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Abstract. We completely characterize the global phase portraits in
the Poincaré disk for all planar Hamiltonian vector fields with linear
plus cubic homogeneous terms having a nilpotent saddle at the origin.

1. Introduction and statement of the results

Let (P,Q) be an analytic map from R2 into itself. The qualitative theory
of ordinary differential equations in the plane provide a qualitative descrip-
tion of the behavior of each orbit instead of giving explicitly (or quantita-
tively) the solutions. In this paper we describe the local phase portraits of
singular points for a wide general class of systems being of great interest
due to their connection with physical systems.

Quadratic systems having a center at the origin have been widely studied
in the last 100 years, and more than 1.000 papers have been published about
them (see [10, pages 3 and 4 and 13] for a brief history of the problem of
the center in general, and where it includes a list of 300 papers covering this
topic.) There are also some partial results for the centers of planar polyno-
mial differential systems of degree larger than two. Recently Colak, Llibre
and Valls [3, 4, 5, 6] provided the global phase portraits on the Poincaré
disk of all Hamiltonian planar polynomial vector fields having only linear
and cubic homogeneous terms which have a linear type center or a nilpotent
center at the origin, together with their bifurcation diagrams.

Dulak [8] was the first to detect that centers can pass to saddles through
a complex change of variables, see for more details [9], and so it is natural to
ask whether such kind of studies can also be done for saddles. It is interesting
to observe that despite the fact that the classification of phase portraits of
Hamiltonian planar polynomial vector fields having a ceter at the origin have
been widely studied very few results exist in the case of saddles. For the
case of quadratic systems having an integrable saddle, its phase portraits
were provided in [2]. As far as the authors know, for the case in which there
exists a nilpotent saddle at the origin and the degree of the system is greater
than two no result exists on the classification of the phase portraits. This is
the objective pursuit by this paper. This is a huge class of systems with too
many parameters and so, in this paper we restrict to classifying the global
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phase portraits of all Hamiltonian planar polynomial systems of degree three
of the form linear plus cubic homogeneous with a nilpotent saddle at the
origin. We recall that a Hamiltonian planar polynomial system of degree d
is a system of the form

x′ = Hy y′ = −Hx

(here the prime denotes derivative with respect to the time t) where the
maximum of the degrees of Hy and Hx is d.

To do this we will use the Poincaré compactification of polynomial vector
fields. The Poincaré compactification that we shall use for describing the
global phase portraits of our Hamiltonian systems is standard. For all the
definitions and results on the Poincaré compactification see Chapter 5 of
[7]. We say that two vector fields on the Poincaré disk are topologically
equivalent if there exists a homeomorphism from one into the other which
sends orbits to orbits preserving or reversing the direction of the flow. Our
main result is the following one.
Theorem 1. A Hamiltonian planar polynomial vector field with linear plus
cubic homogeneous terms has a nilpotent saddle at the origin if and only if,
after a linear change of variables and a rescaling of its independent variable
it can be written as one of the following six classes:

(I) x′ = ax+ by, y′ = −a2

b x− ay + x3 with b > 0;
(II) x′ = ax+ by − x3, y′ = −a2

b x− ay + 3x2y with a < 0;
(III) x′ = ax + by − 3x2y + y3, y′ =

(
c − a2

b+c

)
x − ay + 3xy2 with either

a = b = 0 and c > 0, or c = 0, ab 6= 0 and a2/b− 6b < 0;
(IV) x′ = ax + by − 3x2y − y3, y′ =

(
c − a2

b+c

)
x − ay + 3xy2 with either

a = b = 0 and c < 0, or c = 0, ab 6= 0 and b > 0;
(V) x′ = ax+by−3µx2y+y3, y′ =

(
c− a2

b+c

)
x−ay+x3+3µxy2, with either

a = b = 0 and c > 0, or c = 0, b 6= 0 and (a4 − b4 − 6a2b2µ)/b < 0;
(VI) x′ = ax+by−3µx2y−y3, y′ =

(
c− a2

b+c

)
x−ay+x3+3µxy2, with either

a = b = 0 and c < 0, or c = 0, b 6= 0 and (a4 + b4 + 6a2b2µ)/b > 0;

where a, b, c, µ ∈ R. Moreover systems (I), (III), (IV), (V) and (VI) are
invariant under the transformation a → −a, (x, y) → (−x, y) and reversing
the time (i.e. t → −t), therefore it is not restrictive to consider a ≥ 0.

The proof of Theorem 1 is given in Section 3.
Theorem 2. The global phase portraits of the six families of systems pro-
vided by Theorem 1 are topologically equivalent to the following of Figure
1:

• 1.1 for systems (I); or systems (IV) with a = b = 0, c < 0; or
systems (IV) with c = 0, ab 6= 0, b > 0 and b < 2|a|/

√
3;

• 1.2 for systems (II);
• 1.3 for systems (III) with a = b = 0 and c > 0; or c = 0, ab 6= 0,
a2/b− 6b < 0 and b < 0;

• 1.4 for systems (III), with c = 0, ab 6= 0, a2/b− 6b < 0 and b > 0;
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• 1.5 for systems (IV) with c = 0, ab 6= 0 and b > 2|a|/
√
3;

• 1.6 for systems (IV) with c = 0, ab 6= 0 and b = 2|a|/
√
3;

• 1.7 for systems (V) with a = b = 0, c > 0; or c = a = 0, b > 0;
or c = 0, a 6= 0, (b, µ) ∈ R1 ∪ R2 ∪ R3; or c = 0, a 6= 0, (b, µ) ∈
({b−2 (µ), µ} ∪ {b1(µ), µ}) ∩ S, where R1, R2, R3, S, b

−
2 (µ), b1(µ) are

given in Subsection 4.5;
• 1.8 for systems (V) with c = 0, a 6= 0 and (b, µ) ∈ R4, where R4 is

given in Subsection 4.5;
• 1.9 for systems (V) with c = 0, a 6= 0 and (b, µ) ∈ {b+2 (µ), µ} ∩ S,

where S and b
+
2 (µ) are given in Subsection 4.5;

• 1.10 for systems (VI) with a = b = 0, c < 0 and µ < −1/3, or
with c = a = 0, b > 0 and µ < −1/3, or with c = 0, (b, µ) ∈
R1 ∪ R2 ∪ R3 ∪ R5 ∪ ({−b1(µ), µ} ∩ S), where R1, R2, R3, R5, b1(µ),
and S are given in Subsection 4.6;

• 1.11 for systems (VI) with a = b = 0, c < 0 and µ = −1/3, or with
c = 0, b > 0, a 6= ±b and µ = −1/3;

• 1.12 for systems (VI) with a = b = 0, c < 0 and µ ∈ (−1/3, 0),
or with c = a = 0, b > 0 and µ ∈ (−1/3, 0), or with c = 0,
(b, µ) ∈ R4 ∪ R6 ∪ R10, where R4, R6, R10 are given in Subsection
4.6;

• 1.13 for systems (VI) with a = b = 0, c < 0 and µ ≥ 0, or with
a = c = 0, b > 0 and µ ≥ 0, or c = 0, b > 0 and µ = 1/3, or with
c = 0 and (b, µ) ∈ R7 ∪ ({b1(µ), µ} ∩ S) ∪ R8 ∪ R9, or c = 0, b = a
and µ = 1, where R7, R8, R9, b1(µ) and S are given in Subsection
4.6;

• 1.14 for systems (VI) with c = 0 and (b, µ) ∈ ({b+2 (µ), µ}∪{b
−
2 (µ), µ})

∩S, where b
±
2 (µ) and S are given in Subsection 4.6.

Here b = b/|a|.

