PERIODIC ORBITS BIFURCATING FROM A HOPF EQUILIBRIUM
OF 2-DIMENSIONAL POLYNOMIAL KOLMOGOROV SYSTEMS
OF ARBITRARY DEGREE
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ABSTRACT. A Hopf equilibrium of a differential system in R? is an equilibrium point whose linear part has
eigenvalues twi with w # 0. We provide necessary and sufficient conditions for the existence of a limit cycle
bifurcating from a Hopf equilibrium of 2-dimensional polynomial Kolmogorov systems of arbitrary degree.
We provide an estimation of the bifurcating small limit cycle and also characterize the stability of this limit
cycle.

1. INTRODUCTION AND STATEMENTS OF THE MAIN RESULTS
A polynomial differential system

. B . dy
:E*E*P(xay), Y= dt *Q(:Cay)a

in R? has degree n if the maximum of the degrees of the polynomials P and @ is n. A quadratic polynomial
vector field X = (P, Q) with x a factor of P and y a factor of @Q is a Lotka—Volterra system. While an
n—degree polynomial vector field X = (P, Q) with z a factor of P and y a factor of @ is a Kolmogorov
system.

Lotka—Volterra systems were initially considered independently by Alfred J. Lotka in 1925 [15] and by Vito
Volterra in 1926 [20], as a model for studying the interactions between two species. Later on Kolmogorov
[11] in 1936 extended these systems to arbitrary dimension and arbitrary degree, these kinds of systems are
now called Kolmogorov systems.

Many natural phenomena can be modeled by the Kolmogorov systems such as the time evolution of
conflicting species in biology [16], chemical reactions [10], hydrodynamics [5], economics [18], the coupling
of waves in laser physics [12], the evolution of electrons, ions and neutral species in plasma physics [13], etc.

Here we study the polynomial Kolmogorov systems in the plane, i.e. differential systems of the form

where f and g are polynomials of degree larger than 1. In fact we are interested in the existence of limit
cycles of Kolmogorov systems living in the positive quadrant of the plane, and consequently surrounding
some equilibrium points (see for instance Theorem 1.31 of [8]) which are in the positive quadrant.

We recall that a limit cycle of the Kolmogorov system (1) is a periodic solution of system (1) isolated in
the set of all periodic solutions of (1). In general to detect the existence of limit cycles is a difficult problem.

A Hopf equilibrium of a differential system in R? is an equilibrium point whose linear part has eigenvalues
+wi with w # 0. Here a Hopf bifurcation means that some limit cycles bifurcate from a Hopf equilibrium
when some parameter of the differential system varies, but in the literature not always a Hopf bifurcation
has this meaning, see for instance [1].

Our objective is to provide necessary and sufficient conditions for the existence of a limit cycle bifurcating
from a Hopf equilibrium of 2-dimensional polynomial Kolmogorov systems of arbitrary degree, using the
averaging theory of second order. We also provide the stability of the small limit cycle which is born in the
Hopf bifurcation, and an estimation of its size in function of the bifurcation parameter.
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We translate an equilibrium point (a,b) of the positive quadrant to the point (1,1) doing the rescaling
(z,y) — (z/a,y/b), and we obtain that any Kolmogorov system in the plane of degree 2, i.e. any Lotka—
Volterra system can be written as

(2) t=z(a(x—1)+ax(y—1)), y=ylbi(x—1)+ba(y—1)).
This is a quadratic polynomial differential system with two invariant straight lines and by a Bautin’s result

[2] we know that such differential systems have no limit cycles (see also [7]).

