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Abstract. We study the discontinuous piecewise differential systems formed

by two linear centers separated by a non-regular straight line. We provide
upper bounds for the maximum number of limit cycles that these discontinuous

piecewise differential systems can exhibit and we show that these upper bounds

are reached.

1. Introduction and statement of the main result

One of the main interesting objects in the study of differential systems are limit
cycles. A limit cycle is a periodic orbit of the differential system isolated in the set
of all periodic orbits of the system.

Limit cycles have played and are playing an important role for explaining phsyical
phenomena, see for instance the limit cycle of van der Pol equation [18, 19], or the
one of the Belousov-Zhavotinskii model [2, 21], etc.

The extended 16th Hilbert problem, that is, to find an upper bound for the maxi-
mum number of limit cycles that a given class of differential systems can exhibit, is
in general an unsolved problem. Only for very few classes of differential system this
problem has been solved. For the class of discontinuous piecewise differential sys-
tems here studied, we can obtain the solution by using the first integrals of the two
linear centers which form the discontinuous piecewise differential system separated
by a non-regular line.

The study of the piecewise linear differential systems goes back to Andronov, Vitt
and Khaikin [1], and nowadays such systems still continue to receive the attention
of many researchers. These differential systems are widely used to model processes
appearing in electronics, mechanics, economy, etc., see for instance the books of di
Bernardo et al. [3] and Simpson [20], the survey of Makarenkov and Lamb [17], as
well as hundreds of references quoted in these last three works.

The simplest class of discontinuous piecewise differential systems are the planar
ones formed by two pieces separated by a straight line having a linear differential
system in each piece. Several authors have tried to determine the maximum number
of limit cycles for this class of discontinuous piecewise differential systems. Thus,
in one of the first papers dedicated to this problem, Giannakopoulos and Pliete [8]
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in 2001, showed the existence of discontinuous piecewise linear differential systems
with two limit cycles. Then, in 2010 Han and Zhang [9] found other discontinuous
piecewise linear differential systems with two limit cycles and they conjectured that
the maximum number of limit cycles for discontinuous piecewise linear differential
systems with two pieces separated by a straight line is two. But in 2012 Huan
and Yang [11] provided numerical evidence of the existence of three limit cycles
in this class of discontinuous piecewise linear differential systems. In 2012, Llibre
and Ponce [14] inspired by the numerical example of Huan and Yang, proved for
the first time that there are discontinuous piecewise linear differential systems with
two pieces separated by a straight line having three limit cycles. Later on, other
authors obtained also three limit cycles for discontinuous piecewise linear differential
systems with two pieces separated by a straight line, see Braga and Mello [4] in
2013, Buzzi, Pessoa and Torregrosa [5] in 2013, Liping Li [13] in 2014, Freire, Ponce
and Torres [7] in 2014, and Llibre, Novaes and Teixeira [15] in 2015. But proving
that discontinuous piecewise linear differential systems separated by a straight line
have at most three limit cycles is an open problem.

We consider the discontinuous piecewise differential systems of the form

(1) (ẋ, ẏ) = F(x, y) =

{
F1(x, y) = (f1(x, y), g1(x, y)) if (x, y) ∈ S1,
F2(x, y) = (f2(x, y), g2(x, y) if (x, y) ∈ S2,

where fi, gi are linear polynomials for i = 1, 2 and the regions S1 and S2 are defined
by

S1 = {(x, y) ∈ R2 : x > 0, y > αx},
S2 = {(x, y) ∈ R2 : x < 0, or x > 0, y < αx},

being α ∈ R.

System (1) is bi-valued on the non-regular separation line

(2) S = S1 ∩ S2 = {(0, y) : y ≥ 0} ∩ {(x, αx) : x > 0}.
As usual, system (1) is denoted by F = (F1,F2,S) or simply by F = (X,Y ),
when the separation line S is well understood. In order to establish a definition
for the trajectories of F and to investigate its behaviour we need a criterion for
the transition of the orbits between S1 and S2 across S. The gradient ∇S(p) at
the point p of the discontinuity line is given by the vector (−1, 0) at the points
p = (0, y) with y > 0, and by the vector (α,−1) at the points p = (x, αx) with
x > 0. The contact between the vector field F1 (or F2) and the discontinuity line
S, is characterized by the derivative of S in the direction of the vector field F1 (or
F2), also known as the Lie derivative of S with respect to F1 (or F2), that is by
the expression