The proof of Theorem 2 is given in section 4. Note that Theorem 2 also
provides the bifurcation diagrams.

2. Preliminary results

A vector field is said to have the finite sectorial decomposition property
at a singular point q if either q is a center, a focus or a node, or it has a
neighborhood consisting of a finite union of parabolic, hyperbolic or ellip-
tic sectors. We note that all the isolated singular points of a polynomial
differential system satisfy the finite vectorial decomposition property.

Theorem 3 (Poincaré Formula). Let q be an isolated singular point having
the finite sectorial decomposition property. Let e, h an p denote the number
of elliptic, hyperbolic and parabolic sectors of q, respectively. Then the index
of q is (e− h)/2 + 1.

The indices of a saddle, a center and a cusp are −1, 1 and 0, respectively.



4 M. CORBERA AND C. VALLS

Figure 1. Global phase portraits of Hamiltonian planar
polynomial vector fields with linear plus cubic homogeneous
terms with a nilpotent saddle at the origin. The separatrices
are in bold.

Theorem 4 (Poincaré–Hopf Theorem). For every vector field on the sphere
S2 with a finite number of singular points, the sum of the indices of these
singular points is 2.

Nilpotent singular points of Hamiltonian planar polynomial vector fields
are either saddles, centers, or cusps (for more details see Chapter Theorem
3.5 of [7] taking into account that Hamiltonian systems cannot have foci).

We define center–loop as a hyperbolic saddle with a loop and a center
inside the loop as in Figure 2.

Proceeding as in the proof of Lemma 12 in [4] we can show that if p is an
isolated singular point which is non-elementary then it must be nilpotent.
Hence, the unique possible isolated finite singular points that we can have
are either centers, saddles or cusps.



HAMILTONIAN NILPOTENT SADDLES 5

Figure 2. A center–loop.

3. Proof of Theorem 1

It was proved in [4] that a Hamiltonian vector field with linear plus cubic
homogeneous terms which has a nilpotent term at the origin, after a linear
change of variables and a rescaling of its independent variable it can be
written as one of the following six classes:

(I’) x′ = ax+ by, y′ =
(
c− a2

b+c

)
x− ay + x3;

(II’) x′ = ax+ by − x3, y′ =
(
c− a2

b+c

)
x− ay + 3x2y;

(III’) x′ = ax+ by − 3x2y + y3, y′ =
(
c− a2

b+c

)
x− ay + 3xy2;

(IV’) x′ = ax+ by − 3x2y − y3, y′ =
(
c− a2

b+c

)
x− ay + 3xy2;

(V’) x′ = ax+ by − 3µx2y + y3, y′ =
(
c− a2

b+c

)
x− ay + x3 + 3µxy2;

(VI’) x′ = ax+ by − 3µx2y − y3, y′ =
(
c− a2

b+c

)
x− ay + x3 + 3µxy2;

where a, b, c, µ ∈ R with either a = b = 0 and c 6= 0, or c = 0 and b 6= 0.
Now we use Theorem 3.5 in [7] to find necessary and sufficient conditions

so that the origins of systems (I’)–(VI’) are saddles. For this we need to
make a change of variables so that systems (I’)–(VI’) can be written in such
a way that the linear part is in Jordan form. Note that applying the change
of variables

X = x, Y = ax+ by (1)
when c = 0 and b 6= 0, or

X = y, Y = cx (2)

when a = b = 0 and c 6= 0, systems in classes (I’)–(VI’) can be written in
the form

Ẋ = Y + P (X,Y ), Ẏ = Q(X,Y ).

More precisely, system (I’) with a = b = 0 and c 6= 0 by the change of
variables (2) can be written in the form

Ẋ = Y +
1

c3
Y 3, Ẏ = 0,

and applying Theorem 3.5 in [7] we obtain that the origin is never a nilpotent
saddle, so this case is not possible. On the other hand, system (I’) with c = 0
and b 6= 0, by the change of variables (1) can be written in the form

Ẋ = Y, Ẏ = bX3,
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and the condition so that the origin is a nilpotent saddle is b > 0 (see
Theorem 3.5 in [7]). This provides system (I).

System (II’) with a = b = 0 and c 6= 0 by the change of variables (2) can
be written in the form

Ẋ = Y +
3

c2
XY 2, Ẏ = − 1

c2
Y 3,

and applying Theorem 3.5 in [7] we obtain that the origin is a center, so this
case is not possible. On the other hand, system (II’) with c = 0 and b 6= 0,
by the change of variables (1) can be written in the form

Ẋ = Y −X3, Ẏ = −4aX3 + 3X2Y,

and the condition so that the origin is a nilpotent saddle is a < 0 (see
Theorem 3.5 in [7]). This provides system (II).

System (III’) with a = b = 0 and c 6= 0 by the change of variables (2) can
be written in the form

Ẋ = Y +
3

c
X2Y, Ẏ = cX3 − 3

c
XY 2.

Applying Theorem 3.5 in [7] the condition so that the origin is a nilpotent
saddle is c > 0. Moreover, system (III’) with c = 0 and b 6= 0, by the change
of variables (1) can be written in the form

Ẋ = Y − a(a2 − 3b2)

b3
X3 +

3(a2 − b2)

b3
X2Y − 3a

b3
XY 2 +

1

b3
Y 3,

Ẏ = −a2(a2 − 6b2)

b3
X3 +

3a(a2 − 3b2)

b3
X2Y − 3(a2 − b2)

b3
XY 2 +

a

b3
Y 3,

and by Theorem 3.5 in [7], it has a nilpotent saddle at the origin if and only
if

a2/b− 6b < 0 and a 6= 0. (3)
We have thus obtained system (III).

System (IV’) with a = b = 0 and c 6= 0 by the change of variables (2) can
be written in the form

Ẋ = Y +
3

c
X2Y, Ẏ = −cX3 − 3

c
XY 2.

By Theorem 3.5 in [7] it has a saddle at the origin if and only if c < 0.
Furthermore, system (IV’) with c = 0 and b 6= 0, by the change of variables
(1) can be written in the form

Ẋ = Y +
a(a2 + 3b2)

b3
X3 − 3(a2 + b2)

b3
X2Y +

3a

b3
XY 2 − 1

b3
Y 3,

Ẏ =
a2(a2 + 6b2)

b3
X3 − 3a(a2 + 3b2)

b3
X2Y +

3(a2 + b2)

b3
XY 2 − a

b3
Y 3

and by Theorem 3.5 in [7], the origin is a saddle if and only if b > 0 and
a 6= 0, obtaining the normal form (IV).

System (V’) with a = b = 0 and c 6= 0 by the change of variables (2) can
be written in the form

Ẋ = Y +
3µ

c
X2Y +

Y 3

c3
, Ẏ = cX3 − 3µ

c
XY 2,
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and by Theorem 3.5 in [7], the origin is a saddle if and only if c > 0.
Furthermore, system (V’) with c = 0 and b 6= 0, by the change of variables
(1) can be written in the form

Ẋ = Y − a(a2 − 3b2µ)

b3
X3 +

3(a2 − b2µ)

b3
X2Y − 3a

b3
XY 2 +

1

b3
Y 3,

Ẏ = −(a4 − b4 − 6a2b2µ)

b3
X3 +

3a(a2 − 3b2µ)

b3
X2Y − 3(a2 − b2µ)

b3
XY 2

+
a

b3
Y 3,

and by Theorem 3.5 in [7], the origin is a saddle if and only if
(a4 − b4 − 6a2b2µ)/b < 0, (4)

providing the normal form (V).
Finally, System (VI’) with a = b = 0 and c 6= 0 by the change of variables

(2) can be written in the form

Ẋ = Y +
3µ

c
X2Y +

1

c3
Y 3, Ẏ = −cX3 − 3µ

c
XY 2.

