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Abstract. We study polynomial vector fields of arbitrary degree in R3 with
an invariant quadric of revolution. We characterize all the possible configura-

tions of invariant meridians and parallels that these vector fields can exhibit.
Furthermore we analyze when these invariant meridians and parallels can be
limit cycles.

1. Introduction and statement of the results

One of the more difficult object to control in the qualitative theory of ordinary
differential equations in dimension two are the limit cycles, their maximum number
and their distribution. This problem is related with the second part of the 16th
Hilbert problem (see [3]) when the differential equations are polynomial.

When the limit cycles are algebraic, that is they leave on an algebraic curve,
the previous questions on the number of limit cycles and their distribution for
polynomial differential equations in the plane have been solved for the so called
generic algebraic limit cycles, see [7, 8, 10, 12].

The main objective of this paper is to extend the study of algebraic limit cy-
cles to polynomial differential equations on quadrics of revolution, that is to some
other 2−dimensional surfaces different from the plane. For such kind of polynomial
differential equations we solve completely the maximum number of algebraic limit
cycles formed by meridians and parallels independently. In order to state our main
results we start providing some definitions and notation.

As usual we denote by K[x, y, z] the ring of the polynomials in the variables x, y
and z with coefficients in K = R or K = C. By definition a polynomial differential
system in R3 is a system of the form

(1)
dx

dt
= P1(x, y, z),

dy

dt
= P2(x, y, z),

dz

dt
= P3(x, y, z),
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where Pi ∈ R[x, y, z] for i = 1, 2, 3 and t is the independent variable. We denote by

(2) X (x, y, z) = P1(x, y, z)
∂

∂x
+ P2(x, y, z)

∂

∂y
+ P3(x, y, z)

∂

∂z
,

or simply by
X (x, y, z) = (P1(x, y, z), P2(x, y, z), P3(x, y, z)) ,

the polynomial vector field associated to system (1). We say that m = max{mi},
where mi is the degree of Pi, i = 1, 2, 3, is the degree of the polynomial differential
system (1), or of the polynomial vector field (2).

An invariant algebraic surface for system (1) or for the vector field (2) is an
algebraic surface f−1(0) with f ∈ R[x, y, z], such that for some polynomial K ∈
R[x, y, z] we have Xf = Kf . This implies that if a solution curve of system (1) has
a point on the algebraic surface f−1(0), then the whole solution curve is contained
in f−1(0). The polynomial K is called the cofactor of the invariant algebraic surface
f−1(0). We remark that if the polynomial system has degree m, then any cofactor
has at most degree m− 1.

We consider polynomial vector fields X of degree m > 1 in R3 having a non–
degenerate quadric of revolution

Q2 = G−1(0)

as an invariant algebraic surface, that is XG = KG, where G defines one of the
non–degenerate quadric of revolution that after an affine change of coordinates we
can assume of the form (see Section 2):

Cone G(x, y, z) = x2 + y2 − z2,

Cylinder G(x, y, z) = x2 + y2 − 1,

Hyperboloid of one sheet G(x, y, z) = x2 + y2 − z2 − 1,

Hyperboloid of two sheets G(x, y, z) = x2 + y2 − z2 + 1,

Paraboloid G(x, y, z) = x2 + y2 − z,

Sphere G(x, y, z) = x2 + y2 + z2 − 1,

and K is a polynomial of degree at most m − 1. Such vector fields will be called
polynomial vector fields of degree m on Q2.

On Q2 we define meridians and parallels as the curves obtained by the inter-
section of Q2 with the planes containing the z−axis and the planes orthogonal to
the z−axis, respectively. More precisely, the parallels are obtained intersecting the
planes z = k (for suitable k ∈ R) with Q2, and the meridians and their number are
obtained intersecting the planes ax+ by = 0 (where a, b ∈ R) with Q2, according to
the following conventions. The intersections of a plane ax+ by = 0 with Q2 give:

2 meridians formed by two concurrent straight lines if Q2 is a cone;

2 meridians formed by two parallel straight lines if Q2 is a cylinder;

2 meridians formed by two branches of a hyperbola if Q2 is either a hyper-
boloid of one sheet, or a hyperboloid of two sheets;

1 meridian formed by a parabola if Q2 is a paraboloid;

1 meridian formed by a circle if Q2 is a sphere.

Here we say that the parallel contained in the plane z − z0 = 0 is invariant by
the flow of the polynomial vector field X on Q2 if X (z−z0) = Kz0(z−z0), for some
Kz0 ∈ R[x, y, z]. In a similar way we define that the meridian(s) contained in the
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plane ax+ by = 0 is (are) invariant by the flow of the polynomial vector field X on
Q2 if X (ax+ by) = Ka,b(ax+ by), for some Ka,b ∈ R[x, y, z].

In this article we shall characterize all the possible configurations of invariant
parallels and meridians that a polynomial vector field of degree m > 1 on a quadric
Q2 can exhibit. Additionally we shall consider when the invariant parallels or the
invariant meridians can be limit cycles.

Our main results are the following.

Theorem 1. Let X be a polynomial vector field of degree m > 1 on the cone.
Assume that X has finitely many invariant meridians and invariant parallels. The
following statements hold.

(a) The number of invariant meridians of X is at most 2(m− 1).

(b) The number of invariant parallels of X is at most m− 1.

