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Abstract

We provide 13 non–topological equivalent classes of global phase portraits in
the Poincaré disk of reversible cubic homogeneous systems with a nilpotent
center at origin, which complete the classification of the phase portraits of
the nilpotent centers with cubic homogeneous nonlinearities.
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1. Introduction and statement of the results

One of the main problems in the qualitative theory of planar polynomial
differential systems, beside determining their limit cycles and their number,
is the center-focus problem, i.e. the problem of distinguishing between a
center or a focus. The beginnings of this problem goes back to Poincaré,
who defined a center as a singular point with a neighbourhood filled with
periodic orbits except the singular point.

It is known that if the polynomial differential system has a center at
the origin, then there exists a change of variables and a time rescaling (if
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necessary) which transforms the original system in one of the followings

ẋ = −y + P (x, y), ẏ = x+Q(x, y); (1)

ẋ = y + P (x, y), ẏ = Q(x, y); (2)

ẋ = P (x, y), ẏ = Q(x, y); (3)

where P (x, y) and Q(x, y) are polynomials without constant and linear terms.
The center of the form (1) is called linear type center, of the form (2) nilpotent
center, and of the form (3) degenerate center.

The complete classification of centers of the form (1) for quadratic real
polynomial differential systems has been done mostly by Dulac [8], Kapteyn
[16, 17] and Bautin [2]. The phase portraits of these systems were done
by Vulpe [21] and Schlomiuk [20]. We know some classifications of centers
for some families of cubic differential systems and of differential systems of
higher degree, see [14, 19] and the references therein. The normal forms and
the global phase portraits in the Poincaré disk for all the Hamiltonian linear
type centers of linear plus cubic homogeneous planar polynomial vector fields
have been given in [6].

In this paper we focus our attention on nilpotent centers. An algorithm
that characterizes nilpotent centers and some others classes of degenerate
centers has been given in [10, 11], see also [15]. It is known that quadratic
polynomial differential systems has no nilpotent centers, see for instance [4].
There are works where the analytic integrability of nilpotent singular points
has been studied, see [3, 4, 5, 12, 13].

The objective of this paper is to classify the global phase portraits of the
nilpotent centers of the cubic polynomial differential systems of the form

ẋ = y + Ax2y +Bxy2 + Cy3, ẏ = −x+ Px2y +Kxy2 + Ly3. (4)

Andreev et al. in [1] have obtained the normal forms for system (4) having
a nilpotent center, see Theorem 1 of [1]. In fact there are two families of
nilpotent centers, the Hamiltonian one, studied in [7], and the reversible
family

ẋ = y + Ax2y + Cy3,

ẏ = −x3 +Kxy2.
(5)

Note that this system is invariant, up to a time-reversal, under the sym-
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metries with respect to both axes, and consequently also by the symme-
try with respect to the origin. More precisely, the changes of variables
(x, y, t) → (−x, y,−t), (x, y, t) → (x,−y,−t) and (x, y) → (−x,−y) leave
invariant the system 5. So knowing the phase portrait of the system in one
quadrant of the plane, we know completely the phase portrait of the system.

A first integral of system (5) has the form

H(x, y) = l−A−K+
√
D

1 lA+K+
√
D

2 , (6)

where

l1 = K(A+
√
D−K)(1+Ax2)+2C2y2 +C(2+(

√
D−K)x2 +A(x2 +2Ky2))

and

l2 = K(−A+
√
D+K)(1+Ax2)−2C2y2+C(−2+(

√
D+K)x2−A(x2+2Ky2))

are invariant curves of system (5) and D = (A−K)2 − 4C.

For cubic systems with homogeneous nonlinearities with a nilpotent cen-
ter at the origin untill now only the global phase portraits of Hamiltonian
centers were done, see [7]. Hence our goal for completing the classification
of the nilpotent centers of the cubic polynomial differential systems (4) is to
obtain the global phase portraits in the Poincaré disk of systems (5). To do
this we will use the Poincaré compactification of polynomial vector fields, see
section 2. Two vector fields on the Poincaré disk are topologically equivalent
if there exists a homeomorphism from one onto the other which sends orbits
to orbits preserving or reversing the direction of the flow. We shall provide
in Figure 1 the distinct topologically equivalent phase portraits of system
(5), giving only their separatrix skeleton, see a precise definition at the end
of section 2.

Our main result is following

Theorem 1. The global phase portraits of system (5) with a center at the
origin are topologically equivalent to one of the phase portraits given in Figure
1.