A Kolmogorov system having an equilibrium in the positive quadrant can be written as
(3) i=z(a1(z—1) +as(y—1)+as(x —1)* + as(x — 1)(y — 1) + as(y — 1)?),
g=y(br(z —1) + b2y — 1) + bs(z — 1)* + ba(z — 1)(y — 1) + bs(y — 1)?),
if its degree is 3, and it can be written as
i=xz(ar(r—1) +az(y—1)+as(x— 1) +as(x —1)(y — 1) + as(y — 1)*+
a6(x — 1)° + ar(z — 12y — 1) + ag(w — 1)y - 1)+ agly — 1 + ho.t.),
(4) j=1y(bi(x —1) +ba(y — 1) +bz(z —1)2 +by(x — 1) (y — 1) +bs(y — 1)?
g=ybrle = 1)+ b2y — 1) +bs(z = 1)* + ba(w = 1(y = 1) + bs(y — 1)*+
bo(z — 1)° +br(z — 1)*(y — 1) + bs(z — 1)(y — 1)* + by(y — 1)* + h.o.t.),
if its degree is larger than 3, where h.o.t. denotes higher order terms in z — 1 and y — 1, i.e. terms of order
at least four in the variables x — 1 and y — 1.

Proposition 1. Let w be a positive real number and by # 0. A Kolmogorov system (3) or (4) has a Hopf
equilibrium at (1,1) with eigenvalues twi if and only if

b2 2
a1 = —bs, as = _Btw
by
Proposition 1 is proved in section 3.
We define the quantities A = —2a3b1 b3 —2a3b1 baw?+3azasb3b3+azasbiw? —2azasb3ba+aszb3bs+azbibow?+

agblbg + (13()11)3[)4 + 30‘,31)11)%&)2 + a3b1b2b4w2 + 2a3b1w4 - 20,31)3{)3 - 4(131)%1)3&)2 - 20,31)3&)4 — aib?bg + (1,40,517411 —
a4b‘;’b§ — a4b§’b2b5 — a;;b%b% — a4b%b2w2 +a4b1b§b3 +a4b1b2b3w2 +a5b‘11b2 +2(L5b411b5 + asbi’b% — (st?bzbzl +b?b%b5 +
203byb2 + 263 bsw? — b2b3by + b2b3bs — 3b2b3babs — b2babaw? + b2babsw? — b2bybsw? + by bibs — by biby + 2by b3bsbs +
by bgbi +b1 b%b3w2 —by b%b4w2 +2by b2b3b5w2 +b1 b2b2w2 + bgbg) — b§b3b4 + 2b§b3w2 — 2b%b3b4w2 + bgb3w4 — b3b4w4,
and

C=A+ b1w2 (3a6b§ + 3a6w2 — 2a7b1by + agb% + 3b§b9 — 2b1bobg + b§b7 + b7w2) .

Theorem 2. Consider the Kolmogorov systems (3) or (4) with
b3 + w?
by

with w > 0, by # 0 and € a small parameter (the bifurcation parameter).

(5) a1 = —by —|—€ZB, as = —

(a) System (3) has one limit cycle (x(t,€),y(t, <)) bifurcating from the Hopf equilibrium (1,1) whene =0
if and only if by AB < 0. This limit cycle is stable if B > 0 and unstable if B < 0. Moreover

(6) (2(0,¢),y(0,¢)) = <1 +0(?),1 —¢ + 0(62)) ,

where

ble*
b3 + w?

b B2 + w?)
A .
(b) System (4) has one limit cycle (x(t,€),y(t,€)) bifurcating from the Hopf equilibrium (1,1) when e =0
if and only if byCB < 0. This limit cycle is stable if B > 0 and unstable if B < 0. Moreover the
equality (6) holds with

r* = 2w

b B(03 +w?)
e

r* = 2w
Theorem 2 is proved in section 3 using the averaging theory of second order. A brief summary of the

averaging theory that we need for proving Theorem 2 is stated in section 2.

Note that Theorem 2 provides sufficient conditions in order that one limit cycle bifurcates from a Hopf
equilibrium point localized in the positive quadrant of a planar Kolmogorov system of arbitrary degree, and
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that (6) gives an estimation of the size of the small limit cycle which bifurcates from the equilibrium (1,1)
in function of the bifurcation parameter €.