(c) If

(3) X (x, y, z) = (−2yF1(x, y) + xF2(z), 2xF1(x, y) + yF2(z), zF2(z)) ,

with

F1(x, y) =
m−1∏
i=1

(aix+ biy), ai, bi ∈ R, a2i + b2i ̸= 0, (ai, bi) ̸= (aj , bj), i ̸= j,

F2(z) =

m−1∏
i=1

(z − zi), zi ̸= zj , i ̸= j, zi ∈ R\{0},

then X has exactly m− 1 invariant parallels and 2(m− 1) invariant merid-
ians.

(d) Fix 1 ≤ k ≤ m− 1 and consider the vector field

(4) X (x, y, z) = (−2y + xF3(z), 2x+ yF3(z), zF3(z)) ,

on the cone where

F3(z) = zm−k−1
k∏

i=1

(z − zi), zi ̸= zj , i ̸= j, zi ∈ R\{0}.

Then X has exactly k invariant parallels which are limit cycles. These limit
cycles are stable or unstable alternately in each sheet of the cone.

Theorem 2. Let X be a polynomial vector field of degree m > 1 on the cylinder.
Assume that X has finitely many invariant meridians and invariant parallels. The
following statements hold.

(a) The number of invariant meridians of X is at most 2(m− 1).

(b) The number of invariant parallels of X is at most m.

(c) If

(5) X (x, y, z) = (2yF1(x, y),−2xF1(x, y), F4(z)) ,

where F1 is given in (3) and

F4(z) =

m∏
i=1

(z − zi), zi ̸= zj , i ̸= j, zi ∈ R,

then X has exactly m invariant parallels and 2(m−1) invariant meridians.
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(d) Fix 1 ≤ k ≤ m and consider the vector field

(6) X (x, y, z) = (2y,−2x, F5(z)) ,

on the cylinder where

F5(z) =


zm if k = 1,

zm−k+1

k−1∏
i=1

(z − zi), zi ̸= zj , i ̸= j, zi ∈ R\{0} if k > 1.

Then X has exactly k invariant parallels which are limit cycles. These limit
cycles are stable or unstable alternately except the limit cycle determined
by z = 0 that can be semi–stable.

Theorem 3. Let X be a polynomial vector field of degree m > 1 on the paraboloid.
Assume that X has finitely many invariant meridians and invariant parallels. The
following statements hold.

(a) The number of invariant meridians of X is at most m− 1.

(b) The number of invariant parallels of X is at most m− 1.

(c) There is no a polynomial vector field of degree m > 1 on the paraboloid
having exactly m− 1 invariant parallels and m− 1 invariant meridians.

(d) If

(7) X (x, y, z) =
(
2yF1(x, y) + xF6(z),−2xF1(x, y) + yF6(z), 2(x

2 + y2)F6(z)
)
,

where F1 is given in (3) and

F6(z) =


1 if m = 2,

m−2∏
i=1

(z − zi), zi ̸= zj , i ̸= j, zi > 0 if m > 2,

then X has exactly m−2 invariant parallels and m−1 invariant meridians.

(e) Fix 1 ≤ k ≤ m− 1 and consider the vector field

(8) X (x, y, z) = (2y(x− 2k) + F7(z),−2x(x− 2k), 2xF7(z)) ,

on the paraboloid where

F7(z) = εzm−k−1
k∏

i=1

(z − i), ε > 0 small .

Then X has exactly k invariant parallels which are limit cycles. These limit
cycles are stable or unstable alternately.

Theorem 4. Let X be a polynomial vector field of degree m > 1 on the hyperboloid
of one sheet. Assume that X has finitely many invariant meridians and invariant
parallels. The following statements hold.

(a) The number of invariant meridians of X is at most 2(m− 1).

(b) The number of invariant parallels of X is at most m− 1.

(c) There is no a polynomial vector field of degree m > 1 on the hyperboloid of
one sheet having exactly m − 1 invariant parallels and 2(m − 1) invariant
meridians.
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(d) If
(9)
X (x, y, z) =

(
−2yF1(x, y) + 2xzF8(z), 2xF1(x, y) + 2yzF8(z), 2(x

2 + y2)F8(z)
)
,

where F1 is given in (3) and

F8(z) =


1 if m = 2,

m−2∏
i=1

(z − zi), zi ̸= zj , i ̸= j, zi ∈ R if m > 2,

then X has exactly m− 2 invariant parallels and 2(m− 1) invariant merid-
ians.

(e) Fix 1 ≤ k ≤ m− 1 and consider the vector field

(10) X (x, y, z) = (−2y(x− 2k) + 2zF9(z), 2x(x− 2k), 2xF9(z)) ,

on the hyperboloid of one sheet where

F9(z) =


εzm−1 if k = 1,

εzm−k

k−1∏
i=1

(z − i) if k > 1,

and ε > 0 small. Then X has exactly k invariant parallels which are limit
cycles. These limit cycles are stable or unstable alternately, except the limit
cycle determined by z = 0 that can be semi–stable.

Theorem 5. Let X be a polynomial vector field of degree m > 1 on the hyperboloid
of two sheets. Assume that X has finitely many invariant meridians and invariant
parallels. The following statements hold.

(a) The number of invariant meridians of X is at most 2(m− 1).

(b) The number of invariant parallels of X is at most m− 1.

(c) There is no a polynomial vector field of degree m > 1 on the hyperboloid of
two sheets having exactly m− 1 invariant parallels and 2(m− 1) invariant
meridians.