The proof of Theorem 1 is analytical, and provides the existence of the
13 global phase portraits given in the statement of Theorem 1 and no others,
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Figure 1: Global phase portraits of system (5).

depending on the parameters A, C and K of system (5). Classification of
global phase portraits depending on parameters is presented in the next.
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Cases and conditions on parameters A,K,C and D
I. C < 0 AK + C < 0 K > 0
II. C = 0 AK + C < 0 K > 0
III. C > 0 AK + C < 0 K > 0 D > 0
IV. C < 0 K ≤ 0
V. C < 0 AK + C ≥ 0 K > 0

VI. C > 0 AK + C ≥ 0 D > 0 −A+K −
√
D > 0

VII. C > 0 AK + C = 0 K > 0 A = −K
VIII. C = 0 K ≤ 0 A < K
IX. C = 0 A ≥ 0 A < K
X. C > 0 AK + C ≥ 0 A ≥ 0 D = 0 A < K
XI. C = 0 A < 0 A ≥ K
XII. C = 0 A ≥ 0 A ≥ K

XIII. C > 0
AK + C ≥ 0

D ≥ 0 A > K
D < 0

D > 0 −A+K +
√
D < 0

AK + C < 0 K < 0 D > 0 A > K

We must mention that the existence of these 13 global phase portraits has
also been checked using the program P4, which do the global phase portrait
of a given polynomial differential system in the Poincaré disk. For more
details on the program P4, see Chapters 9 and 10 of [9].

The rest of this paper is divided into four sections. In section 2 we have
summarized the Poincaré compactification, in the next two sections we study
the finite and infinite singular points of system (5). Finally in section 5 we
prove Theorem 1.

2. The Poincaré compactification

Let
X = (P (x, y), Q(x, y)) (7)

be a polynomial vector field of degree d, i.e. d is the maximal degree of the
polynomials P and Q. For studying the behaviour of the trajectories of a
polynomial vector field (7) near infinity we use the Poincaré compactification.
We denote by S2 the Poincaré sphere, which is the set of points (s1, s2, s3) ∈
R3 such that s21 + s22 + s23 = 1. Each polynomial vector field (7) can be
extended analytically to the Poincaré sphere. By projection of each point
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x ∈ R2 ≡ {(x1, x2, 1) ∈ R3} onto the Poincaré sphere using the straight line
through x and the origin of R3 we obtain two copies of the vector field X
on S2, one in the north hemisphere and the other in the south. The equator
S1 = {(s1, s2, s3) ∈ S2; s3 = 0} corresponds to the infinity of R2.

In order to describe the global phase portrait of a vector field X it is
necessary to study the finite singular points in S2�S1 and the infinite singular
points in S1.

For studying the compactified vector field P (X ) of X on the Poincaré
sphere we use six local charts; Ui = {s ∈ S2; si > 0} and Vi = {s ∈ S2; si < 0}
for i = 1, 2, 3. The expressions for the corresponding vector fields on S2 in
the local charts Ui are

in U1 : u̇ = vd
[
− uP

(1

v
,
u

v

)
+Q

(1

v
,
u

v

)]
, v̇ = −vd+1P

(1

v
,
u

v

)
; (8)

in U2 : u̇ = vd
[
P
(u
v
,

1

v

)
− uQ

(u
v
,

1

v

)]
, v̇ = −vd+1Q

(u
v
,

1

v

)
; (9)

in U3 : u̇ = P (u, v), v̇ = Q(u, v). (10)

The expression for Vi is the same than for Ui multiplied by (−1)d−1 for
i = 1, 2, 3. So we only need to study the phase portrait on Ui for i = 1, 2, 3.
Finite singular points can be studied using U3, while for the infinite singular
points it is sufficient to look at U1|v=0 and at the origin of U2. The projection
of (s1, s2, s3)→ (s1, s2) of the northern hemisphere of the Poincaré sphere on
the equator plane define the Poincaré disk D2. On this disk we present the
phase portraits of our system (5).

It is well known that the separatrices of a compactified polynomial vector
field P (X ) in the Poincaré disk are the singular points, the limit cycles, the
separatrices of its hyperbolic sectors, and all the orbits at infinity (i.e. S1),
for more details see [9].

Assume that P (X ) has finitely many separatrices, and let
∑

be the set of
all separatrices of P (X ) on the Poincaré disk D2. Then the open components
of D�

∑
are called the canonical regions of P (X ). The separatrix skeleton

of P (X ) is the set formed by all the separatrices (i.e. by
∑

) and one orbit
for each canonical region.