F1S(p) = 〈∇S(p),F1(p)〉 ,
and for i ≥ 2 we define Fi

1S(p) =
〈
∇Fi−1

1 S(p),F1(p)
〉
, where 〈., .〉 is the usual

inner product in R2. The basic results of the discontinuous piecewise differential
systems in this context were stated by Filippov [6]. We can divide the discontinuity
line S in the following three sets:

(a) Crossing set Sc : {p ∈ S : F1S(p) · F2S(p) > 0};
(b) Escaping set Se : {p ∈ S : F1S(p) > 0 and F1S(p) < 0};
(c) Sliding set Ss : {p ∈ S : F1S(p) < 0 and F1S(p) > 0}.
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The escaping Se or sliding Ss regions are respectively defined on points of S
where both vector fields F1 and F2 simultaneously point outwards or inwards from
S, while the interior of its complement in S defines the crossing region Sc. The
complementary of the union of these regions is the set formed by the tangency
points between F1 or F2 with S.

Following the Filippov’s convention [6] the discontinuous piecewise linear dif-
ferential systems can have sliding or crossing limit cycles. A sliding limit cycle
contains sliding segments on the line of discontinuity, whereas crossing limit cycles
contain only crossing points. In this paper we work only with crossing limit cycles,
or simply limit cycles.

In [12] the authors proved that any piecewise differential system of the form (1)
can be transformed into a piecewise differential system with α = 0 by means of
an invertible linear transformation. Thus, it is not restrictive to consider α = 0.
In this paper, we study the maximum number of limit cycles of systems (1) with
α = 0 formed by two linear differential centers, namely

(3)

{
ẋ = −Ax− (A2 + Ω2)y +B,
ẏ = x+Ay + C,

for (x, y) ∈ R1,

and

(4)

{
ẋ = −ax− (a2 + ω2)y + b,
ẏ = x+ ay + c,

for (x, y) ∈ R2,

with Ω, ω > 0, A,B,C, a, b, c ∈ R, A, a 6= 0 and in the regions R1 and R2 are

R1 = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0},
R2 = {(x, y) ∈ R2 : x ≤ 0, or x ≥ 0, y ≤ 0}.

Each system (3) and (4) have, respectively, the first integrals

H1(x, y) = (x+Ay)2 + 2(Cx−By) + y2Ω2,

H2(x, y) = (x+ ay)2 + 2(cx− by) + y2ω2.
(5)

Now, the discontinuity line is denoted by

R = Ry ∪Rx = {(0, y) : y ≥ 0} ∪ {(x, 0) : x ≥ 0}.

We note that, differential systems (3) and (4) are the most general expressions
of linear differential systems, see Lemma 1 of [16] for more details .

Following the notation of [12], we denote by I2 a crossing limit cycle having two
intersection points with either Rx, or Ry; by II2 a crossing limit cycle having one
intersection point with Rx and another point with Ry (see Figure 1(a)); and by II4
a crossing limit cycle having two intersection points with Rx and two intersection
points with Ry (see Figure 1(b)). The study of the existence of limit cycles of type
I2 is the study of limit cycles existing for two linear centers separated by a straight
line, and it was proved in Theorem 3 of [16] that such piecewise differential systems
have no limit cycles. Then, we restrict our analysis to limit cycles of II2 or II4
type.

The main result of the present paper is to study the maximum number of limit
cycles of types II2 and II4 that the discontinuous piecewise linear differential sys-
tems (3)-(4) can exhibit.
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(a) The pair of limit cycles of type

II2 for system (8)–(9).
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(b) The limit cycle of type II4 for

system (11)-(12).

Figure 1

Theorem 1. Consider discontinuous piecewise differential systems separated by
the non-regular line R and formed by two arbitrary linear differential centers (3)-
(4). The maximum number of limit cycles of these discontinuous piecewise linear
differential systems are:

(a) two of type II2 and there exists systems with exactly two limit cycles of this
type (see Figure 1(a));

(b) one of type II4 and there are systems with exactly one limit cycle of this type
(see Figure 1(b)).

The proof of Theorem 1 is given in the following section.

Other paper with several non-regular lines of discontinuity is [10].

2. Proof of Theorem 1

We separate the proof of both statements of Theorem 1.