(d) If
(11)
X (x, y, z) =

(
−2yF1(x, y) + 2xzF10(z), 2xF1(x, y) + 2yzF10(z), 2(x

2 + y2)F10(z)
)
,

where F1 is given in (3) and

F10(z) =


1 if m = 2,

m−2∏
i=1

(z − zi), zi ̸= zj , i ̸= j, |zi| > 1 if m > 2,

then X has exactly m− 2 invariant parallels and 2(m− 1) invariant merid-
ians.

(e) Fix 1 ≤ k ≤ m− 1 and consider the vector field

(12) X (x, y, z) = (−2y(x− 2k) + 2zF11(z), 2x(x− 2k), 2xF11(z)) ,
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on the hyperboloid of two sheets where

F11(z) = εzm−k−1
k∏

i=1

(z − 2i), ε > 0 small .

Then X has exactly k invariant parallels which are limit cycles. These limit
cycles are stable or unstable alternately.

Theorem 6. Let X be a polynomial vector field of degree m > 1 on the sphere.
Assume that X has finitely many invariant meridians and invariant parallels. The
following statements hold.

(a) The number of invariant meridians of X is at most m− 1.

(b) The number of invariant parallels of X is at most m− 1.

(c) There is no a polynomial vector field of degree m > 1 on the sphere having
exactly m− 1 invariant parallels and m− 1 invariant meridians.

(d) If
(13)
X (x, y, z) =

(
−yF1(x, y) + xzF12(z), xF1(x, y) + yzF12(z),−(x2 + y2)F12(z)

)
,

where F1 is given in (3) and

F12(z) =


1 if m = 2,

m−2∏
i=1

(z − zi), zi ̸= zj , i ̸= j, |zi| < 1 if m > 2,

then X has exactly m−1 invariant meridians and m−2 invariant parallels.

In the next theorem we study when the invariant meridians and parallels of
Theorem 6 are limit cycles.

Theorem 7. There are polynomial vector fields X of degree m on the sphere having
exactly

(a) either 1 invariant meridian which is a limit cycle;

(b) or k invariant parallels which are limit cycles for k = 1, 2, . . . ,m− 1.

Theorems 1 to 7 are proved in Section 3. All the theorems need for their proofs
the notion of extactic polynomial which is defined in Section 2, where we also
present some definitions and results about non–degenerate quadrics and averaging
theory that we shall need for proving our results.

2. Preliminary results

2.1. Vector fields on non–degenerate quadrics of revolution. A quadric is
a surface Q2 = G−1(0) in R3 implicitly defined by an algebraic equation of degree
two. The quadric G−1(0) is non–degenerate if the polynomial G is irreducible in
C[x, y, z]. The non–degenerate quadrics are classified as ellipsoid or sphere, para-
bolic cylinder, hyperbolic cylinder, elliptic cylinder, elliptic paraboloid, hyperbolic
paraboloid, hyperboloid of one sheet, hyperboloid of two sheets and cone. In this
paper we only consider non–degenerate quadrics of revolution: sphere, cylinder,
paraboloid, hyperboloid of one sheet, hyperboloid of two sheets and cone.

The proof of the following theorem can be found in [5].
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Theorem 8. Assume that a non–degenerate quadric Q2 is an invariant algebraic
surface of the polynomial differential system (1). Then after an affine change of
coordinates system (1) and the quadric Q2 can be written in one of the following
six normal forms, where A, B, C, D, E, F , G and Q are arbitrary polynomials of
R[x, y, z]:

(i) If Q2 is a cone, then system (1) can be written as

(14)

x′ = G(x, y, z)A(x, y, z)− 2yD(x, y, z)− 2zE(x, y, z) + xG(x, y, z),

y′ = G(x, y, z)B(x, y, z) + 2xD(x, y, z) + 2zF (x, y, z) + yG(x, y, z),

z′ = G(x, y, z)C(x, y, z)− 2xE(x, y, z) + 2yF (x, y, z) + zG(x, y, z),

with G(x, y, z) = x2 + y2 − z2;

(ii) If Q2 is a cylinder, then system (1) can be written as

(15)

x′ = G(x, y, z)A(x, y, z) + 2yE(x, y, z),

y′ = G(x, y, z)B(x, y, z)− 2xE(x, y, z),

z′ = Q(x, y, z),

with G(x, y, z) = x2 + y2 − 1;

(iii) If Q2 is a paraboloid, then system (1) can be written as

(16)

x′ = G(x, y, z)A(x, y, z) + E(x, y, z) + 2yF (x, y, z),

y′ = G(x, y, z)B(x, y, z)−D(x, y, z)− 2xF (x, y, z),

z′ = G(x, y, z)C(x, y, z)− 2yD(x, y, z) + 2xE(x, y, z),

with G(x, y, z) = x2 + y2 − z;

(iv) If Q2 is a hyperboloid of one sheet, then system (1) can be written as

(17)

x′ = G(x, y, z)A(x, y, z)− 2yD(x, y, z)− 2zE(x, y, z),

y′ = G(x, y, z)B(x, y, z) + 2xD(x, y, z) + 2zF (x, y, z),

z′ = G(x, y, z)C(x, y, z)− 2xE(x, y, z) + 2yF (x, y, z),

with G(x, y, z) = x2 + y2 − z2 − 1;

(v) If Q2 is a hyperboloid of two sheets, then system (1) can be written as

(18)

x′ = G(x, y, z)A(x, y, z)− 2yD(x, y, z)− 2zE(x, y, z),

y′ = G(x, y, z)B(x, y, z) + 2xD(x, y, z) + 2zF (x, y, z),

z′ = G(x, y, z)C(x, y, z)− 2xE(x, y, z) + 2yF (x, y, z),

with G(x, y, z) = x2 + y2 − z2 + 1;