The next theorem shows that it is sufficient to draw a separatrix skeleton
of P (X ) in the Poincaré disk D2 for determining completely the phase portrait
of P (X ), see [18].
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Theorem 2. (Neumann Theorem) Assume that P (X1) and P (X2) are two
compactified polynomial vector fields having finitely many singular points in
the Poincaré disk D2. Then their phase portraits are topologically equivalent
if and only if their separatrix skeletons are homeomorphic.

For more details on the Poincaré compactification see Chapter 5 of [9].

3. The finite singular points

We classify a singular point p (finite or infinite) as follows:

• p is hyperbolic it its two eigenvalues have non–zero real part. The
local phase portraits of hyperbolic singular points can be obtained from
Theorem 2.15 of [9].

• p is semi–hyperbolic if one of its eigenvalues is zero and the other is
non–zero. The local phase portraits of semi–hyperbolic singular points
are characterized in Theorem 2.19 of [9].

• p is nilpotent if its two eigenvalues are zero but its linear part is not
identically zero. The local phase portraits of nilpotent singular points
can be obtained from Theorem 3.15 of [9].

• p is degenerate if its linear part is identically zero. The local phase
portraits of such singular points are studied doing changes of variables
called blow–ups, see Chapters 2 and 3 of [9].

System (5) has a center at the origin, as it was proved in [1]. Parameters
A,K and C of this system determine the number of finite singular points of
the system and their local phase portraits. Depending on the parameters we
can have 1, 3, 5 or 7 finite singular points. To compute the finite singular
points it is necessary to solve the system

y(1 + Ax2 + Cy2) = 0, x(−x2 +Ky2) = 0.

Case 1: C < 0, AK + C < 0 and K > 0. Then system (5) has 7 finite
singular points

p1 = (0, 0), p2,3,4,5 =
(
±
√
− K

AK + C
,±
√
− 1

AK + C

)
, p6,7 =

(
0,±

√
− 1

C

)
.
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There is a center at the origin, p2,3,4,5 are hyperbolic saddles, and p6,7 are
either centers or foci. The first integral (6) in the singular points p6,7 is well
defined under these conditions, hence the points are always centers in this
case.

Case 2: C ≥ 0, AK + C < 0 and K > 0. Then there are 5 finite singular
points

p1 = (0, 0), p2,3,4,5 =
(
±
√
− K

AK + C
,±
√
− 1

AK + C

)
.

The finite singular point p1 is center and the others are hyperbolic saddles.

Case 3: C < 0 and AK + C ≥ 0; or C < 0, AK + C < 0 and K ≤ 0. Then
there are only 3 finite singular points

p1 = (0, 0) and p2,3 =
(

0,±
√
− 1

C

)
.

There is a center at the origin, but the nature of singular points p2,3 depends
on parameters. If C < 0, AK + C ≥ 0 and K > 0, then p2,3 are either
centers or foci. Since the first integral, as in case 1, is well defined, singular
points p2,3 are always centers. In case C < 0 and K = 0 the points p2,3 are
degenerated points. For the other conditions the finite singular points p2,3
are hyperbolic saddles.

Case 4: C ≥ 0 and AK + C ≥ 0 or C ≥ 0, AK + C < 0 and K < 0. Then
the origin is the only finite singular point, and it is a center.

4. The infinite singular points

We study first the infinite singular points on the local chart U1 (and V1).
From (8) system (5) in the local chart U1 becomes

u̇ = −1− u2(A−K + Cu2 + v2),

v̇ = −uv(A+ Cu2 + v2).
(11)

For each real root u∗ of the polynomial f(u) = u̇|v=0 = −1−(A−K)u2−Cu4,
the point (u∗, 0) is a singular point in U1. Since

f(u) = −C(u+ r1)(u− r1)(u+ r2)(u− r2),
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with

r1 =

√
K − A+

√
D

2C
, r2 =

√
K − A−

√
D

2C
and D = (A−K)2 − 4C,

it follows that in the infinity of the local chart U1 there can be 0, 2 or 4
singularities.

The eigenvalues λ1 and λ2 for these infinite singular points (if they are
real) are

• for (u, v) = (r1, 0) we have λ1 = −r1(A+ Cr21) and λ2 = −2
√
D r1;

• for (u, v) = (−r1, 0) we have λ1 = r1(A+ Cr21) and λ2 = 2
√
D r1;

• for (u, v) = (r2, 0) we have λ1 = r2(K + Cr21) and λ2 = 2
√
D r2;

• for (u, v) = (−r2, 0) we have λ1 = −r2(K + Cr21) and λ2 = −2
√
D r2.