2. THE AVERAGING THEORY FOR PERIODIC ORBITS
The method of averaging started with the classical works of Lagrange and Laplace who provided an
intuitive justification of this theory.

The first formalization of the averaging theory is due to Fatou [9] in 1928. Important contributions to
this theory were made by Krylov and Bogoliubov [4] in the 1930s and Bogoliubov [3] in 1945. The averaging
theory of first order for studying periodic orbits can be found in [19].

Now we shall present the basic results from averaging theory that we need for proving the results of this
paper.

The next theorem provides a first and the second order approximation for the periodic solutions of a
periodic differential system, for the proof see Theorems 11.5 and 11.6 of Verhulst [19], and Buica and Llibre
[6].

Consider the differential equation
(7) i(t) = eFy(t,x) + 2 Fo(t,z) + 2 R(t, x, ),

where F1,Fo :Rx D —- R",R: R x D x (—¢f,e5) = R” are continuous functions, T-periodic in the first
variable, and D is an open subset of R™. Assume that the following hypotheses (i) and (i¢) hold. Assume:

(i) F1, Fy, R are locally Lipschitz with respect to z, Fy(¢,.) € C*(D) for all t € R, and R is differentiable
with respect to e. We define the averaging functions of first and second order fy, fo: D — R™ as

1 (T
filz) = ?/0 Fi(s, z)ds,

fa(z) = ;/OT l:DzFl(S,Z) /Os Fi(t,z)dt + Fs(s, z)| ds.

(ii) For V' C D an open and bounded set and for each ¢ € (—ey,e¢) \ {0}, there exists a € V such that
fi(a) +efz(a) =0 and dp(fi +ef2,V,a) # 0.

Then for |e] > 0 sufficiently small there exists a T-periodic solution z(t,¢) of the system (7) such that
x(0,¢) — a when € — 0.

Here dp(f1 + €f2,V,0) denotes the Brouwer degree of the function f; + €fs in the neighborhood V' of
zero. It is known that if the function f; +ef is C! then it is sufficient to check that the determinant of the
Jacobian matrix D(f1 + €f2(ac)) is non-zero in order to have that dp(fi + €f2,V,0) # 0, for more details
see [14].

On the other hand if one of the real parts of the eigenvalues of the Jacobian matrix D(f; + ef2)(a.) is
positive the periodic solution x(¢;¢) is unstable. If all the real parts of the eigenvalues of this matrix are
negative the periodic solution is locally stable. For a proof see Theorem 11.6 of [19].

For a general information on the averaging theory see for instance the books [17, 19].

3. PROOFS
Proof of Proposition 1. The characteristic polynomial of the linear part of the Lotka-Volterra system (3) at
the equilibrium point (1,1) is
p(A) = A — (a1 +b2)A+ aiby — asb;.
Imposing that p(\) = A2 + w? in order to have a Hopf equilibrium, we obtain the system
a;+by =0, aibs — ash; = w?.

Solving this system we get the family of zero-Hopf equilibria described in Proposition 1. This completes the
proof. (I
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Proof of Theorem 2. We shall prove that a periodic orbit bifurcates from the zero—Hopf equilibrium point
(1,1) of the Kolmogorov system (3) for the parameters of system (3) given in the statement of Proposition
1.

We perturb system (3) with the parameters given in (5). We translate the equilibrium point (1, 1) to the
origin of coordinates doing the change of variables x = X + 1,y =Y + 1. Then system (3) becomes

(9) b

1
X=—(1+X)((Be? = ba)1 X — (b3 +w?)Y + agh1 X* + asb1 XY + asb1Y?),
Y =(14Y) (X +boY + b3 X%+ by XY +b5Y?).

In order to simplify the application of the averaging theory, for computing the Hopf bifurcation we write
the linear part of system (9) with e = 0 at the equilibrium point (0, 0) into its real Jordan normal form, i.e.
into the form