By Theorem 3.5 in [7] the origin is a saddle if and only if c < 0. Furthermore,
system (VI’) with c = 0 and b 6= 0, by the change of variables (1) can be
written in the form

Ẋ = Y +
a(a2 + 3b2µ)

b3
X3 − 3(a2 + b2µ)

b3
X2Y +

3a

b3
XY 2 − 1

b3
Y 3,

Ẏ =
(a4 + b4 + 6a2b2µ)

b3
X3 − 3a(a2 + 3b2µ)

b3
X2Y +

3(a2 + b2µ)

b3
XY 2

− a

b3
Y 3,

and by Theorem 3.5 in [7], the origin is a saddle if and only if
a4 + b4 + 6a2b2µ

b
> 0, (5)

providing the normal form (VI).
If a < 0, setting a = −|a|, doing the linear transformation (x, y) → (−x, y)

and reversing the time (by setting t → −t) system (I) becomes
ẋ = |a|x+ by,

ẏ = −(a2/b)x− |a|y + x3.
(6)

So, system (6) is system (I) with a > 0 (and reversing the time). The same
occurs with systems (III), (IV), (V) and (VI). This completes the proof of
Theorem 1.

4. Proof of Theorem 2

We will study each of the global phase portraits of systems (I)–(VI) pro-
vided by the normal form in Theorem 1. We note that the right-hand
side of these six families are odd functions, and so their phase portraits
are symmetric with respect to the origin (that is, invariant by the change
(x, y) 7→ (−x,−y)).
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4.1. Global phase portraits of systems (I). To find the global phase
portraits of system (I) we first investigate the local charts U1 and U2 and
after that, we study the finite singular points.

In the local chart U1, systems (I) become

u̇ = 1− v2(bu+ a)2/b, v̇ = −v3(bu+ a),

and when v = 0 there are no singular points on U1.
Now we study the origin of U2. In the local chart U2 systems (I) can be

written as

u̇ = −u4 + v2(b+ au)2/b, v̇ = −u3v + v3a(b+ au)/b,

and the origin is a singular point whose linear part is zero. We need to apply
blow-up techniques (see for instance [1]) to obtain the local behavior of this
point. Doing so, we get that the origin of U2 is formed by two elliptic and
four parabolic sectors.

We now look at the finite singular points of system (I) and we see the
origin is the unique finite singular point, which is a saddle. Therefore the
global phase portraits of system (I) are topologically equivalent to 1.1 of
Figure 1.

4.2. Global phase portraits of system (II). Note that for system (II)
we can assume that b > 0 because the change of variables y 7→ −y gives
exactly the same systems with the opposite sign of the parameter b.

In the local chart U1 system (II) becomes

u̇ = 4u− v2(bu+ a)2/b, v̇ = −v3(bu+ a) + v.

When v = 0 the origin of U1 is the unique singular point. The eigenvalues
at this point are 4 and 1 and so it is a repelling node.

Now we check if the origin of U2 is a singular point. Systems (II) on the
local chart U2 can be written as

u̇ = −4u3 + v2(au+ b)2/b, v̇ = −3u2v + v3a(au+ b)/b.

The origin is a singular point whose linear part is zero. We need to do
blow-up to analyze the local behavior of this point. Doing so, we get that
the origin of U2 is formed by four stable parabolic sectors.

Now we study the finite singular points. Taking into account that a < 0
we get that the origin is the unique finite singular point. According to this
local information we obtain that the global phase portrait is topologically
equivalent to 1.2 of Figure 1.

4.3. Global phase portraits of system (III).

4.3.1. Case a = b = 0 and c > 0. First we study system (III) when a = b = 0
and c > 0. In the local chart U1 we get

u̇ = cv2 − u2(u2 − 6), v̇ = −uv(u2 − 3). (7)
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When v = 0 there are three singular points: (0, 0) and (±
√
6, 0). The eigen-

values of the linear part of systems (7) on the points (±
√
6, 0) are ∓12

√
6

and ∓3
√
6, respectively. So, (

√
6, 0) is an attracting node and (−

√
6, 0) is

a repelling node. At the origin the linear part of the jacobian matrix is
zero, and so it is linearly zero. To describe its local behavior we use blow
up techniques. Doing so, we get that the origin is formed by two hyperbolic
sectors.

Now we look for the origin in the local chart U2. Note that system (III)
on the chart U2 is

u̇ = −cu2v2 − 6u2 + 1 v̇ = −uv(cv2 + 3),

and so the origin of U2 is not a singular point.
The unique finite singular point of system (III) with a = b = 0 and

c > 0 is the origin. Consequently the global phase portrait is topologically
equivalent to 1.3 in Figure 1.

4.3.2. Case c = 0, ab 6= 0, a2/b− 6b < 0 and a > 0. Now we study system
(III) when c = 0, ab 6= 0, a > 0 and condition (3) holds. Under these
assumptions we first study the infinite singular points. In U1 system (III)
become

u̇ = −(a+ bu)2v2/b− u2(u2 − 6),

v̇ = −(bu+ a)v3 − uv(u2 − 3).

When v = 0 the singular points are (0, 0) and (±
√
6, 0). Just like in the case

a = b = 0, the eigenvalues of the linear part of system (III) in the local chart
U1 on the points (±

√
6, 0) are ∓12

√
6 and ∓3

√
6, respectively. So, (

√
6, 0)

is an attracting node and (−
√
6, 0) is a repelling node. At the origin, the

linear part is zero. Again we do a blow-up and we get that when b < 0 the
origin of U1 consists of two hyperbolic sectors and when b > 0 it is formed
by two elliptic and four parabolic sectors.

We now look at the origin of U2, in which system (III) write as
u̇ = (b+ au)2v2/b− 6u2 + 1,

v̇ = a(b+ au)v3/b− 3uv.

Hence the origin is not a singular point.
The finite singular points of system (III) are the origin and the points

p1,2 = ±
(
(3b−A)

√
B −A

6
√
6 a

,

√
B −A√

6

)
,

p3,4 = ±
(
(3b+A)

√
B +A

6
√
6 a

,

√
B +A√

6

)
,

where A =
√
12a2 + 9b2 and B = 2a2/b− 3b.

Consider the expression

B2 −A2 = (2a2/b− 3b)2 − (12a2 + 9b2) =
4a2

b
(a2/b− 6b). (8)
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Note that since
√
12a2 + 9b2 >

√
9b2 = 3|b|, we have

B −A = 2
a2

b
− 3b−

√
12a2 + 9b2 < 2

a2

b
− 3b− 3|b|

=

{
2a2/b if b < 0,
2a2/b− 6b if b > 0.

(9)

If b < 0, from (8) and (9) we get that B2 − A2 is positive due to (3) and
B − A < 0. So B − A < 0 and B + A < 0. Hence, the only finite singular
point is the origin. Consequently we obtain phase portrait 1.3 of Figure 1.

If b > 0, from (8), (9) and (3), we get that B2 − A2 < 0 and B − A < 0.
So B + A > 0. Therefore, system (III) has, among the origin, only the two
finite singular points p3 and p4. The eigenvalues of the linear part of this
system at these points are

±

√
4a4 + 15a2b2 + 9b4 + b(5a2 − 3b2)

√
12a2 + 9b2

√
3b

.

Note that
(4a4 + 15a2b2 + 9b4)2 − (b(5a2 − 3b2)

√
12a2 + 9b2)2

= 4a2(4a2 + 3b2)(a2 − 6b2)2 > 0.