Proof of statement (a) of Theorem 1. We consider the discontinuous planar linear
differential system (3)-(4). If there exists a crossing limit cycle of type II2, then it
must intersect the non-regular separation curve R in two points of the form (x, 0)
and (0, y), both different from the origin. Since the functions H1 and H2 defined
in (5) are first integrals of the systems (3) and (4) respectively, these points must
satisfy the equations

H1(x, 0)−H1(0, y) = 2Cx+ x2 + 2By −A2y2 − y2Ω2 = 0,

H2(x, 0)−H2(0, y) = 2cx+ x2 + 2by − a2y2 − y2ω2 = 0.
(6)

Assume that there exists a crossing limit cycle of type II2 passing trough the
points (x1, 0), (0, y1). Then, by solving equations in (6) with x = x1 and y = y1
with respect to C and c we get

C =
−x21 + y1(−2B + y1(A2 + Ω2))

2x1
, c =

−x21 + y1(−2b+ y1(a2 + ω2))

2x1
.
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Now, assume that there exists a second crossing limit cycle of type II2 passing
through the points (x2, 0) and (0, y2) with 0 < x1 < x2 and 0 < y1 < y2.

Case 1: Assume x2y1 − x1y2 6= 0. Using the obtained values of C and c we solve
equations in (6) for x = x2 and y = y2 for the parameters B and b, i.e. we solve
the system

H1(x2, 0)−H1(0, y2) = x22 + 2By2 −A2y22 − y22Ω2

+
x2(−x21 + y1(−2B + y1(A2 + Ω2)))

x1
= 0,

H2(x2, 0)−H2(0, y2) = x22 + 2by2 − a2y22 − y22ω2

+
x2(−x21 + y1(−2b+ y1(a2 + ω2)))

x1
= 0,

(7)

and we get

B =
−x21x2 + x2y

2
1(A2 + Ω2) + x1(x22 − y22(A2 + Ω2))

2(x2y1 − x1y2)
,

b =
−x21x2 + x2y

2
1(a2 + ω2) + x1(x22 − y22(a2 + ω2))

2(x2y1 − x1y2)
.

Now we substitute the obtained values of the parameters C, c,B, b in equations
(6) and solving them with respect to x and y, obtaining the solutions

(x, y) = (0, 0), (x, y) = (x1, y1), (x, y) = (x2, y2),

(x, y) =

(
(x1 − x2)(x2y1 + x1y2)

x1y2 − x2y1
,

(y1 − y2)(x2y1 + x1y2)

x2y1 − x1y2

)
.

Due to the conditions 0 < x1 < x2 and 0 < y1 < y2, the last solution has one
negative component, so the maximum number of crossing limit cycles of type II2
for system (3)-(4) is two.

Case 2: Assume x1y2 = x2y1. We solve equations (7) now for the parameters A
and a, and we get

A =

√
(x1 − y1Ω)(x1 + y1Ω)

y1
, a =

√
(x1 − y1ω)(x1 + y1ω)

y1
.

Substituting the values of C, c,A, a in (6) and taking into account that x1y2 = x2y1,
we obtain that

y =
y1
x1
x,

and so, in this case there exists a continuum of periodic orbits, and consequently
no limit cycles.

In summary, the maximum number of limit cycles of type II2 that the discon-
tinuous piecewise linear differential systems (3)-(4) can have is two.

Now we give a discontinuous piecewise linear differential system (3)-(4) having
exactly two limit cycles of type II2. In region R1 we consider the linear differential
center

(8) ẋ = −3

2
− 2x− 8y, ẏ =

43

4
+ x+ 2y,
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with the first integral

H1(x, y) = 4y2 + 2

(
43

4
x+

3

2
y

)
+ (x+ 2y)2;

and in region R2 we consider the linear differential center

(9) ẋ = −x− 2y, ẏ =
7

4
+ x+ y

with the first integral

H2(x, y) = y2 +
7

2
x+ (x+ y)2.

In this case, the two solutions of equations (6) are

(x1, y1) =

(
1

2
, 1

)
, (x2, y2) =

(
1,

3

2

)
,

and the corresponding limit cycles are shown in Figure 1(a). �

Proof of statement (b) of Theorem 1. We consider again the discontinuous piece-
wise linear differential systems (3)-(4). If there exists a limit cycle of type II4,
then it has four intersection points on the discontinuity line R of the form (x1, 0),
(x2, 0), (0, y1) and (0, y2), satisfying 0 < x1 < x2, 0 < y1 < y2 and the equations

H1(x1, 0)−H1(0, y1) = 2Cx1 + 2By1 + x21 − (A2 + Ω2)y21 = 0,

H1(x2, 0)−H1(0, y2) = 2Cx2 + 2By2 + x22 − (A2 + Ω2)y22 = 0,

H2(x1, 0)−H2(x2, 0) = (x1 − x2)(2c+ x1 + x2) = 0,

H2(0, y1)−H2(0, y2) = (y1 − y2)
(
2b− (y1 + y2)(a2 + ω2)

)
= 0.