Then doing the change of variables

2 2
(-5 5 ) ()
- w 1w )
v 1 0 Y
whose inverse is
0 1
<)}£>— 71)1(4) 7b1b2 <U)7
b3 + w? b3 + w? v

The differential system (9) in the variables (u,v) writes

1 . )
= @ T ((asbibd — asbbd + ashibg + bbs — bib3b + b34bs)0? + (asbids
2
—a4b%b§ + agblbg — blbgbg + b%bgbzl — b?bgb5)’U3 + (2&5()‘?[)3 — a4b%b§ + b%b% + blbg
—b1b3b4 + 2b%b§’b5)uvw + (2&51):1)’1)% — a4b§b§ — blb%bg, + Qb%bgbzl — 3bi”b§b5)uv2w+
(a5b‘;’b2 + b%b% + b%b§b5)u2w2 + blbngz + (a5b?b2 + b%bglhl — 3b%b2b5)u20w2+
(7(14[)%63 + 2(13()1[7% — b%b% + 3b%b3 — 2b1b%b4 + b%b%b5)’02a}2 + (*a4b%b% + Qnglbg
— 20, b3bs + b2b3b4)vPw? — B3bsuBw® + (—aqbby + 26163 — 2b1b3by + 262babs)uve’?
(10) +(2b3baby — agbby — 2b1b3b3)uvw? + (b3by + bbs)uw* + 2b1b3vw?* + b3bguvw?
+(a3b1b2 — b%bg + 3[)3()3 — b1b2b4)v2w4 + (a3b1b2 - b1b2b3)1}3w4 + (blbg — b%—

b1by)uvwd — bybzuv?wd + byvw’ + bgv2w6> — 2= Bbyv(1 +v),
w

1
V= ( + U) B ((C%b%b% — a4b1b§ + agbg)UQ + béuw + (2a5b§b2 — a4b1b§)uvw + w2

(b3 + w?)
asb?u? + (—asbiby + 2a3b3)v2w? + 2b3uw?® — asbiuvw® + azvwt + uw5>
+&2Bu(1 +v).
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Doing the rescaling of the variables (u,v) = (eU,eV’) system (10) in the new variables (U, V') writes

(11)

1
—Vw— EW ((ag,b‘;’b% - a;;b%b% + a3b1bg + bgbg - blbgb4 + b%bgbs)VQ
. 2 -
(2050362 — agb2B + B2B4 + byb3 — bybiby + 262b3b5)U Ve + (ashdbs + b2+
b262b5) U202 + (—agb2b3 + 2a3bibi — 6263 + 3b4bs — 2b1b3by + b2b2bs)V 202+
(—a4b%b2 + 2b1bg — 2b1b%b4 + 2b%bzb5)va3 + (b%bz + b%b5)U2w4 + (agblbg—

b%bg + 3b%b3 _ b1b2b4)V2W4 + (_b% + b1b2 — b1b4)UVw5 —+ b3V2w6> —+ &‘QW

( — BBV + (—asb?b8 + asb1b} — asb3 + b3bs — bybiby + b2b3bs)V3 — (2a5b2b3
—agbib3 — bibs + 2b1b3by — 3b2b3b5)UV 2w — 2Bb3Vw? — (asbby + byb2bs—
3b2bybs ) U2V w? + (agbib? — 2asb3 + 2b3bs — b1b2bs)V3w? + b2bsU3wS + (asbybs
F2b2bs — 2b1b2by ) U Vw3 — BbaViwt — bibaU2Vw* + (babs — azby) V3w + bgUV2w5>
+0(e%),

Uw+e 3 ((a5b%b§ — asbrb3 + azbd)V? + (2a5b3bs — asbib3 + b UVw

1
3 + o2
+a5b%U2w2 + (70,41)1[)2 + 2&36%)‘/2&)2 + (70461 + ng)vag + a3V2w4 + vas)
1
+52mv<Bb% + (Gﬁb%b% — a4blb§ + agb%)VQ + (2(15])%172 — a4blb§)UVw
—l—QBbgw2 + asb?U%w? + (—agb1by + 2a363)V2w? — agbi UV W3 + Bw* + azV32w) + O(&3).