Since 4a4 + 15a2b2 + 9b4 > 0, this condition implies that

4a4 + 15a2b2 + 9b4 > |b(5a2 − 3b2)
√
12a2 + 9b2|,

and so p3 and p4 are both saddles.
Now we investigate the possible saddle connections. The Hamiltonian of

system (III) with c = 0 is

H(x, y) =
a2x2

2b
+ axy +

1

2
y2

(
b− 3x2

)
+

y4

4
.

Clearly H(0, 0) = 0 and H(p3) = H(p4) = H̃ with

H̃ =

(
b
(√

12a2 + 9b2 − 3b
)
+ 2a2

)(
3b

(√
12a2 + 9b2 + 5b

)
+ 2a2

)
144b2

.

Solving H̃ = 0 we get the solutions b = ±a/
√
6 which do not satisfy condition

a2/b − 6b < 0. So the saddle p3 (respectively, p4) and the saddle at the
origin belong to different energy levels and therefore cannot be connected.
The separatrices of the saddle at the origin decompose the Poincaré disc into
several disjoint connected components. Since the system posses a symmetry
with respect to the origin (i.e. (x, y) → (−x,−y)), the saddles p3 and p4
belong to two different connected components. Therefore they cannot be
connected because if they were connected their separatrices would cross at
some point a separatrix of the saddle at the origin which is not possible.
Since there are no saddle connections, all phase portraits of system (I) with
c = 0, a, b > 0 and a2/b−6b < 0 are topologically equivalent to 1.4 of Figure
1. This phase portrait is realized for instance when a = 1, b = 1 and c = 0.

4.4. Global phase portraits of system (IV).
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4.4.1. Case a = b = 0 and c < 0. We first we study systems (IV) when
a = b = 0 and c < 0. In the local chart U1 we get

u̇ = cv2 + u2(u2 + 6), v̇ = uv(u2 + 3).

When v = 0 the only singular point is the origin whose linear part is zero.
Applying blow-up techniques we get that the origin of U1 is formed by two
elliptic and four parabolic sectors.

In the local chart U2 system (IV) has the form

u̇ = −cu2v2 − 6u2 − 1, v̇ = −uv(cv2 + 3).

Hence, the origin of U2 is not a singular point.
The finite singular points are (0, 0) and (±

√
c/3,±

√
−c/3) which are not

real because c < 0. As a result we conclude that the global phase portrait
of system (IV) with a = b = 0 are topologically equivalent to 1.1 of Figure
1.

4.4.2. Case c = 0, b > 0 and a > 0. Now we study systems (IV) when c = 0,
b > 0 and a > 0. On the local chart U1 we rewrite system (IV) in the form

u̇ = −v2(a+ bu)2/b+ u2(u2 + 6),

v̇ = −v3(a+ bu) + uv(u2 + 3).

When v = 0 only the origin is a singular point whose linear part is zero.
Doing blow-ups we obtain that the origin of U1 consists in two elliptic and
four parabolic sectors.

On the local chart U2 we rewrite system (IV) in the form

u̇ = v2(b+ au)2/b− 6u2 − 1,

v̇ = v3a(b+ au)/b− 3uv.

Clearly the origin of U2 is not a singular point.
Now we consider the finite singular points, besides the origin, which are

p1,2 = ±
(
(3b+A)

√
B −A

6
√
6 a

,

√
B −A√

6

)
,

p3,4 = ±
(
(3b−A)

√
B +A

6
√
6 a

,

√
B +A√

6

)
,

where A =
√
9b2 − 12a2 and B = 2a2/b + 3b with b > 0. Hence, they can

exist only when b ≥ 2a/
√
3. If 0 < b < 2a/

√
3 there are no finite singular

points besides the origin and the global phase portraits are topologically
equivalent to 1.1 of Figure 1.

If b ≥ 2a/
√
3 then all four points exist due to the fact that since b > 0 we

have B > 0, so B +A > 0 and
B2−A2 = (B−A)(B+A) = (2a2/b+3b)2−(−12a2+9b2) = 4a4/b2+24a2 > 0.

Moreover for b = 2|a|/
√
3 the points p1 and p3 (respectively, p2 and p4)

coincide. The eigenvalues of the linear part of system (IV) at the points p1,2
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are

±

√
−4a4 + 15a2b2 − 9b4 +

√
3(5a2 + 3b2)b

√
−4a2 + 3b2

√
3b

.

We observe that

(−4a4 + 15a2b2 − 9b4)2 − (
√
3(5a2 + 3b2)b

√
−4a2 + 3b2)2

= 4a2(4a2 − 3b2)(a2 + 6b2)2 ≤ 0,
(10)

because 3b2 − 4a2 ≥ 0. Since b > 0, inequality (10) implies that
√
3(5a2 + 3b2)b

√
−4a2 + 3b2) ≥ | − 4a4 + 15a2b2 − 9b4|.

Therefore, when b > 2a/
√
3, p1 and p2 are both saddles.

On the other hand, the eigenvalues of the linear part of systems (IV) at
the points p3,4 are

±

√
−4a4 + 15a2b2 − 9b4 −

√
3(5a2 + 3b2)b

√
−4a2 + 3b2

√
3b

.

In view of (10) we get that, when b > 2a/
√
3, p3 and p4 are both centers.

Next we investigate the possible saddle connections. The Hamiltonian of
system (IV) with c = 0 is

H(x, y) =
a2x2

2b
+ axy +

1

2
y2

(
b− 3x2

)
− y4

4
.

Clearly H(0, 0) = 0 and H(p1) = H(p2) = H̃ with

H̃ =

(
b
(
3b−

√
9b2 − 12a2

)
+ 2a2

)(
3b

(√
9b2 − 12a2 + 5b

)
− 2a2

)
144b2

.

Since H̃ 6= 0 when a 6= 0, the saddle p1 (respectively, p2) and the saddle
at the origin belong to different energy levels and therefore they cannot be
connected. As in system (III), the saddles p1 and p2 cannot be connected
because, by the symmetry (x, y) → (−x,−y), they belong to two different
connected components of the Poincaré disc minus the separatrices of the
saddle at the origin. Since there are no saddle connections, all possible
global phase portraits of systems (IV) with c = 0, a > 0 and b > 2a/

√
3

are topologically equivalent to 1.5 of Figure 1, which is realized for instance
when a = 1, b = 2, c = 0.

If b = 2a/
√
3, both singular points p1, p2 are nilpotent. Note that the

sum of the indices of p1 and p2 must be zero (see Theorems 3 and 4). Using
the symmetry of the system with respect to the origin, we conclude that
both singular points must have the same index and so both of them must
be cusps. Therefore the global phase portraits is topologically equivalent to
1.6 of Figure 1.

4.5. Global phase portraits of system (V).
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4.5.1. Case a = b = 0 and c > 0. We first study system (V) when a = b = 0
and c > 0 which become

ẋ = −3µx2y + y3, ẏ = cx+ x3 + 3µxy2 (11)

On the local chart U1 we have

u̇ = cv2 − u4 + 6µu2 + 1, v̇ = −vu(u2 − 3µ).

When v = 0 the real singular points are (±
√
3µ+

√
9µ2 + 1, 0) and the

eigenvalues of the linear part are

∓4
√
9µ2 + 1

√
3µ+

√
9µ2 + 1 and ∓

√
9µ2 + 1

√
3µ+

√
9µ2 + 1.

Hence (
√
3µ+

√
9µ2 + 1, 0) and (−

√
3µ+

√
9µ2 + 1, 0) are an attracting

node and a repelling node respectively.
In U2 system (V) becomes

u̇ = −cu2v2 − u4 − 6µu2 + 1, v̇ = −uv(cv2 + u2 + 3µ)

and so the origin is not a singular point.
The finite singular points are the origin, ±(

√
−c, 0) (which are not real

because c > 0) and

pi = ±(±
√
−c/(1 + 9µ2),

√
−3cµ/(1 + 9µ2)

)
,

which again are not real because c > 0 (independently on µ being positive,
negative or zero). Therefore, the unique real singular point is the origin.
Hence, the global phase portrait is topologically equivalent to 1.7 of Figure
1.