(vi) If Q2 is a sphere, then system (1) can be written as

(19)

x′ = G(x, y, z)A(x, y, z)− 2yD(x, y, z) + 2zE(x, y, z),

y′ = G(x, y, z)B(x, y, z) + 2xD(x, y, z)− 2zF (x, y, z),

z′ = G(x, y, z)C(x, y, z)− 2xE(x, y, z) + 2yF (x, y, z),

with G(x, y, z) = x2 + y2 + z2 − 1.
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2.2. The extactic polynomial. Let X be a polynomial vector field on R3 and
let W be a finite R–vector subspace of R[x, y, z]. The extactic polynomial of X
associated to W is the polynomial

EW (X ) = det


v1 v2 · · · vl

X (v1) X (v2) · · · X (vl)
...

... · · ·
...

X l−1(v1) X l−1(v2) · · · X l−1(vl)

 ,

where {v1, . . . , vl} is a basis of W , l = dim(W ) is the dimension of W , and
X j(vi) = X j−1(X (vi)). It is known due to the properties of the determinant and
of the derivation that the definition of extactic polynomial is independent of the
chosen basis of W .

The notion of the extactic polynomial goes back to the work of Lagutinskii (see
[2] and references therein) and have been used in different papers, see for instance
[1, 4, 6, 9].

We use the extactic polynomial in order to prove the main results of this article.
We have the following proposition whose proof can be found in [9].

Proposition 9. Let X be a polynomial vector field in R3 and let W be a finite
R–vector subspace of R[x, y, z] with dim(W ) > 1. Then every algebraic invariant
surface f−1(0) for the vector field X , with f ∈ W , is a factor of EW (X ).

For determining the invariant meridians of X we have to find the curves obtained
by the intersection of Q2 and the planes of the form ax+ by = 0 such that they are
invariant by the flow of X . By Proposition 9 it is necessary that f(x, y, z) = ax+by
be a factor of the extactic polynomial E{x,y}(X ), which can be written as

E{x,y}(X ) = det

(
x y

X (x) X (y)

)
= det

(
x y
P1 P2

)
= xP2 − yP1.

In order to study invariant parallels we must consider the intersection of the
planes z− z0 = 0 (for suitable z0) with Q2 such that they are invariant by the flow
of X . By Proposition 9 it is necessary that g(x, y, z) = z − z0 be a factor of the
extactic polynomial E{1,z}(X ), which can be written as

E{1,z}(X ) = det

(
1 z

X (1) X (z)

)
= det

(
1 z
0 P3

)
= P3.

The proof of the following proposition can be found in [9].

Proposition 10. Let X be the polynomial vector field (2).

(a) If f(x, y, z) = ax+ by is a factor of the extactic polynomial E{x,y}(X ), then

f−1(0) is an invariant plane of X ;

(b) If g(x, y, z) = z − z0 is a factor of the extactic polynomial E{1,z}(X ), then

g−1(0) is an invariant plane of X .

We remark that Propositions 9 and 10 transform the study of invariant meridians
and parallels of a polynomial vector field X = (P1, P2, P3) of degree m > 1 on Q2

into the study of factors of the form f(x, y, z) = ax+ by and g(x, y, z) = z − z0 of
the extactic polynomials E{x,y}(X ) = xP2 − yP1 and E{1,z}(X ) = P3, respectively.
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2.3. Averaging theorem. In order to prove that some invariant parallels and
meridians are limit cycles we will use the averaging theorem of first order. In
general, the averaging method gives a relation between the solutions of a non au-
tonomous differential system and the solutions of an autonomous one, the averaged
differential system. More details can be found in [11].

Theorem 11 (Averaging Theorem of First Order). Consider the system

(20) u̇(t) = εF (t, u(t)) + ε2R(t, u(t), ε)

and assume that the functions F , R, DuF , D2
uF and DuR are continuous and

bounded by a constant M (independent of ε) in [0,∞) ×D ⊂ R × Rn with −ε0 <
ε < ε0. Moreover, suppose that F and R are T–periodic in t, with T independent
of ε.

(a) If a ∈ D is a zero of the averaged function

(21) f(u) =
1

T

∫ T

0

F (s, u)ds,

such that det(Duf(a)) ̸= 0 then, for |ε| > 0 sufficiently small, there exists a
T–periodic solution uε(t) of system (20) such that uε(0) → a when ε → 0.

(b) If the real part of all the eigenvalues of Duf(a) are negative, then the peri-
odic solution uε(t) is stable, if the real part of some eigenvalue of Duf(a)
is positive then the periodic solution is unstable.

3. Proofs of the main results

In spherical coordinates (x, y, z) = (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) system (1)
becomes

ρ′ = P1 sinϕ cos θ + P2 sinϕ sin θ + P3 cosϕ,

θ′ =
1

ρ sinϕ
(−P1 sin θ + P2 cos θ) ,

ϕ′ =
1

ρ
(P1 cosϕ cos θ + P2 cosϕ sin θ − P3 sinϕ) ,

where Pi = Pi(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ), i = 1, 2, 3.

In cylindrical coordinates (x, y, z) = (r cos θ, r sin θ, z) system (1) becomes

r′ = P1(r cos θ, r sin θ, z) cos θ + P2(r cos θ, r sin θ, z) sin θ,

θ′ =
1

r
(−P1(r cos θ, r sin θ, z) sin θ + P2(r cos θ, r sin θ, z) cos θ) ,

z′ = P3(r cos θ, r sin θ, z).

