
Proc. of the 7th EWMmeeting, Madrid, 1995The theory of polynomial-like mappings{ The importance of quadratic polynomialsN�uria FagellaUniv. Aut�onoma de Barcelonanuria mat.uab.es1 IntroductionIn the �eld of complex dynamics and, in particular, iteration of functions of one complexvariable, the topic that has by far been object of the most attention is the iteration of thefamily of quadratic polynomials Qc := z2+ c. In this paper we aim to answer the question ofwhy this very particular family of polynomials is important for the understanding of iterationof general complex functions.This is the third paper in the \Complex Dynamics" series of EWM 95. We assume thatthe reader is familiar with the basic de�nitions and theorems concerning the dynamics ofquadratic polynomials which are the topic of the �rst article [Br3]. For other surveys we referalso [Bl1, Br1] and [Mi].As a �rst observation we may say that often, a good place to start is the simplest example,in this case the group of M�obius transformations which are already very well understood.The next simplest class of functions is the class of polynomials of degree two and eventhat early along the way, we already bump into complicated dynamics which have occupiedmathematicians in this �eld for over twenty years, and still do.But the real answer to the question has basically one name and that is the theory ofpolynomial-like mappings of A. Douady and J. Hubbard. This theory explains how theunderstanding of polynomials is not only interesting per s�e , but helps understand a muchwider class of functions namely those that locally behave as polynomials do.Most of the de�nitions and results in this paper may be found in the work of Douadyand Hubbard \On the Dynamics of Polynomial-like Mappings" [DH3]. Our goal is to statetheir most important results as well as to give several examples that illustrate them. Theseexamples serve also as initial motivation: example B concerns families of cubic polynomialswhose dynamical planes exhibit homeomorphic copies of quadratic �lled Julia sets (see Figs. 5and 6), while their parameter spaces contain homeomorphic copies of the Mandelbrot set (seeFig. 12); example C deals with the family of entire transcendental functions f�(z) = � cos(z)for which the same phenomena occur (see Figs. 7 and 13); �nally, example D shows howwe �nd copies of the Mandelbrot set in the Mandelbrot set itself (see Figs. 8, 9 and 14).Examples of the same phenomena for Newton's method may be found in [BC, CGS, DH3, T]and in [F] for the family z 7! �zez.
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This work is divided in two parts, the �rst one concerning the dynamical planes andthe second one the parameter spaces. Section 2.1 contains the de�nition of a polynomial-like map and sets up the examples that we follow throughout the paper. In Section 2.3we state the straightening theorem (Theorem 2.2) which explains how polynomial-like mapsand actual polynomials are related. Along the way, we give a small survey of the di�erenttypes of conjugacies that may occur. Section 3 contains the parameter-plane version of thestraightening theorem, explaining why we �nd homeomorphic copies of the Mandelbrot setin the parameter planes of other families of functions.Figure 12 was borrowed from [Br2] by courtesy of Bodil Branner. All other computerillustrations in this paper were created with the program It by Christian Mannes, whom Ithank for assistance and patience.2 Dynamical Plane2.1 The De�nition of a Polynomial-like MapDe�nition A polynomial-like map of degree d � 2 is a triple (f; U 0; U) where U and U 0are open sets of C isomorphic to discs with U 0 � U and f : U 0 �! U is a holomorphic mapsuch that every point in U has exactly d preimages in U 0 when counted with multiplicity.