4.5.2. Case c = 0, b 6= 0, a ≥ 0, and (a4 − b4 − 6a2b2µ)/b < 0. Having
established the case a = b = 0 and c > 0, we now investigate the case c = 0,
b 6= 0, a ≥ 0, and (a4 − b4 − 6a2b2µ)/b < 0 in which system (V) can be
written as

ẋ = ax+ by − 3µx2y + y3,

ẏ = −(a2/b)x− ay + x3 + 3µxy2.
(12)

We note that without loss of generality we can assume that b > 0. Indeed,
if we do the linear transformation (x, y) 7→ (−y,−x) system (V) becomes

ẋ = −ax− (a2/b)y + 3µx2y + y3,

ẏ = bx+ ay + x3 − 3µxy2.
(13)

After defining ā = −a, µ̄ = −µ and b̄ = a2/b we see that system (13) is
system (V) with b 7→ −b whenever a 6= 0. But when a = 0, system (12)
is just system (11) with the axes interchanged, c = b and µ 7→ −µ. We
know that it has a nilpotent saddle at the origin if and only if b > 0. So
this system has already been studied and the global phase portraits are
topologically equivalent to 1.7 of Figure 1. Moreover by Theorem 1 it is not
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restrictive to consider a ≥ 0 and so we need to investigate the case a > 0
with b > 0. In this case condition (4) can be written as

a4 − b4 − 6a2b2µ < 0 and b > 0. (14)

On the local chart U1 we have
u̇ = −v2(a+ bu)2/b+ 6u2µ− u4 + 1, v̇ = −v3(a+ bu)− uv(u2 − 3µ).

So the infinite singular points of system (12) on U1 are the same as those
of system (11): the point (

√
3µ+

√
9µ2 + 1, 0) which is an attracting node

and the point (−
√

3µ+
√
9µ2 + 1, 0) which is a repelling node .

On U2 we have
u̇ = v2(b+ au)2/b− 6u2µ− u4 + 1, v̇ = v3a(b+ au)/b− uv(u2 + 3µ).

Thus the origin of U2 is not a singular point.
The explicit expressions for the finite singular points are lengthy. We

have the following lemma.

Lemma 5. Assume that (a, b, µ) with a > 0 satisfy condition (14). Then,
there exists at most six finite singular points for system (12). The values of
(a, b, µ) for which the number of different real solutions of system (12) can
change are when either C1(a, b, µ) = 0, or C2(a, b, µ) = 0 being

C1(a, b, µ) = −(1− 9µ2)a2 − 54b2µ3,

C2(a, b, µ) = −(1 + 6µ2 − 3µ4)a2b2 + 4a4µ3 − 4b4µ3.
(15)

Proof. We compute the Groebner basis for the polynomials in (12) and we
obtain nine polynomials. Recall that y 6= 0, because the unique singular
point with y = 0 is the origin. One polynomial of the Groebner basis, after
dividing by −y3/b2, is

a4b− b5 − 6a2b3µ− 3(b4 + 3a4µ2 + 6b4µ2 − 18a2b2µ3)y2

− 3b(1 + 9µ2)(b2 − 2a2µ+ 3b2µ2)y4 − b2(1 + 9µ2)2y6.

Introducing the variable z = y2 we get the cubic equation
C = b(a4 − b4 − 6a2b2µ)− 3(b4 + 3a4µ2 + 6b4µ2 − 18a2b2µ3)z

− 3b(1 + 9µ2)(b2 − 2a2µ+ 3b2µ2)z2 − b2(1 + 9µ2)2z3.
(16)

Note that C is always a cubic equation because the coefficient of z3 is never
zero. The discriminant of the cubic C is

27a2b4(1 + 9µ2)2C1(a, b, µ)
2C2(a, b, µ),

where C1(a, b, µ) and C2(a, b, µ) are given in (15). The sign of the discrim-
inant is the sign of C2(a, b, µ), so if C2(a, b, µ) < 0 there is a unique real
solution for C = 0 and if C2(a, b, µ) > 0 there are three different real solu-
tions for C = 0. Moreover, if either C2(a, b, µ) = 0, or C1(a, b, µ) = 0 there
are two real solutions (at least one which is double). Each positive root of
C = 0 will give two solutions in y for systems (V). Now we study how many
solutions in x we can have for each solution in y.
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The Groebner basis has a polynomial in the variables x and y which is
linear in x and has a coefficient in x equal to aC1(a, b, µ) where C1(a, b, µ)
is the one defined above. If C1(a, b, µ) 6= 0, then for each y coming from a
solution of the cubic equation C = 0 in (16), there exists a unique solution in
x. When C1(a, b, µ) = 0, we take the polynomial in the Groebner basis which
is also linear in x and whose coefficient in x is aC̃1(a, b, µ) with C̃1(a, b, µ) =

2y2 − 3a2µ/b + 2b(9µ2 + 1). If C1(a, b, µ) = 0 and C̃1(a, b, µ) 6= 0, there
exists also a unique solution in x for each solution in y coming from the
cubic equation C = 0. Finally, we analyze the case C1(a, b, µ) = 0 and
C̃1(a, b, µ) = 0. Solving system C1(a, b, µ) = 0 and C̃1(a, b, µ) = 0 we get
the solutions

b = b1 =
a

3
√
6

√
−1 + 9µ2

µ3
, y = y1 = ± a√

3
√
6

√√√√ 1

µ3a

√
µ3

−1 + 9µ2
,

which are defined for µ > 1/3 (note that if µ = 0, then C1(a, b, µ) 6= 0). We
substitute each solution in y into the remaining polynomials of the Groebner
basis and we obtain two different solutions for x

x =
aµ(−1 + 9µ2)y1 ±

√
a2µ2(1 + 9µ2)b1

6µ2b1
.

In short, there exists at most six finite singular points for system (V). We also
point out that the unique values of (a, b, µ) for which the number of different
real solutions of system (12) can change is when either C2(a, b, µ) = 0, or
C1(a, b, µ) = C̃1(a, b, µ) = 0 (for this last case one must have µ > 1/3). This
proves the lemma. �

In view of section 2, the finite singular points are either elementary or
nilpotent. Hence they are either centers, saddles or cusps. We have the
following lemma.

Lemma 6. Assume that (a, b, µ) with a > 0 satisfy condition (14). Then,
there exist at most two non–elementary finite singular points of systems (12).
They are nilpotent, different from the origin and occur when the parameters
(a, b, µ) satisfy C2(a, b, µ) = 0 with C2(a, b, µ) as in (15).

Proof. We compute the Groebner basis for the polynomials in (12) together
with the determinant of the linear parts of (12) and we obtain sixteen poly-
nomials. Four of them suffices to prove our claim. The first one is

y2(a4 − b4 − 6a2b2µ)2C2(a, b, µ).

Hence, since by assumptions a4−b4−6a2b2µ < 0 in order that the solution is
non–elementary we must have (a, b, µ) ∈ R×R+×R such that C2(a, b, µ) = 0.