An invariant meridian of the vector field X = (P1, P2, P3) is given by the inter-
section of a plane ax + by = 0 with Q2. In this case the polynomial ax + by must
be a factor of the extactic polynomial

E{x,y}(X ) = xP2 − yP1 = (x2 + y2) θ′,

where the last equation is obtained by using either spherical or cylindrical coordi-
nates. Since the polynomial xP2 − yP1 has at most degree m + 1, the right hand
side of the above equation is a polynomial of degree at most m+1. Thus the vector
field X has at most m − 1 invariant planes of the form ax + by = 0. This implies
that X has at most m − 1 invariant meridians in the cases where Q2 is either the
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paraboloid or the sphere and at most 2(m − 1) invariant meridians in the cases
where Q2 is either the cone, or the cylinder, or the hyperboloid of one sheet, or the
hyperboloid of two sheets. This proves statements (a) of Theorems 1 to 6.

In order to determine the invariant parallels we must consider the intersection of
the planes z = k, k ∈ R with Q2. By Proposition 9 it is necessary that g(x, y, z) =
z − k be a factor of the extactic polynomial E{1,z}(X ) = P3, where:

(i) P3(x, y, z) = −2xE(x, y, z) + 2yF (x, y, z) + zG(x, y, z), if Q2 is the cone,

(ii) P3(x, y, z) = Q(x, y, z), if Q2 is the cylinder,

(iii) P3(x, y, z) = −2yD(x, y, z) + 2xE(x, y, z), if Q2 is the paraboloid,

(iv) P3(x, y, z) = −2xE(x, y, z) + 2yF (x, y, z), if Q2 is the hyperboloid of one
sheet,

(v) P3(x, y, z) = −2xE(x, y, z) + 2yF (x, y, z), if Q2 is the hyperboloid of two
sheets,

(vi) P3(x, y, z) = −2xE(x, y, z) + 2yF (x, y, z), if Q2 is the sphere.

In the case of the cylinder we have at most m factors of the form z − k in the
extactic polynomial. In all the other cases we have at most m − 1 factors of the
form z − k. This proves statements (b) of Theorems 1 to 6.

3.1. Proof of Theorem 1. In this subsection we prove statements (c) and (d) of
Theorem 1.

Consider the polynomial vector field (3). It is easy to see that

E{x,y}(X )(x, y, z) = xP2(x, y, z)− yP1(x, y, z) = 2
(
x2 + y2

)
F1(x, y)

= 2
(
x2 + y2

)m−1∏
i=1

(aix+ biy),

where ai, bi ∈ R, a2i + b2i ̸= 0, (ai, bi) ̸= (aj , bj), i ̸= j, and

E{1,z}(X )(x, y, z) = P3(x, y, z) = zF2(z) = z
m−1∏
i=1

(z − zi),

where zi ̸= zj , i ̸= j, zi ∈ R\{0}. Therefore the vector field X has exactly 2(m− 1)
invariant meridians and m− 1 invariant parallels. We have proved statement (c).

Now we prove statement (d). The polynomial vector field (4) has one singular
point at the vertex of the cone. By a straightforward calculation we have

E{1,z}(X )(x, y, z) = P3(x, y, z) = zF3(z) = zm−k
k∏

i=1

(z − zi),

where zi ̸= zj , ̸= j, zi ∈ R\{0}. Thus, since on the cone there are no equilibria, for
1 ≤ k ≤ m − 1 fixed, the k invariant parallels z = zi, zi ∈ R\{0} are limit cycles
because between two consecutive invariant parallels the sign of P3 is fixed. So the
limit cycles on the invariant parallels are stable or unstable alternately.

In short, we have proved Theorem 1.
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3.2. Proof of Theorem 2. In this subsection we prove statements (c) and (d) of
Theorem 2.

Consider the polynomial vector field (5). We have

E{x,y}(X )(x, y, z) = xP2(x, y, z)− yP1(x, y, z) = −2
(
x2 + y2

)
F1(x, y)

= −2
(
x2 + y2

)m−1∏
i=1

(aix+ biy),

where ai, bi ∈ R, a2i + b2i ̸= 0, (ai, bi) ̸= (aj , bj), i ̸= j, and

E{1,z}(X )(x, y, z) = P3(x, y, z) = F4(z) =
m∏
i=1

(z − zi),

where zi ̸= zj , i ̸= j, zi ∈ R. Therefore the vector field X has exactly 2(m − 1)
invariant meridians and m invariant parallels. We have proved statement (c).

Now we prove statement (d). The polynomial vector field (6) has no equilibria.
By a straightforward calculation we have

E{1,z}(X )(x, y, z) = P3(x, y, z) = F5(z),

where

F5(z) =


zm if k = 1,

zm−k+1

k−1∏
i=1

(z − zi), zi ̸= zj , i ̸= j, zi ∈ R\{0} if k > 1.

This implies that, for 1 ≤ k ≤ m fixed, the k invariant parallels are limit cycles.
These limit cycles are stable or unstable alternately except the limit cycle deter-
mined by z = 0 that can be semi–stable if either m is even and k = 1, or m− k+1
is even and k > 1.

In short, we have proved Theorem 2.