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d-1Figure 1: The three elements (f; U 0; U) that form a polynomial-like map.Example A The obvious example is an actual polynomial of degree d, restricted to a largeenough open set. Let P be a polynomial of degree d � 2 and let �0 be an equipotentialcurve of P of some given potential � (see [Br3]) such that it is a single simple curve. Then,� := P (�0) is an equipotential curve of potential d�. If we let U 0 and U be the open setsenclosed by �0 and � respectively then, the triple (P jU 0 ; U 0; U) is a polynomial like map (see�g. 2). Note that we do not necessarily have to choose the open sets as regions enclosed byequipotentials. In fact, if we let V 0 be any large enough disk then V := P�1(V 0) is an openset contained in V and (P jV 0 ; V 0; V ) is another polynomial-like map.Example B In this example we want to consider some polynomials of degree three whichrestricted to an open set form a polynomial-like map of degree two. Let P be a cubicpolynomial with one critical point !1 escaping to in�nity under iteration and the otherone, !2,remaining bounded. Let � be the equipotential curve that has the critical valuev1 := P (!1) as one of its points and let U be the open set bounded by �. Then, the preimageof � under P is a �gure eight curve, since all points on � have three preimages with theexception of the critical value v1 that has only two preimages (see �g. 3). This �gure eightbounds two connected components. Let U 0 be the open connected component that contains2
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Figure 2: The restriction of two polynomials of degree two as polynomial-like maps. Left: Q�1(z) =z2 � 1 with connected Julia set. Right: Qc(z) where c w �0:8 + 0:4i, with totally disconnected Juliaset.the critical point !2 with a bounded orbit. Then, U 0 maps to U with degree two, i.e., everypoint in U has exactly two preimages in U 0. The triple (P jU 0 ; U 0; U) is a polynomial-like mapof degree two. (Notice that if we choose sets U 0 and U as we did in example A, we wouldobtain a polynomial-like map of degree three.) We have chosen a polynomial of degree threefor the sake of the example but it is clear that similar situations would occur with polynomialsof any degree, with critical points escaping and not escaping to in�nity.
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Figure 3: The restriction of a cubic polynomial to create a polynomial-like map of degree two.Example C Let f(z) = � cos(z) and let U 0 be the open simply connected domainU 0 = fz 2 C j jIm(z)j < 1:7; j � � �Re(z)j < 2g;and set U = f(U 0). One can check that U 0 � U , as shown in Fig. 4. Since U 0 contains onlyone critical point ! = ��, it follows that f maps U 0 to U with degree two. Hence the triple(f jU 0 ; U 0; U) is a polynomial-like of degree two.Example D Sometimes a polynomial-like map is created as some iterate of a functionrestricted to a domain. For example, let Qc(z) = z2 + c and let c0 w �1:75778 + 0:0137961i.Set U 0 = fz 2 C j jIm(z)j < 0:2; jRe(z)j < 0:2g:3



One can check that the polynomial Q3c0 maps U 0 onto a larger set U with degree 2, as shownin Fig. 4. The triple (Q3c0 jU 0 ; U 0; U) is a polynomial-like map of degree two.
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Figure 4: The restriction of f(z) = � cos(z) (left) and Q3c0(z) (right) to create polynomial-like mapsof degree two.This is an example of what is called renormalization. We say that a quadratic polynomialis renormalizable if there exist open disks U 0 and U and an integer n such that (fnjU 0 ; U 0; U)is polynomial like of degree two. Renormalization is a very important topic in the �eld ofcomplex dynamics. (See [Mc]).2.2 The Filled Julia SetThe �lled Julia set and the Julia set are de�ned for polynomial-like maps in the same fashionas for polynomials, keeping in mind that a polynomial-like map is de�ned only in an opensubset of C .De�nition Let f : U 0 �! U be a polynomial-like map. The �lled Julia set of f is de�nedas the set of points in U 0 that never leave U 0 under iteration, i.e.,Kf := fz 2 U 0 j fn(z) 2 U 0 for all n � 0g:An equivalent de�nition is Kf = \n�0 f�n(U 0);and from this expression it is clear that Kf is a compact set.As for polynomials, we de�ne the Julia set of f asJf := @Kf :Notice that if the map f is the restriction of some polynomial F to a set U 0 then, ingeneral, Kf $ KF . As an example consider example B above where F is a polynomial ofdegree three and f its restriction to the set U 0 in Fig. 3. Notice that U 0 maps to U with degreetwo. The other connected component of F�1(U) which we denote by V , maps to U withdegree one. Hence, there are points in U 0 that map to V and come back to U 0 afterwards,4