The second one, once divided by y2, is a quadratic polynomial only in the
variable y, where the coefficient of y2 is

5(1 + µ2)(−1 + 3µ2)2(1 + 9µ2)2

and the third is a polynomial in the variables x and y, linear in x with
the coefficient a(1 + 9µ2) which is always different from zero because a 6=
0. Hence, when 3µ2 6= 1 system (V) can has at most two nilpotent finite
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singular points and they must satisfy C2(a, b, µ) = 0. When µ = ±1/
√
3,

condition C2(a, b, µ) = 0 implies b = a/
√

2±
√
3, and substituting these

values of b and µ into the polynomials of the Groebner basis we find the
polynomial

±
6400y4

(
2
√

2±
√
3
(
209

√
3± 362

)
y2 ∓

(
627± 362

√
3
)
|a|

)
(
2±

√
3
)11/2 ,

which also has at most two solutions different from zero. In short, system
(V) can has at most two nilpotent finite singular points different from the
origin and they must satisfy C2(a, b, µ) = 0. This ends the proof. �

We introduce the variable b̄ = b/a. Note that the curves C1(a, b, µ) = 0,
C2(a, b, µ) = 0 and the condition in (14) can be written as

C1(b̄, µ) = −1 + 9µ2 − 54b̄2µ3 = 0,

C2(b̄, µ) = −(1 + 6µ2 − 3µ4)b̄2 + 4µ3 − 4b̄4µ3 = 0,

and
C3(b̄, µ) = 1− b̄4 − 6b̄2µ < 0, b̄ > 0,

respectively.
Let

b̄ = b̄1(µ) =
1

3
√
6

√
9µ2 − 1

µ3
,

b̄ = b̄±2 (µ) =
1

2
√
2

√
−1− 6µ2 + 3µ4 ±

√
(1 + µ2)3(1 + 9µ2)

µ3
,

b̄ = b̄3(µ) =

√
−3µ+

√
1 + 9µ2,

be the solutions of C1(b̄, µ) = 0, C2(b̄, µ) = 0 and C3(b̄, µ) = 0 respec-
tively. Studying the behavior of these curves C1(b̄, µ) = 0, C2(b̄, µ) = 0 and
C3(b̄, µ) = 0 on the plane (b̄, µ) we see that these curves divide the region S
into four different regions (see Figure 3) which are

R1 = R11 ∪R12, R2 = R21 ∪R22, R3 = R31 ∪R32 ∪R33,

R4 = {(b̄, µ) : b̄3(µ) < b̄ < b̄+2 (µ), µ ∈ (1/
√
3,+∞)},

where
R11 = {(b̄, µ) : b̄ > b̄3(µ), µ ∈ (−∞,−1/

√
3)},

R12 = {(b̄, µ) : b̄ > b̄−2 (µ), µ ∈ [−1/
√
3, 0)},

R21 = {(b̄, µ) : b̄3(µ) < b̄ < b̄−2 (µ), µ ∈ (−1/
√
3,−1/(3

√
3))},

R22 = {(b̄, µ) : b̄1(µ) < b̄ < b̄−2 (µ), µ ∈ [−1/(3
√
3), 0)},

R31 = {(b̄, µ) : b̄3(µ) < b̄ < b̄1(µ), µ ∈ (−1/(3
√
3), 0)},

R32 = {(b̄, µ) : b̄ > b̄3(µ), µ ∈ [0, 1/
√
3)},

R33 = {(b̄, µ) : b̄ > b̄+2 (µ), µ ∈ [1/
√
3,+∞)}.



HAMILTONIAN NILPOTENT SADDLES 17

Figure 3. The region S in gray. The curves C1(b̄, µ) =
0 (thick continuous line), C2(b̄, µ) = 0 (dashed lines) and
C3(b̄, µ) = 0 (thin continuous line).

We compute the number of finite singular points of system (12) other than
the origin in each region Ri and on the curves that delimit these regions. We
get: no finite singular points in the regions R1, R2 and R3; two centers and
two saddles in the region R4; no finite singular points on {(b̄−2 (µ), µ)} ∩ S
and {(b̄1(µ), µ)} ∩ S; and two cusps on {(b̄+2 (µ), µ)} ∩ S (the last assertion
comes from Lemma 6, the symmetry and the fact that the sum of the indices
of the two finite singular points must be zero due to Theorems 3 and 4).
So the unique phase portrait of system (V) on the regions R1, R2, R3 and
on {(b̄−2 (µ), µ)} ∩ S and {(b̄1(µ), µ)} ∩ S is topologically equivalent to 1.7 of
Figure 1. On the region R4 the saddle at the origin cannot be connected with
the other saddles because they belong to different energy levels. Indeed, the
Hamiltonian of system (V) with c = 0 is

H(x, y) =
a2x2

2b
+ axy +

1

2
y2

(
b− 3µx2

)
− x4

4
+

y4

4
.

Computing the Groëbner Basis of the polynomials x′, y′ and H(x, y), we get
9 polynomials, one of them is

y3
(
a4 − b4 − 6a2b2µ

)2
.

Since
(
a4 − b4 − 6a2b2µ

)
/b < 0, H(0, 0) = 0, and the unique singular point

with y = 0 is the origin, we conclude that the saddles that are not at the
origin belong to an energy level different from zero. As in the previous
systems, the saddles that are not at the origin cannot be connected to each
other because they belong to two different connected components of the
Poincaré disc minus the separatrices of the saddles at the origin. In short,
there is no saddle connections. Then the only realizable global phase portrait
on R4 is topologically equivalent to 1.8 of Figure 1 and it is realized for
instance when a = 1, b = 0.8, c = 0 and µ = 2.5.
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Note that the two cusps on {(b̄+2 (µ), µ)} ∩ S are formed when the two
centers and the two saddles in the region R4 coalesce and so the unique
possible global phase portrait is topologically equivalent to 1.9 of Figure 1.

4.6. Global phase portraits of system (VI).

4.6.1. Case a = b = 0 and c < 0. First we consider system (VI) when
a = b = 0 and c < 0. In the local chart U1 system (VI) can be written as

u̇ = cv2 + u4 + 6u2µ+ 1, v̇ = uv(u2 + 3µ).

When v = 0, the possible singular points of system (VI) are the four points
(±

√
−3µ±

√
9µ2 − 1, 0). When µ < −1/3 the four points exist. Com-

puting the eigenvalues of the jacobian matrix at these points we get that
(

√
−3µ+

√
9µ2 − 1, 0) and (−

√
−3µ−

√
9µ2 − 1, 0) are repelling nodes

while (−
√

−3µ+
√
9µ2 − 1, 0) and (

√
−3µ−

√
9µ2 − 1, 0) are attracting

nodes.
If µ = −1/3 there are only two singular points which are (±1, 0) and

they are linearly zero. Doing blow ups we get that both singular points are
formed by two elliptic and four parabolic sectors.

Finally, if µ > −1/3 there are no infinite singular points in the local chart
U1.

In U2 system (VI) becomes

u̇ = −cu2v2 − u4 − 6u2µ− 1, v̇ = −uv(u2 + cv2 + 3µ),

and we see that the origin is not a singular point.
The finite singular points of system (VI) are the origin, qi = ±(

√
−c, 0)

for i = 1, 2 and

pi = ±
(
±
√

c/(9µ2 − 1),
√
−3cµ/(9µ2 − 1)

)
,

for i = 1, 2, 3, 4 and µ 6= ±1/3. The points q1, q2 are always real because
c < 0. Moreover, computing the eigenvalues at q1, q2 we get that they are
±i

√
6c
√
µ. So, they are centers if µ > 0 and saddles if µ < 0. If µ = 0,

q1 and q2 are nilpotent centers. The singular points pi are real whenever
µ ∈ (−1/3, 0), otherwise they are not real. In this case, they are all centers
since the eigenvalues are ±2c

√
3µ/(1− 9µ2).