3.3. Proof of Theorem 3. In this subsection we give the proofs of statements
(c), (d) and (e) of Theorem 3.

In order to prove statement (c) we need to study factors of the forms f(x, y, z) =
ax+ by and g(x, y, z) = z − z0 of the extactic polynomials

E{x,y}(X )(x, y, z) = −2(x2 + y2)F (x, y, z)− xD(x, y, z)− yE(x, y, z)

and

E{1,z}(X )(x, y, z) = 2xE(x, y, z)− 2yD(x, y, z),

respectively, where X is given in (16). Suppose

E{x,y}(X )(x, y, z) = K1(x, y, z)
m−1∏
i=1

(aix+ biy)

and

E{1,z}(X )(x, y, z) = K2(x, y, z)
m−1∏
i=1

(z − zi).
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From the expressions of E{1,z}(X ) we have

E(x, y, z) =
m−1∏
i=1

(z − zi), D(x, y, z) = αE(x, y, z), α ∈ R.

Substituting E and D into the expression of E{x,y}(X ) we obtain

E{x,y}(X )(x, y, z) = −2(x2 + y2)F (x, y, z)− (αx+ y)
m−1∏
i=1

(z − zi).

Since F has degree at most m− 1 it is not possible to obtain a factor of the form

m−1∏
i=1

(aix+ biy)

in the extactic polynomial E{x,y}(X ). This proves statement (c).

Consider the polynomial vector field (7). We obtain

E{x,y}(X )(x, y, z) = −2
(
x2 + y2

)
F1(x, y) = −2

(
x2 + y2

)m−1∏
i=1

(aix+ biy),

where ai, bi ∈ R, a2i + b2i ̸= 0, (ai, bi) ̸= (aj , bj), i ̸= j, and

E{1,z}(X )(x, y, z) = P3(x, y, z) = 2(x2 + y2)F6(z),

that is

E{1,z}(X )(x, y, z) =


2(x2 + y2) if m = 2,

2(x2 + y2)

m−2∏
i=1

(z − zi), zi ̸= zj , i ̸= j, zi > 0 if m > 2.

Therefore the vector field X has exactly m − 1 invariant meridians and m − 2
invariant parallels. We have proved statement (d).

Now we prove statement (e). Consider the polynomial vector field (8). By a
calculation we obtain

E{1,z}(X )(x, y, z) = P3(x, y, z) = 2xF7(z) = 2εxzm−k−1
k∏

i=1

(z − i).

This implies that, for 1 ≤ k ≤ m− 1 fixed, vector field (8) has exactly k invariant
parallels given by z = i, i = 1, . . . , k. It is easy to see that this vector field has
no equilibria on the invariant parallels. In order to complete the proof we need to
show that these invariant parallels are limit cycles.

Note that the paraboloid x2 + y2 − z = 0 can be written in the explicit form
z = x2 + y2. In the coordinates (x, y) vector field (8) has the form

X ∗(x, y) =
(
2y(x− 2k) + F ∗

7 (x
2 + y2),−2x(x− 2k)

)
,

with

F ∗
7 (x

2 + y2) = ε(x2 + y2)m−k−1
k∏

i=1

(x2 + y2 − i), ε > 0 small.
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In polar coordinates x = r cos θ and y = r sin θ the above vector field is equivalent
to

dr

dθ
=

εr2(m−k−1)
∏k

i=1(r
2 − i) cos θ

−2(r cos θ − 2k)− εr2(m−k−1)−1
∏k

i=1(r
2 − i) sin θ

.

Expanding dr/dθ in Taylor series with respect to ε at ε = 0 we have

(22)
dr

dθ
=

r2(m−k−1)−1
∏k

i=1(r
2 − i) cos θ

−2(r cos θ − 2k)
ε+O(ε2).

Equation (22) satisfies the hypotheses of Theorem 11. The averaged function (21)
can be written as

f(r) =
1

2π

∫ 2π

0

(
r2(m−k−1)−1

∏k
i=1(r

2 − i) cos θ

−2(r cos θ − 2k)

)
dθ

=− 1

4π

(
(r2(m−k−1)−1

k∏
i=1

(r2 − i)

)∫ 2π

0

cos θ

(r cos θ − 2k)
dθ

=− 1

4π

(
r2(m−k−1)−1

k∏
i=1

(r2 − i)

)
g(r),

where

g(r) = 2π

(√
4k2 − r2 − 2k

r
√
4k2 − r2

)
.

It is easy to check that g(r) < 0 for 0 < r < k. Therefore, for 0 < r < k, the simple

zeros of f are given by r =
√
i, for i = 1, . . . , k, which correspond to the k limit

cycles of X ∗. The stability of each limit cycle is easily determined by the sign of
the derivative of f at each simple zero.

In short, we have proved Theorem 3.

3.4. Proof of Theorem 4. In this subsection we give the proofs of statements
(c), (d) and (e) of Theorem 4.

In order to prove the statement (c) we need to study factors of the forms
f(x, y, z) = ax+ by and g(x, y, z) = z − z0 of the extactic polynomials

E{x,y}(X )(x, y, z) = 2(x2 + y2)D(x, y, z)− 2z(xF (x, y, z) + yE(x, y, z))

and
E{1,z}(X )(x, y, z) = −2xE(x, y, z) + 2yF (x, y, z),

respectively, where X is given in (17). Suppose

E{x,y}(X )(x, y, z) = K1(x, y, z)
m−1∏
i=1

(aix+ biy)

and

E{1,z}(X )(x, y, z) = K2(x, y, z)
m−1∏
i=1

(z − zi).