There are no infinite points at U1 in the following cases:

• D < 0;

• D = 0 and A > K;

• D > 0, C > 0 and K − A+
√
D < 0;

• D > 0, C < 0 and K − A−
√
D > 0;

• C = 0 and A ≥ K.

The system has two singular points in the local chart U1 in the following
cases:

• If C < 0 and D > 0 we have two hyperbolic nodes when AK + C < 0
and K ≥ 0, and two hyperbolic saddles when AK +C > 0 and K > 0.

• If D = 0 and K > A we have two degenerate singularities formed by
two hyperbolic sectors (see section 5).

• If C = 0 and A < K we have two hyperbolic nodes when AK < 0, and
two hyperbolic saddles when AK > 0.
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• If C = A = 0 and K > 0 we have two semi–hyperbolic saddles.

• If C = K = 0 and A < 0 we have two semi–hyperbolic nodes.

The system has four singular points in the local chart U1 when D > 0,
C > 0 and −A + K −

√
D > 0. The local phase portraits at these singular

points are:

• two hyperbolic saddles and two hyperbolic nodes if AK + C > 0;

• four semi–hyperbolic singular points when AK + C = 0; and

• four hyperbolic nodes otherwise.

System (5) in the local chart U2 becomes

u̇ = C + u2(A−K + u2) + v2,

v̇ = uv(−K + u2).
(12)

If C = 0 then there is an infinite singular point at the origin of U2, else there
is no singular point at the origin of U2. Since this infinite singular point
has linear part identically zero the local phase portrait is obtained doing
blow–ups. The local phase portraits that can appear are shown on Figure 2.

As it is seen in Figure 2 the origin of U2 can consists of either two elliptic
sectors and two parabolic sectors, or two elliptic sectors, or six hyperbolic
sectors, or two hyperbolic sectors and two parabolic sectors, or just two
hyperbolic sectors. For more details see section 5.

5. Global phase portraits

Taking into account together the informations about the finite and infinite
singular points provided in sections 3 and 4, and the first integral (6) we shall
find for system (5) 13 different phase portraits depending on the values of
the parameters A, K and C.

5.1. Global phase portraits with seven finite singular points

(Case 1 of section 3). From section 4 we know that there are two infinite
singular points in U1 and since C 6= 0 the origin of U2 is not an infinite singular
point. The infinite singular points at the U1 ∪ V1 are repelling/attracting
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1 2 3

4 5

Figure 2: Local phase portraits at the origin of U2

nodes. The finite singular points are a center at the origin, four saddles at
the points (

±
√
− K

AK + C
,±
√
− 1

AK + C

)
and two centers at the points (

0,±
√
−1

C

)
.

Since the system is symmetric four finite points which are saddles are on the
boundary of the period annulus of the center at the origin. The separatrices of
these four saddles are forming in pairs a boundary of the period annuli of the

centers at (0,
√
−1
C

) and (0,−
√
−1
C

). The unstable separatrix is connecting

one saddle of this pair with an attracting node at the infinity, and the stable
separatrix of the second saddle of this pair comes from a repelling node at
the infinity. The connexion of the separatrices is determined using the first
integral (6). The important fact about this global phase portrait is about
limit cycles. The domains of definition of the first integral (6) and of the
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first integral given by its inverse, together are R2. Hence this prevents the
existence of limit cycles, because if a limit cycle exists together with a first
integral, the limit cycle lives where the first integral is not defined.

The global phase portraits of these systems are topologically equivalent
to the phase portraits of Figure 3.

Figure 3: Phase portrait for C = −2, A = −2 and K = 4.

5.2. Global phase portraits with five finite singular points

(Case 2 of section 3). In this case system (5) has two different global
phase portraits with five finite singular points.

The five finite singular points are the center at the origin and four saddles

at the points
(
±
√
− K

AK+C
,±
√
− 1

AK+C

)
.

When C = 0, A < 0 and K > 0 there are two nodes at the infinity
of U1, one is repelling and the other attracting, and there is one infinite
singular point at the origin of U2, whose linear part is identically zero. Doing
a blow-up in direction u, i.e. (u, v) 7→ (u,w) with w = v/u, we obtain the
system

u̇ = u2(A−K + w2 + u2),

ẇ = −uw(A+ w2).
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We eliminate the common factor u doing a rescaling of the independent
variable. The new differential system on u = 0 has three singular points
because A < 0: a saddle at the origin and two attracting nodes at (0,±

√
−A).