We must pass to polar coordinates for introducing the angle 6 which later on we shall take as the new

independent

variable in order that the differential system (11) becomes periodic in § and we can apply the

averaging theory, where (r,0) are defined by U = rcos@ and V = rsinf, and we obtain

1
—E:WTQ (b%wQ(a@ble + (b2 + b5)(b% + w2)) COS3 60— bl(d(a;5b%(—2b% + (.4.72)

+(b3 + w?)(asb1b2 — (by — by) (b3 + w?) + by (—b3 — 2babs + w?))) cos? Osin(0) + (asb3bs
(b% — 2w2) + (b% + wz)(bgbz; — blbgb4 + b%b%b5 — b%b2w2 - blb%wz + 2[)%[)3(4)2 — b1b2b4w2
—biw* + b3w? + agb?(—b2 + w?) + azb1ba(b3 + w?))) cos O sin 62 — byw(asb3b3+

(b3 + w?)(—agbibs + az(b3 + w?)))sin® 9) + 52W (bfb5r2w3 cos(0)* — byr?
w2(a5b1b2 + b4b§ — 3b1bobs + b4w2) cos® Osinf + r2w(b§b3 - 2b1bgb4 + 3()%[)%[)5 + Qb%

bsw? — 2b1babaw? + bzw? + asb? (—2b3 + w?) + asbiba (b3 + w?)) cos? Osin® O + wsin? 0
(B(b3 + w?)? + r2(a5b?b3 + (b3 + w?)(—asbibay + az(b3 + w?))) sin @) — cos O sin 6( Bby

(bg + w2)2 + T2(a5b%b2(b% — 2w2) + a4b1(—b§ + w4) + bz(—bgbg, + blbgb4 + b1b2b4w2 — b3w4
ag(0F +w?)? — B3(B3bs + 2byes?))) sin? 0)) + O(%),

wH+e )27‘((15b‘i’w3 cos® 0 + biw?(3asbiby — (asby — b1by — b3 — bybs — w?)(b3+

biw(b3 + w?
wz)) COS2 0 sin 6 + blw(3a5b%b§ + (b% + w2)(72a4b1b2 + blb% + bg - b%b4 + 2b1b2b5 - b1w2
—|—b2w2 — b4w2 —+ ag(b% —+ wz))) COSGSin2 9 —+ (a5b§’b§ + (b% —+ wz)(—a4b%b§ + b%bg — b1b§b4

. 1
1026305 — b2byw? + 263bsw? — bibobaw? + bsw? + azbiba (b + w?))) sin® 9) + szm

sin@(w c0s 0 + by sin 0) (b2 + w?) (2B(b2 + w?) + r2(asb? — asbiby + asb? — b2bs + biboby
—b2bs + azw? — bzw?)) — r?(azb — babs + bbby — b?b3bs + 2a3b3w? — 2b3b3w? + by bobyw?+
bibsw? + azwt — bsw?* + asb? (b3 — w?) — agbiba (b3 + w?)) cos(20) + byr?w(2asby by + baby—
2b1bobs + byw? — as (b3 + w?)) sin(2€)) +0(e?).
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We take 6 as the new independent variable and system (12) becomes into the normal form for applying the
averaging theory