From the expressions of E{1,z}(X ) we have

E(x, y, z) =
m−1∏
i=1

(z − zi), F (x, y, z) = αE(x, y, z), α ∈ R.
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Substituting E and F into the expression of E{x,y}(X ) we obtain

E{x,y}(X )(x, y, z) = 2(x2 + y2)D(x, y, z)− 2z(αx+ y)

m−1∏
i=1

(z − zi).

Since D has degree at most m− 1 it is not possible to obtain a factor of the form

m−1∏
i=1

(aix+ biy)

in the extactic polynomial E{x,y}(X ). This proves statement (c).

Consider the polynomial vector field (9). We obtain

E{x,y}(X )(x, y, z) = 2
(
x2 + y2

)
F1(x, y) = 2

(
x2 + y2

)m−1∏
i=1

(aix+ biy),

where ai, bi ∈ R, a2i + b2i ̸= 0, (ai, bi) ̸= (aj , bj), i ̸= j, and

E{1,z}(X )(x, y, z) = P3(x, y, z) = 2(x2 + y2)F8(z),

that is

E{1,z}(X )(x, y, z) =


2(x2 + y2) if m = 2,

2(x2 + y2)

m−2∏
i=1

(z − zi), zi ̸= zj , i ̸= j, zi ∈ R if m > 2.

Therefore the vector field X has exactly 2(m − 1) invariant meridians and m − 2
invariant parallels. We have proved statement (d).

Now we prove statement (e). Consider the polynomial vector field (10). By a
straightforward calculation we have

E{1,z}(X )(x, y, z) = P3(x, y, z) = 2xF9(z) =


2εxzm−1 if k = 1,

2εxzm−k

k−1∏
i=1

(z − i) if k > 1,

where ε > 0 small. This implies that, for 1 ≤ k ≤ m − 1 fixed, the vector field
(10) has exactly k invariant parallels at z = i, for i = 0, . . . , k − 1. This vector
field has no equilibria on the invariant parallels. In order to prove that these k
invariant parallels are limit cycles we take the hyperboloid of one sheet as the

graphs z = ±
√
x2 + y2 − 1 where x2 + y2 ≥ 1.

The hyperboloid of one sheet x2 + y2 − z2 − 1 = 0 for z ≥ 0 can be written in

the explicit form z =
√
x2 + y2 − 1 where x2 + y2 ≥ 1. In the coordinates (x, y)

vector field (10) has the form

X ∗(x, y) =
(
−2y(x− 2k) + 2

√
x2 + y2 − 1 F ∗

9

(√
x2 + y2 − 1

)
, 2x(x− 2k)

)
where

F ∗
9

(√
x2 + y2 − 1

)
=


ε
(√

x2 + y2 − 1
)m−1

if k = 1,

ε
(√

x2 + y2 − 1
)m−k k−1∏

i=1

(√
x2 + y2 − 1− i

)
if k > 1,
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and ε > 0 small. In polar coordinates x = r cos θ and y = r sin θ the above vector
field is equivalent to

dr

dθ
=


−

ε
(
r2 − 1

)m/2
r cos θ

ε (r2 − 1)
m/2

sin θ − r2 cos θ + 2r
if k = 1,

ε
(
r2 − 1

)(m−k+1)/2
r
∏k−1

i=1

(√
r2 − 1− i

)
cos θ

r2 cos θ − 2rk − ε sin θ (r2 − 1)
(m−k+1)/2∏k−1

i=1

(√
r2 − 1− i

) if k > 1.

Expanding dr/dθ in Taylor series with respect to ε at ε = 0 we obtain

(23)
dr

dθ
=


ε
cos θ

(
r2 − 1

)m/2

r cos θ − 2
+O(ε2) if k = 1,

ε
cos θ

(
r2 − 1

)(m−k+1)/2∏k−1
i=1

(√
r2 − 1− i

)
r cos θ − 2k

+O(ε2) if k > 1.

Equation (23) satisfies the hypotheses of Theorem 11. The averaged function (21)
is given by

f(r) =


(
r2 − 1

)m/2
g1(r) if k = 1,

(r2 − 1)(m−k+1)/2

k−1∏
i=1

(√
r2 − 1− i

)
g2(r) if k > 1,

where

g1(r) =

√
4− r2 − 2

r
√
4− r2

, g2(r) =

√
4k2 − r2 − 2k

r
√
4k2 − r2

.

The hyperboloid of one sheet x2 + y2 − z2 − 1 = 0 for z ≤ 0 can be written

in the explicit form z = −
√

x2 + y2 − 1 where x2 + y2 ≥ 1. Repeating the above
calculations for this case we obtain for the averaged function (21)

f(r) =


(−1)m

(
r2 − 1

)m/2
g1(r) if k = 1,

(−1)m−k(r2 − 1)(m−k+1)/2

k−1∏
i=1

(
−
√
r2 − 1− i

)
g2(r) if k > 1,

where g1 and g2 are the same functions of the previous case.

We can see that g1(r) < 0 for 1 ≤ r < 2, and g2(r) < 0 for 1 ≤ r < 2k. Therefore

the simple zeros of f are given by r = 1 when k = 1, and by r = 1 and r =
√
i2 + 1

for i = 1, . . . , k − 1 when k > 1, which correspond to the k limit cycles of X ∗.
The stability of a limit cycle at r =

√
i2 + 1, for i = 1, . . . , k − 1 when k > 1 is

easily determined. On the other hand, the stability of the limit cycle at r = 1 is as
follows:

(i) When k = 1: stable if m is even and semi–stable if m is odd;

(ii) When k > 1: stable if m and k are odd, unstable if m and k are even and
semi–stable if either m is odd and k is even, or m is even and k is odd.