The process of going back through the changes of variables provides the local
phase portrait at the origin of U2 given in the first phase portrait of Figure
2.

Figure 4: Phase portrait for C = 0, A = −2 and K = 4.

For the second case with five finite singular points, i.e. when the parame-
ters satisfy C > 0, AK +C < 0, K > 0 and D > 0, at infinity there are four
pairs of infinite singular points at U1∪V1. All four infinite singular points are
nodes, two of them are repellers and two attractors. The global separatrices
have been determine using the first integral. The corresponding global phase
portrait is shown in Figure 5.

5.3. Global phase portraits with three finite singular points

(Case 3 of section 3).

For the values of the parameters C < 0 and K < 0 the finite singular

points are: a center at the origin and two saddles at
(
0±
√
− 1

C

)
. The saddles

are on the boundary of the period annulus of the center at the origin. In the
local charts U1 ∪ V1 there are two pairs of nodes. The global phase portrait
of this system is topologically equivalent to the one of Figure 6.
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Figure 5: Phase portrait for C = 3, A = −2 and K = 2.

Figure 6: Phase portrait for C = −2, A = −2 and K = −4.

If parameters satisfy the conditions C < 0, AK+C < 0 and K = 0, then
beside the center at the origin there are two degenerate finite singular points

at
(
0,±

√
−1
C

)
. Doing blow-ups we see that these finite singular points are
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topological saddles. At U1 ∪V1 we have the only infinite singular points, two
pairs of nodes. The global phase portrait is topologically equivalent to the
previous one given in Figure 6.

When C < 0, AK + C > 0 and K > 0 there are three centers, at the

origin and at
(
0,±

√
− 1

C

)
. The infinite singular points which are in U1 ∪ V1

are saddles. The separatrices of the saddles at the infinity are forming period
annulus of the centers. The corresponding global phase portrait is given in
Figure 7.

Figure 7: Phase portrait for C = −2, A = 4 and K = 2.

Finally for the values C < 0, AK + C = 0 and K > 0 there is a center

at the origin and a center at
(
0,±

√
− 1

C

)
. At the U1 ∪ V1 we obtain two

semi–hyperbolic points, which are topological saddles. The corresponding
global phase portrait is given in Figure 7.

5.4. Global phase portraits with one finite singular point

(Case 4 section 3). As we shall see there are several global phase portraits
with only one finite singular point, which of course is a center at the origin.

For the values D > 0, C > 0, AK+C ≥ 0, −A+K+
√
D > 0 and −A+

K−
√
D > 0 we have at U1 four singular points. Two of these infinite singular

points are nodes and the other two are saddles. The origins of U2 and V2
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are not singular points because C 6= 0. Depending on parameters, these four
singular points at U1 can be either a semi–hyperbolic saddle, a node, a node
and a semi–hyperbolic saddle; or a node, a semi-hyperbolic saddle, a semi–
hyperbolic saddle and a node. But there exists a homeomorphism, which
transforms one phase portrait into the other, hence there two configurations
providing global phase portraits which are topologically equivalent. The
global phase portrait is as in Figure 8.

Figure 8: Phase portrait C = 3, A = 0 and K = 4

The system with parameters satisfying C > 0, AK + C = 0, A + K = 0

and K > 0 has two pairs of singular points
(
±
√

1
K
, 0
)

at U1∪V1. These two

points need to be study with blow–ups because their linear parts are zero.

First we translate the singular point
(√

1
K
, 0
)

at the origin of U1 doing the

change of variables (u, v) 7→ (z, v), after we do the blow-up (z, v) 7→ (z, w)
where w = v/z in direction u1. Now from the obtained differential system we
eliminate the common factor z doing a rescaling of the independent variable.
Thus we get the differential system

ż = −4Kz − 4K
3
2 z2 −K2z3 − 1

K
zw2 − 2

1√
K
z2w2 − z3w2,

ẇ = 2Kw +K
3
2 zw +

1

K
w3 +

1√
K
zw3.
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This system has a saddle at the origin. Going back through all the changes

of variables, we get the local phase portrait at the singular point
(√

1
K
, 0
)
,

which is the one shown in Figure 9. The same study can be made at the

singular point
(
−
√

1
K
, 0
)
. Hence the global phase portrait of the system is

shown in Figure 10.

Figure 9: Blow-up of the origin of U2.

Figure 10: Phase portrait C = 4, A = −2 and K = 2.