(10)

Since x1 < x2 and y1 < y2, we can obtain from the third and fourth equations that

x2 + x1 = −2c, y2 + y1 =
2b

a2 + ω2
.

Using these last expressions, we can write the first and second equations of (10) in
terms of x1 and y1, and we get

P (x1, y1) = 2Cx1 + 2By1 + x21 − (A2 + Ω2)y21 = 0,

Q(x1, y1) =
1

(a2 + ω2)2
(
(2c+ x1)(2c− 2C + x1)(a2 + ω2)2 − (2b

− y1(a2 + ω2))(−2B(a2 + ω2) + (2b− y1(a2 + ω2))

(A2 + Ω2))
)

= 0.
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Now, we compute the resultant of the polynomials P and Q with respect to the
variable y1, and we obtain the following polynomial in the variable x1:

R(x1) =16(A2 + Ω2)(A2b2 − (a2 + ω2)(bB + c(c− C)(a2 + ω2)) + b2Ω2)(A4b2

+ 2B2(a2 + ω2)2 − (a2 + ω2)(3bB + c(c− C)(a2 + ω2))Ω2 + b2Ω4+

A2(−(a2 + ω2)(3bB + c(c− C)(a2 + ω2)) + 2b2Ω2))

+ 32c(a2 + ω2)2(A2 + Ω2)(−A4b2 −B2(a2 + ω2)2

+ (a2 + ω2)(2bB + (c− C)2(a2 + ω2))Ω2 − b2Ω4 +A2((a2 + ω2)(2bB

+ (c− C)2(a2 + ω2))− 2b2Ω2))x1

+ (a2 + ω2)2(A2 + Ω2)(−A4b2 −B2(a2 + ω2)2

+ (a2 + ω2)(2bB + (c− C)2(a2 + ω2))Ω2 − b2Ω4 +A2((a2 + ω2)(2bB

+ (c− C)2(a2 + ω2))− 2b2Ω2))x21.

The polynomial R(x1) is quadratic in the variable x1, whose solutions are x1 and
−x1 − 2c. This fact implies that equations (10) have only a pair of solutions, that
is (x1, x2) = (x1,−x1 − 2c) (and analogously for (y1, y2)). Hence the maximum
number of limit cycles of type II4 that the discontinuous piecewise linear differential
system (3)-(4) can have is one.

Now we give a discontinuous piecewise differential systems with the discontinuity
line R formed by two linear differential centers having exactly one limit cycle of
type II4. In region R1 we consider the linear differential center

(11) ẋ =
17

8
− x− 2y, ẏ = −191

128
+ x+ y

with the first integral

H1(x, y) = −2

(
191

128
x+

17

8
y

)
+ y2 + (x+ y)2,

and in region R2 we consider the linear differential center

(12) ẋ =
187

128
+ x− 2y, ẏ = −1 + x− y,

with the first integral

H2(x, y) = −2(x+
187

128
y) + y2 + (x− y)2.

For this case, the solutions of equations (10) satisfying 0 < x1 < x2 and 0 < y1 < y2
are

x1 = 0.267515, x2 = 1.73249, y1 = 0.187568, y2 = 1.27337,

and the corresponding limit cycle is shown in Figure 1(b). �

3. Conclusions

Every discontinuous piecewise differential system separated by a non-regular line
of the form (2) and formed by two arbitrary linear differential centers can be written
as the discontinuous piecewise differential system (2)–(3). For this class of discon-
tinuous piecewise differential systems we provide an upper bound for the maximum
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number of limit cycles that they can exhibit, i.e. we have solved the extended 16th
Hilbert problem to this class of discontinuous piecewise linear systems.

More precisely, this class of discontinuous piecewise differential systems can have
two kinds of limit cycles, denoted by II2 and II4, see Figures 1(a) and 1(b), respec-
tively. The maximum number of limit cycles of type II2 is two and of type II4 is
one. Moreover, we have shown that these upper bounds are reached, see Theorem
1.
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Economı́a y Conocimiento de la Junta de Andalućıa, under grant P12-FQM-1658.
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Dept. Matemática Aplicada II and Instituto de Matemáticas (IMUS),, Escuela Técnica
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