In short, we have proved Theorem 4.

3.5. Proof of Theorem 5. The proofs of statements (c), (d) and (e) of Theorem
5 are similar to the ones of Theorems 3 and 4 and they will be omitted here.
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3.6. Proof of Theorem 6. In this subsection we give the proof of statement (d)
of Theorem 6. The proof of statement (c) of Theorem 6 is similar to the one of
Theorems 3 and 4 and it will be omitted here.

Consider the polynomial vector field (13). For this vector field we obtain

E{x,y}(X )(x, y, z) = (x2 + y2)F1(x, y), E{1,z}(X )(x, y, z) = −(x2 + y2)F12(z).

Thus a polynomial of the form ax+ by only divides F1 in the first equation. So X
has m − 1 invariant meridians on S2. A polynomial z − zi only divides F12 in the
second equation, then X has m− 2 invariant parallels. This concludes the proof of
statement (d) and Theorem 6 is proved.

3.7. Proof of Theorem 7. In this subsection we give the proof of Theorem 7. We
separate the proof of statement (a) in two cases.

Case 1. Consider the quadratic vector field

(24) X (x, y, z) =
(
2εxy,−2εx2 − 2z(y + 2), 2y(y + 2)

)
,

on S2 with ε > 0 small. For this X we get

E{x,y}(X )(x, y, z) = −2x
(
ε(x2 + y2) + z(y + 2)

)
= −2x

(
ε(1− z2) + z(y + 2)

)
.

Since that ε(1 − z2) + z(y + 2) has no factors of the form ax + by, we get that X
has x = 0 as the unique invariant meridian on S2. It is easy to see that this vector
field has no equilibria on the invariant meridian x = 0. In order to complete the
proof we need to show that this invariant meridian is a limit cycle.

Note that the sphere x2 + y2 + z2 = 1 can be written in the explicit forms

x = ±
√
1− y2 − z2 with y2+ z2 ≤ 1. In the coordinates (y, z) vector field (24) has

the form
X ∗(y, z) =

(
−2ε(1− y2 − z2)− 2z(y + 2), 2y(y + 2)

)
.

In polar coordinates y = r cos θ and z = r sin θ the above vector field writes

dr

dθ
=

εr(r2 − 1) cos θ

ε sin θ(1− r2) + r(2 + r cos θ)
.

Expanding dr/dθ in Taylor series with respect to ε at ε = 0 we have

(25)
dr

dθ
= ε

(r2 − 1) cos θ

2 + r cos θ
+O(ε2).

Equation (25) satisfies the hypotheses of Theorem 11 and the correspondent aver-
aged function is given by

f(r) =
1

2π

∫ 2π

0

(r2 − 1) cos θ

2 + r cos θ
dθ

=
(r2 − 1)

2π

∫ 2π

0

cos θ

2 + r cos θ
dθ = (r2 − 1)g(r),

where

g(r) =

√
4− r2 − 2

r
√
4− r2

.

It is easy to check that g(r) < 0 for 0 < r ≤ 1. Therefore the unique simple zero of
f is given by r = 1, which provides a stable limit cycle of X ∗.

Case 2. Consider now the polynomial vector field of degree m > 2

X (x, y, z) =
(
−2y

(
xym−2 + z

)
+ 2z, 2

(
x2 + z2

)
ym−2,−2x+ 2y

(
x− ym−2z

))
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on S2. For this vector field we obtain

E{x,y}(X )(x, y, z) = y
(
2x(x2 + y2)ym−3 + 2y

(
xym−2 + z

)
− 2z

)
.

We can see that y is the unique factor of the form ax + by in the above extactic
polynomial. Thus y = 0 is the unique invariant meridian on S2. The equilibria of X
are P± = (0,±1, 0) and the second component of X is P2(x, y, z) = 2(x2+ z2)ym−2

whose sign depends only on the variable y and of the power m−2. Therefore y = 0
is a limit cycle and its stability depends on the degree m of the vector field. This
completes the proof of statement (a) of Theorem 7.

(b) For 1 ≤ k ≤ m− 1 fixed consider the polynomial vector field

X (x, y, z) = (−2y(x− 2) + 2zF13(z), 2x(x− 2)− 2zF13(z), 2(y − x)F13(z)) ,

on S2 where

F13(z) =


εzm−1 if k = 1,

εzm−k

k−1∏
i=1

(z − zi), zi ∈ (−1, 1), zi ̸= 0 if k > 1,

with ε > 0 small. From a direct calculation we obtain

E{1,z}(X )(x, y, z) = 2(y − x)F13(z).

This implies that, for 1 ≤ k ≤ m− 1 fixed, this vector field has exactly k invariant
parallels given by z = 0 if k = 1, and z = zi and z = 0 if k > 1. It follows easily
that the vector field has no equilibria on the invariant parallels. Similarly to the
proof of Theorem 4 we have that the k invariant parallels are limit cycles. The
limit cycle at z = 0 can be stable, unstable or semi–stable depending on the choice
of m, k and zi ∈ (−1, 1), zi ̸= 0. For example, if k = 1 then the limit cycle at z = 0
is stable if m is even, and it is semi–stable if m is odd.

In short, Theorem 7 is proved.
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