never leaving the set U . Such points do not belong to Kf since they are not in U 0 at all timesbut they belong to KF since they do not escape to in�nity under iteration. Hence Kf $ KFand moreover, a connected component C of KF is either a connected component of Kf or itis disjoint from Kf , since F maps connected components of KF to connected components.Therefore KF might have more connected components than Kf but not larger ones.2.3 The Relation with PolynomialsThe Straightenning Theorem stated in this section shows that the relation between polynomial-like maps and actual polynomials is actually very strong. In order to state it, we need toreview the di�erent types of equivalences between holomorphic maps.2.3.1 Equivalences or conjugacies of mapsSuppose f : U 0 �! U and g : V 0 �! V are two polynomials-like maps of degree d. Theweakest, but very important equivalence between f and g is what we call topological equiva-lence or topological conjugacy and denote by �top.De�nition We say that f �top g if there exists ' a homeomorphism from a neighborhoodN(Kf ) of Kf to a neighborhood N(Kg) of Kg such that the following diagramN 0(Kf ) f���! N(Kf )'??y ??y'N 0(Kg) g���! N(Kg)commutes, where N 0(Kf ) � N(Kf ) and N 0(Kg) � N(Kg).If two functions are topologically conjugate, their dynamics are qualitatively \the same",since the conjugacy ' must map orbits of f to orbits of g, periodic points of f to periodicpoints of g, critical points of f to critical points of g, etc. In particular,Kf must be mapped toKg, but since ' is only a homeomorphism these sets could look quite di�erent. For example,all quadratic polynomials that belong to a given hyperbolic component of the Mandelbrotset (except the center) are topologically equivalent. All polynomials in the complement ofthe Mandelbrot set are also topologically conjugate. (In fact, these conjugacies are globalconjugacies. See remark below.)On the other hand, the strongest type of equivalence between two holomorphic maps isconformal equivalence, due to the rigidity of holomorphic maps.De�nition We say that f �conf g if f �top g and the homeomorphism ' is conformal.Remark 2.1 If we were dealing with maps de�ned in the whole complex plane we couldconsider also global conjugacies between them. In such a case, if two maps are conformallyconjugate then they must be conjugate by an a�ne map '(z) = az + b, since isomoprhismsfrom C to itself are a�ne. For the quadratic family, one can easily check that there is aunique representative in each a�ne class, that is, if Qc1 and Qc2 are a�ne conjugate, thenc1 = c2. 5



The concept of quasi-conformal maps appears when we want to consider conjugacies thatare stronger than topological, but weaker than conformal.Quasi-conformal mappings For a homeomorphism, we do not have any control whatso-ever in how angles are distorted. On the other hand, conformal maps have to preserve angles.Intuitively, a map is quasi-conformal if we have some control on the distortion of angles evenif these are not preserved, i.e. the distortion of angles is bounded.The precise de�nition is very intuitive if we assume that the map is di�erentiable. Thisis not such a crude assumption given the fact that quasi-conformal maps are di�erentiablealmost everywhere. If ' is a di�eomorphism, the tangent map at a given point z0, takes acertain ellipse in the tangent space at z0 to a circle in the tangent space at '(z0). We de�nethe dilatation of ' at z0, D'(z0), as the quotient of the length of the major axis over thelength of the minor axis of this ellipse.De�nition Let ' : U ! V be a di�eomorphism and D' = supz2UD'(z). Then, ' is K-quasi-conformal if D' � K <1.If we do not assume the map to be di�erentiable, we can express its distortion in termsof moduli of annuli.De�nition Let ' be a homeomorphism. Then, ' is K-quasi-conformal if for all annuli Ain the domain 1Kmod(A) � mod('(A)) � Kmod(A)Note that a map is 1-quasi-conformal if and only if it is conformal.For those that prefer analytic de�nitions one can de�ne quasi-conformal maps as follows:De�nition Let ' be a homeomorphism. Then ' is K-quasi-conformal if locally it hasdistributional derivatives in L2 and the complex dilatation �(z) de�ned locally as�(z)dzdz = @z'@z' = @'@z@'@z dzdzsatis�es j�j � K�1K+1 := k < 1 almost everywhere.For more on quasi-conformal mappings see [A] and [LV].Quasi-conformal conjugacies and hybrid equivalences We de�ne a quasi-conformalconjugacy (f �qc g) by requiring the homeomorphism ' in the topological conjugacy to beK-quasi-conformal for some K � 1. We say that f and g are hybrid equivalent (f �hb g) ifthey are quasi-conformally conjugate and the conjugacy ' can be chosen so that @z' = 0almost everywhere on Kf . If Jf has measure zero, this simply means that ' is holomorphicin the interior of Kf . Clearlyf �conf g =) f �hb g =) f �qc g =) f �top g:6



