## SUFFICIENT CONDITIONS FOR BOUNDEDNESS OF THE FLOW OF A DIFFERENTIAL SYSTEM ON $\mathbb{R}^n$

## DAN DOBROVOLSCHI<sup>1</sup> AND JAUME LLIBRE<sup>2</sup>

ABSTRACT. In this paper we provide sufficient conditions for boundedness of the flow of a differential system on  $\mathbb{R}^n$ . Our result is a generalization of the well-known Liapunov's Stability Theorem. As an application, we prove the boundedness of the flow of some famous polynomial differential systems: Lorenz-63, Lorenz-84, Chen and of a system equivalent to the three-component dissipative Charney-DeVore model of large-scale atmospheric flow over topography.

## 1. INTRODUCTION

In this paper we present a generalization of the well-known Liapunov's Stability Theorem. Our result provides sufficient conditions for the boundedness of the flow of a smooth differential system on  $\mathbb{R}^n$ . We say that the flow of such a system is *bounded* if all trajectories of the system in forward time remain inside a compact set in  $\mathbb{R}^n$ . A typical example of bounded flows in Geophysical Fluid Dynamics is given by the following result.

**Theorem 1.** [8, 4] Consider the differential system on  $\mathbb{R}^n$ 

$$(1)dx_i/dt = \dot{x}_i = \sum_{j,k=1}^n a_{ijk}x_jx_k + \sum_{j=1}^n a_{ij}x_j + a_i, \quad (i = 1, 2, \dots, n),$$

where the coefficients  $a_{ijk}$ ,  $a_{ij}$ , and  $a_i$  are real constants. If its coefficients satisfy the following conditions:

- (a) the polynomial  $\sum_{i,j,k=1}^{n} a_{ijk} x_i x_j x_k$  in the variables  $x_1, x_2, \ldots, x_n$  is the null polynomial,
- (b) the quadratic form  $\sum_{i,j=1}^{n} a_{ij}\xi_i\xi_j$  is negative definite, i.e.  $\sum_{i,j=1}^{n} a_{ij}\xi_i\xi_j < 0$  for any real  $\xi_1, \xi_2, \ldots, \xi_n$  such that  $(\xi_1, \xi_2, \ldots, \xi_n) \neq 0$ ,

2000 Mathematics Subject Classification. 34A26, 34C11. PACS Primary: 02.30.Hq, Secondary: 92.60.Bh.

*Key words and phrases.* quadratic differential systems, boundedness, limit sets, Liapunov functions.

<sup>†</sup> The second author is partially supported by a DGICYT grant number MTM2005-06098-C02-01 and by a CICYT grant number 2005SGR 00550.