For the values C = K = 0 and A < 0 there are two pairs of infinite
singular points in U1 ∪ V1, both are nodes. The origins of U2 and V2 are also
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infinite singular points. To know the local phase portrait at the origin of U2

we need to do a blow–up in the direction u, after to eliminate the common
factor u the obtained differential system has three singular points on u = 0: a
saddle at (0, 0) and at (0,±

√
−A) two semi–hyperbolic saddles. Going back

to the changes of variables we obtain the local phase portrait at the origin
U2, see the second phase portrait of Figure 2. The global phase portrait of
the system is topologically equivalent to the one of Figure 11.

The same phase portrait is obtained for the values C = 0, K < 0 and
A < K.

Figure 11: Phase portrait C = 0, A = −5 and K = −4.

For the values C = 0, A > 0, K > 0 and K > A there are two singular
points at U1, which are saddles. The origin of U2 is also a singular point
whose local phase portrait needs to be explored doing a blow–up in the u
direction, obtaining the differential system:

u̇ = u2(A−K + w2 + u2),

ẇ = −wu(A+ w2).
(13)

By eliminating the common factor u the resulting differential system has
one singular point on u = 0, the (0, 0), which is an attracting node. Going
back through the changes of variables we obtain the local phase portrait at
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the origin of U2, see the third phase portrait of Figure 2. The global phase
portrait of the system is topologically equivalent to the one of Figure 12.

Figure 12: Phase portrait for C = 0, A = 2 and K = 4.

For the values of the parameters C = 0, A = 0 and K > 0 the system
has as in the previous case two pairs of singular points at U1 ∪ V1 which are
semi–hyperbolic saddles. The origin of U2 is also a singular point, doing a
blow–up in direction u and working as in the previous case we obtain that
the global phase portrait of this system is also given in Figure 12.

For the values of the parameters D = 0, C > 0, K > A and AK +C ≥ 0
the system has two pairs of infinite singular points at U1 ∪V1, and the origin
of U2 is not a singular point. All infinite singular points are semi–hyperbolic
saddles-nodes. The global phase portrait of the system is topologically equiv-
alent to the one of Figure 13.

For the values of the parameters C = 0, A < 0 and K < A beside the
center at the origin, there is a singular point at the origin of U2, its local
phase portrait is studied doing blow–ups, see the fourth phase portrait of
Figure 2). The global phase portrait of the system is given in Figure 14.

For the values of the parameters C = 0, A = K and A < 0 there is only
one finite singular point at the origin, and one pair at U2 ∪ V2. The local
phase portrait at the origin of U2 is as in the previous case, hence we get the
same global phase portrait, the one of Figure 14.
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Figure 13: Phase portrait C = 1, A = 2 and K = 4

Figure 14: Phase portrait C = 0, A = −1 and K = −3.

For the values either C = 0, A > 0 and 0 ≤ K ≤ A; or C = 0, A > 0 and
K < 0; or C = K = 0 and A ≥ 0; or C = A = 0 and K < 0, at U1 ∪V1 there
are no singular points. The singular point at the origin of U2 is degenerate, so
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we must do blow–ups. If C = A = 0 and K < 0 after a blow–up in direction
u and the elimination of a common factor u we obtain a semi–hyperbolic
saddle at u = 0. Going back through the changes of variables, we obtain
the fifth phase portrait of Figure 2. In the other cases we obtain, after the
elimination of a common factor u, a saddle. Going back through the changes
of variables, we obtain the phase portrait of Figure 9. In any case the global
phase portrait always is topologically equivalent to the one of Figure 15.

Figure 15: Phase portrait for C = 0, A = 4 and K = 0.

If the parameters of the system (5) are:

• either D = 0, C > 0, K < A and AK + C ≥ 0;

• or D < 0, C > 0 and AK + C ≥ 0;

• or D > 0, C > 0, A > K and AK + C ≥ 0;

• or D > 0, C > 0, A > K, K < 0 and AK + C < 0;

• or D > 0, C > 0, −A+K +
√
D < 0 and AK + C ≥ 0;

then there is only one finite singular point, the center at the origin, and there
are no infinite singular points. The phase portrait is given in Figure 16.
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Figure 16: Phase portrait C = 2, A = 1.5 and K = −2.
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278–287; Lecture Notes in Phys. 518, Springer, Berlin, 1999.
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[10] H. Giacomini, J. Giné, J. Llibre, The problem of distinguishing between
a center and a focus for nilpotent and degenerate analytic systems, J.
Differential Equations 227 (2006), 406–426.
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