As in the previous cases, we can prove that there is no saddle connections
and so the unique possible global phase portraits that are realized are topo-
logically equivalent to the following ones of Figure 1: 1.10 when µ < −1/3
(it is realized for instance when a = b = 0, c = −1 and µ = −1); 1.11
when µ = −1/3 (it is realized for instance when a = b = 0, c = −1); 1.12
when µ ∈ (−1/3, 0) (it is realized for instance when a = b = 0, c = −1 and
µ = −1/4); and 1.13 when µ ≥ 0 (it is realized for instance when a = b = 0,
c = −1 and µ = 0).
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4.6.2. Case c = 0, b 6= 0, a ≥ 0, and (a4 + b4 + 6a2b2µ)/b > 0. Now we
assume that c = 0, b 6= 0, a ≥ 0 and condition (5) holds. In this case system
(VI) is

ẋ = ax+ by − 3µx2y − y3,

ẏ = −(a2/b)x− ay + x3 + 3µxy2.
(17)

The infinite singular points in this case are the same as those for the case
a = b = 0 and c < 0.

We will study the finite singular points in the same way as we did for
system (V) in case b 6= 0 .

First we study the cases a = 0, µ = −1/3 and µ = 1/3. When a = 0 the
finite singular points of system (VI) are the origin, qi = ±(0,

√
b) for i = 1, 2

and
pi = ±

(√
3bµ/(9µ2 − 1),±

√
−b/(9µ2 − 1)

)
for i = 1, 2, 3, 4 and µ 6= ±1/3. Notice that condition (5) for a = 0 becomes
b > 0. So we are only interested in singular points with b > 0. The points
q1, q2 are real for b > 0. Computing the eigenvalues at q1, q2 we get that
they are ±b

√
−6µ. So q1, q2 are centers when µ > 0 and saddles when

µ < 0. If µ = 0, q1, q2 are nilpotent centers. On the other hand, the
points pi are real for b > 0 and µ ∈ (−1/3, 0]. The eigenvalues at pi are
±2

√
3b
√
µ/(1− 9µ2), so they are centers if µ 6= 0. When µ = 0 the points

pi coincide with the points qi. Proceeding in a similar way than in system
(VI) with a = b = 0 and c < 0, we conclude that the unique global phase
portraits are topologically equivalent to the following ones of Figure 1: 1.10
when µ < −1/3; to 1.12 when µ ∈ (−1/3, 0) and to 1.13 when µ ≥ 0.

When µ = −1/3 the finite singular points of system (VI) are the origin
and qi = ±(−a/

√
b,
√
b) for i = 1, 2, which are real for b > 0. Condition (5)

for µ = −1/3 becomes (a2 − b2)2/b > 0, so b > 0 and a 6= ±b. Computing
the eigenvalues at q1, q2 we get that they are ±

√
2(a2 − b2)2/b2 and so they

are saddles. Proceeding as in the previous cases, we analyze the realizable
phase portraits taking into account the possible saddle connections and we
conclude that the unique global phase portraits are topologically equivalent
to 1.11 of Figure 1 which is realized for instance when a = 1, b = 2 c = 0
and µ = −1/3.

When µ = 1/3 the finite singular points of system (VI) are the origin and
qi = ±(a/

√
b,
√
b) for i = 1, 2, which are real for b > 0. Condition (5) for

µ = 1/3 becomes (a2 + b2)2/b > 0, so b > 0. Computing the eigenvalues at
q1, q2 we get that they are ±

√
−2(a2 + b2)2/b2 and so they are centers. All

global phase portraits are topologically equivalent to 1.13 of Figure 1.
Assume now that a > 0 and µ 6∈ {−1/3; 1/3}. Proceeding as we did for

the finite singular points of systems (V) we have the following lemma.

Lemma 7. Assume that (a, b, µ) with a > 0 and µ 6∈ {−1/3; 1/3} satisfy (5).
Then, there exists at most six finite singular points, different from the origin,
for system (VI). The values of (a, b, µ) for which the number of different real
solutions of system (17) can change are when either C1(a, b, µ) = 0, or
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C2(a, b, µ) = 0 with

C1(a, b, µ) = a2
(
9µ2 + 1

)
+ 54b2µ3,

C2(a, b, µ) = −
(
1− 6µ2 − 3µ4

)
a2b2 − 4a4µ3 − 4b4µ3.

(18)

Proof. We compute the Groebner basis for the polynomials in (17) and we
obtain nine polynomials. One of the polynomials, after dividing by −y3/b2

(y 6= 0, because the unique singular point with y = 0 is the origin) is

b
(
a4 + 6a2b2µ+ b4

)
− 3

(
3a4µ2 + 18a2b2µ3 + b4

(
1− 6µ2

))
y2

+ 3b
(
9µ2 − 1

) (
2a2µ+ b2

(
3µ2 − 1

))
y4 − b2

(
1− 9µ2

)2
y6.

Introducing the variable z = y2 we get the cubic equation

C = b
(
a4 + 6a2b2µ+ b4

)
− 3

(
3a4µ2 + 18a2b2µ3 + b4

(
1− 6µ2

))
z

+ 3b
(
9µ2 − 1

) (
2a2µ+ b2

(
3µ2 − 1

))
z2 − b2

(
1− 9µ2

)2
z3.

(19)

Since we are in the case µ 6= ±1/3, C is always a cubic equation. Recall
that the number of finite singular points can change when µ = ±1/3. The
discriminant of the cubic C is

27a2b4(1− 9µ2)2(C1(a, b, µ))
2C2(a, b, µ),

where C1(a, b, µ) and C2(a, b, µ) are given in (18). The sign of the discrim-
inant is the sign of C2(a, b, µ). Hence, if C2(a, b, µ) < 0 there is a unique
real solution for C = 0 and if C2(a, b, µ) > 0 there are three different real
solutions for C = 0. Moreover, if either C2(a, b, µ) = 0 or C1(a, b, µ) = 0
there are two real solutions (at least one which is double). Each positive
root of C = 0 will give two solutions in y for system (VI). Now we find
how many solutions we can have in the variable x for each solution in the
variable y.

The Groebner basis has a polynomial in the variables x and y, linear in x
with the coefficient in x equal to aC1(a, b, µ) where C1(a, b, µ) is given in (18).
If C1(a, b, µ) 6= 0, for each y coming from a solution of the cubic equation
C = 0 in (19), there exists a unique solution in x. When C1(a, b, µ) = 0, we
take the polynomial in the Groebner basis which is also linear in x and whose
coefficient in x is aC̃1(a, b, µ) with C̃1(a, b, µ) = 2y2 + 3a2µ/b+ 2b(9µ2 − 1).
If C1(a, b, µ) = 0 and C̃1(a, b, µ) 6= 0, there exists also a unique solution
in x for each solution y coming from the cubic equation C = 0. Finally,
we analyze the case C1(a, b, µ) = 0 and C̃1(a, b, µ) = 0. Solving system
C1(a, b, µ) = C̃1(a, b, µ) = 0 we get the solution

b = b1 =
a

3
√
6

√
−1 + 9µ2

µ3
, y = y1 = ±

√√√√− a

3
√
6µ3

√
− µ3

1 + 9µ2
,

defined for µ < 0 (note that if µ = 0, then C1(a, b, µ) 6= 0) and the solution

b = − a

3
√
6

√
−1 + 9µ2

µ3
, y = ±

√√√√ a

3
√
6µ3

√
− µ3

1 + 9µ2
,
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which is always complex. We substitute each solution y into the remaining
polynomials of the Groebner basis and we obtain the two different solutions
for x

x =
a(µ(1 + 9µ2)y1 ±

√
µ2(−1 + 9µ2)b1)

6µ2b1
.

