) Rescaling of the same data (with
decreased density of points). The data collapse supports the scaling law and the scaling function I(u) given by Eq. (10).
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