1
P = )27"2 (b%wQ(%blbg + (bg + bs) (b3 + w?)) cos® @ — biw(asb? (—2b3 + w?)

_€b1w2(b% + w?
—|—(b% + w2)(a4b1b2 — (bg — b4)(b% + w2) + bl(—b% — 2bybs + w2))) cos? fsin 6 + (a5b:1”b2
(bg — 2w2) + (b% + w2)(b%b3 — blb%b4 + b%b%b{a — b%b2w2 — blbng + 26%()3&)2 — blbgb4w2
—byw* + bgw?* + agb? (=3 + w?) + azbiba (b3 4+ w?))) cos fsin? O — bw(asbbg + (b3+
. 1
w2)(—a4blb2 + ng(b% + CL)Q))) SlIl3 9) + 52 <WT3 (b%wQ(a5b1b2 + (b2 + b5)
(b% + wz)) COS3 0 — blw(a5b%(—2b% + w2) + (b% + wz)(a4b1b2 — (b2 — b4)(b§ + w2) + bl
(—b% — 2bybs + w2))) cos?fsinf + (a5b§b2(b§ — 2w2) + (b% + w2)(b§b3 — b1bgb4 + b%b§b5
7b%b2w2 — blb%WQ + 2[)%1)3&)2 — b1b2b4w2 — b1w4 + b3w4 + a;;b%(—b% + w2) + CL3b1b2(b§+
(13) w?))) cos Bsin? @ — byw(asb3b3 + (b3 + w?)(—asbibs + az(b3 + w?))) sin® 0) (asbiw?
COS3 0 + b1w2(3a5b%b2 - (CL4b1 - b1b2 - b% - blb5 - w2)(b§ + w2)) COS2 fsin6 + blw
(3a5b%b% + (b% + w2)(—2a4b1b2 + blbg + b% — b%b4 + 2b1b2b5 — blw? + b2w2 — b4w2 +as
(b3 4+ w?))) cos Osin® O + (asb3b3 + (b3 + w?)(—asb?b3 + bibs — bybiby + bIb3bs — b3by
w2 + 2b%b3w2 — b1b2b4w2 + b3w4 + (lgblbz(b% + OJQ))) sin3 9) + Wr(b%bsﬂw?’
cosl — b1r2w2(a5b1b2 + b%b4 — 3b1bobs + b4w2) cos> fsin 6 + 7‘2w(b§b3 — 2b1b%b4—|—
3b%b%b5 + 2b%b3w2 — 2b1be4w2 + b3w4 + a5b%(—2b% + w2) + asb1bo (b% + w2)) cos? 6 sin2 0
+wsin? 0(B(b3 4+ w?)? + 12(asb?b3 + (b3 + w?)(—asbiby + a3 (b3 4+ w?)))sin? @) — cos O
sin Q(Bbz(bg + w2)2 + 7‘2((15()%()2(()% — 20J2) + CL4b1(—b§1 + w4) + bg(—bgbg + b1b§b4 + b1boby
W? = byt + ag(V3 + w?)? — B3(B30s + 205w?))) sin? 0)%) ) + O(<?).

Here the prime denotes derivative with respect to . We shall apply the averaging theory described in
section 2 to the differential system (13). Using the notation of section 2 we have t =0, T =27, x =r. It
is immediate to check that system (13) satisfies all the assumptions for applying the averaging theory. Now
we compute the integrals (8), and we obtain

fl (7’) = 07
1
f2(r) = 8byw3 (b3 + w?)
The system f>(r) = 0 has a unique positive solution

blB(b% + w2)
A
The derivative of fo(r) at r* is Ar*/(4bjw3 (b3 +w?). Therefore from section 2 we obtain that the small limit
cycle is stable if B > 0, and unstable if B < 0. Going back through the changes of variables we obtain the
expression (6). This completes the proof of statement (a) of the theorem.

7(4b; Bw?(b3 + w?) + Ar?).

= 2w

By following for system (4) the same steps done for the system (3) we find that the averaged functions
f1 and fo are

1
fQ(T) - 8b1w3(b§ +w2)
The equation fo(r) = 0 has a unique positive solution

b B(03 + w?)

r(4b; Bw?(b3 + w?) + Cr?).

r* = 2w
c
Since the derivative of fo(r) at r* is Cr*/(4bjw?(b3 + w?), the statement (b) follows in a similar way to
statement (a). O
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