In short, there exists at most six finite singular points for system (VI). This
proves the claim. We observe that the number of different real solutions of
system (17) can change when µ = ±1/3, or when (a, b, µ) satisfy C2(a, b, µ) =

0, or C1(a, b, µ) = C̃1(a, b, µ) = 0 (this last case corresponds to µ < 0). This
ends the proof. �

In view of Section 2, the finite singular points are either elementary or
nilpotent. Hence they are either centers, saddles or cusps.

Lemma 8. Assume that (a, b, µ) with a > 0 and µ 6∈ {−1/3; 1/3} satisfy
(5). Then, there exist at most two non–elementary finite singular points of
systems (17) which are nilpotent, different from the origin and occur when
the parameters (a, b, µ) satisfy C2(a, b, µ) = 0, with C2(a, b, µ) given in (18).

Proof. We compute the Groebner basis for the polynomials in (17) together
with the determinant of the linear parts of (17) and we obtain sixteen poly-
nomials. One of the polynomials of the Groebner basis is

−y2(bC3(a, b, µ))
2C2(a, b, µ),

where C3(a, b, µ) = (a4 + b4 + 6a2b2µ)/b. Hence, since by condition (5)
C3(a, b, µ) 6= 0 in order that the solution is non–elementary we must have
(a, b, µ) ∈ R× R+ × R such that C2(a, b, µ) = 0.

The Groebner basis has a polynomial in the variable y that, once divided
by y2, becomes Ay2 +B where

A = 5(−1 + µ2)(−1 + 9µ2)2(1 + 3µ2)2,

and
b9B = 16a10

(
2µ7 − 8µ5 + µ3

)
+ 4a8b2

(
90µ8 − 392µ6 + 95µ4 − 14µ2 + 1

)
+ 16a6b4µ

(
54µ8 − 308µ6 + 161µ4 − 40µ2 + 3

)
+ a4b6

(
−864µ10 − 735µ8 + 5132µ6 − 1490µ4 + 28µ2 + 9

)
+ 2a2b8µ

(
99µ8 − 284µ6 + 938µ4 − 340µ2 + 27

)
+

b10
(
57µ8 − 68µ6 + 146µ4 − 60µ2 + 5

)
.

It has also a polynomial in the variables x and y, linear in x with the
coefficient a(−1+9µ2). Recall that we have assumed that µ 6= ±1/3. Hence
if µ 6= ±1 systems (VI) can have at most two nilpotent finite singular points
and they must satisfy C2(a, b, µ) = 0. If µ = 1, then A = 0 and B =
−80(bC3(a, b, µ))

2(a2 − b2). Assume b = ±a (this condition comes from
C2(a, b, 1) = 0). Then, we find the following polynomial in the Groebner
basis

6400y2
(
a∓ 2y2

)2
.

Hence if µ = 1 systems (VI) can have at most two nilpotent finite sin-
gular points and they must satisfy C2(a, b, µ) = 0. If µ = −1 then B =
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80(bC3(a, b, µ))
2(a2+ b2). Since by condition (5) we have C3 6= 0 and B 6= 0

we conclude that there are no solutions in this case. This ends the proof of
the lemma. �

We introduce the variable b̄ = b/a (recall a > 0). Note that the curves
C1(a, b, µ) = 0, C2(a, b, µ) = 0 and the condition in (5) (C3(a, b, µ) > 0) can
be written as

C1(b̄, µ) = 1+9µ254b̄2µ3 = 0, C2(b̄, µ) = −(1−6µ2−3µ4)b̄2−4µ3−4b̄4µ3 = 0,

and

C3(b̄, µ) =
1 + b̄4 + 6b̄2µ

b̄
> 0.

Let

b̄ = ±b̄1(µ) = ± 1

3
√
6

√
−9µ2 + 1

µ3
,

b̄ = ±b̄±2 (µ) = ± 1

2
√
2

√
−1 + 6µ2 + 3µ4 ±

√
(−1 + µ2)3(−1 + 9µ2)

µ3
,

b̄ = ±b̄±3 (µ) = ±
√
−3µ±

√
−1 + 9µ2,

be the solutions of C1(b̄, µ) = 0, C2(b̄, µ) = 0 and C3(b̄, µ) = 0 respectively.
After studying the behavior of the curves C1(b̄, µ) = 0, C2(b̄, µ) = 0 and
C3(b̄, µ) = 0 on the plane (b̄, µ) we conclude that these curves divide the
region S into the point p0 = {(b, µ) = (1, 1)} and ten different regions (see
Figure 4) which are

R1 = {(b̄, µ) : −b̄+3 (µ) < b̄ < b̄1(µ), µ < −1/3},
R2 = {(b̄, µ) : −b̄1(µ) < b̄ < −b̄−3 (µ), µ < −1/3},
R3 = {(b̄, µ) : 0 < b̄ < b̄−3 (µ), µ < −1/3},
R4 = {(b̄, µ) : 0 < b̄ < b̄+2 (µ),−1/3 < µ < 0},
R5 = {(b̄, µ) : b̄ > b̄+3 (µ), µ < −1/3},
R6 = {(b̄, µ) : b̄ > b̄−2 (µ),−1/3 < µ < 0},
R7 = {(b̄, µ) : b̄1(µ) < b̄ < b̄−2 (µ),−1/3 < µ < 0},
R8 = R81 ∪R82, R9 = R91 ∪R92 ∪R93,

R10 = {(b̄, µ) : b̄−2 (µ) < b̄ < b̄+2 (µ), 1 < µ},

where
R81 = {(b̄, µ) : b̄+2 (µ) < b̄ < b̄1(µ),−1/3 < µ < 0},
R82 = {(b̄, µ) : b̄ > 0, 0 ≤ µ < 1/3},
R91 = {(b̄, µ) : b̄ > 0, 1/3 < µ < 1},
R92 = {(b̄, µ) : 0 < b̄ < b̄−2 (µ), 1 ≤ µ < +∞},
R93 = {(b̄, µ) : b̄ > b̄+2 (µ), 1 ≤ µ < +∞},



HAMILTONIAN NILPOTENT SADDLES 23

Figure 4. The region S in gray. The curves C1(b̄, µ) =
0 (thick continuous line), C2(b̄, µ) = 0 (dashed lines) and
C3(b̄, µ) = 0 (thin continuous line). The regions Ri for i =
1, . . . , 10.

We compute the number of finite singular points of systems (VI) other
than the origin in each region Ri and on the curves that delimit these regions.
We get: two saddles on R1, R2, R3, R5, and {(−b̄1(µ), µ)} ∩ S (proceeding
as in the previous cases with possible saddle connections we conclude that
the global phase portraits are topologically equivalent to 1.10 of Figure 1);
two centers on R7, R8, R9 and {(b̄1(µ), µ)}∩S (the global phase portraits in
these regions are topologically equivalent to 1.13 in Figure 1); two saddles
and four centers on R4, R6 and R10 (proceeding again as in the previous
cases with possible saddle connections we conclude that the global phase
portraits are topologically equivalent to 1.12 of Figure 1); and two centers
and two cusps on {(b̄±2 (µ), µ)} ∩ S (this last case comes from the fact that
the sum of the indices of the four finite singular points (none of them being
the origin) must be four (see Theorems 3 and 4), that at most we have
two cusps (see Lemma 8) and the symmetry with respect to the origin).
Hence, on {(b̄±2 (µ), µ)}∩S, the unique global phase portrait is topologically
equivalent to 1.14 in Figure 1). Finally, when (b, µ) = p0 that is, b = a
and µ = 1, by direct computations we get the two finite singular points
(±

√
a/

√
2,±

√
a/

√
2) besides the origin. They are nilpotent singular points

and using Theorem 3.5 in [7] we conclude that they are nilpotent centers.
Then, the unique global phase portrait is topologically equivalent to 1.13 in
Figure 1.
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