2.3.2 The Straightening TheoremThe relation between polynomial-like mappings and actual polynomials is explained in thefollowing theorem, whose proof can be found in [DH3].Theorem 2.2 Let f : U 0 �! U be a polynomial-like map of degree d. Then, f is hybridequivalent to a polynomial P of degree d. Moreover, if Kf is connected, then P is unique upto (global) conjugation by an a�ne map.This theorem explains why one �nds copies of Julia sets of polynomials in the dynamicalplanes of all kinds of functions. Notice that if f is polynomial-like of degree two and Kfis connected then f is hybrid equivalent to a polynomial of the form Qc(z) = z2 + c for aunique value of c by remark 2.3.1. This may also be true for other families of polynomial-likemaps of degree larger than two, as long as the resulting class of polynomials has a uniquerepresentative in each a�ne class. (As examples, consider the families �z(1+z=d)d, � 2 C nf0gfor any d > 2).Example B.1 In the setting of example B in Sect.2.1, we consider the polynomial Pa(z) =z3 � 3a2z � 2a3 � a. One can check that for all values of a, the critical point !2 = �a isa �xed point. If we take, for example, a = �0:6 then the critical point !1 = a escapes toin�nity. By the Straightening Theorem, P�0:6(z) restricted to the open set U 0 as de�ned inexample B, is hybrid equivalent to a quadratic polynomial and hence, to a polynomial of theform Qc(z) = z2 + c. In this case, we know that the parameter c must be 0, since Q0(z) isthe only quadratic polynomial of this form with the critical point being �xed. In Fig. 5, weshow the dynamical plane of Q0 and that of P�0:6.
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Figure 5: Left: the �lled Julia set of Q0(z) = z2 in white. Right: the �lled Julia set for P�0:6(z)in white. Note that only the largest component in U 0 corresponds to the �lled Julia set of thepolynomial-like map of degree 2.Example B.2 Again in the setting of example B in sect. 2.1, we consider the polynomialRa(z) = z3 � 3a2z + (1=2)(p9a2 � 4 + a� 4a3). One can check that for all values of a, thecritical point c2 = �a is a point of period 2. In this case we take a = �0:75 and then, thecritical point c1 = a escapes to in�nity. By the straightening theorem, R�0:75(z) restrictedto the open set U 0 as above, is hybrid equivalent to a quadratic polynomial and hence, to a7



polynomial of the form Qc(z) = z2 + c. In this case, we know that the parameter c must be�1, since Q�1(z) is the only quadratic polynomial of this form with the critical point beingof period two. In Fig. 6, we show the dynamical plane of R�0:75, to be compared with thatof Q�1 in Fig. 2.
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RFigure 6: The �lled Julia set for R�0:75 in white. Note that only the largest component in U 0corresponds to the �lled Julia set of the polynomial-like map of degree 2. This �gure is to be comparedwith Fig. 2 left.Example C Even though the function f(z) = � cos z is an entire transcendental function,when restricted to the set U 0 (as de�ned in Sect. 2.1) it is a polynomial-like map of degreetwo. In Fig. 7, we see in white the set of points that do not escape to in�nity (in the imaginarydirection) under iteration of f . The largest component inside U 0 corresponds to the �lledJulia set of the polynomial-like map. Since the critical point �� is �xed under f , the �lledJulia set is homeomorphic to that of Q0(z) = z2.
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Figure 7: The largest white component in U 0 corresponds to the �lled Julia set of f(z) = � cos zrestricted to the set U 0.Example D Consider again Qc0(z) = z+c0 where c0 w �1:75778+0:0137961. As explainedin Sect. 2.1, Q3c0 maps the square box U 0 centered at 0 and with side length 0:4 onto a largerset U containing U 0 (see Fig. 4). By the Straightening Theorem, Q3c0 is hybrid equivalent to8



Qc for some value of c. One can check that the critical point is periodic of period three underiteration of Q3c0 , hence there are a limited number of posibilities for c. In this case the �lledJulia set of the polynomial-like map is homeomorphic to the Douady rabbit (see Figs. 8, 9).
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Figure 8: The �lled Julia set of Qc0 , where c0 w �1:76+ 0:01i.
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Figure 9: Left: the Douady rabbit or the �lled Julia set of Qc1(z) = z2 � c1 in white, wherec1 w �0:122+0:745i. Right: magni�cation of the �lled Julia set of Qc0 around the critical point. Thecopy of the Douady rabbit is the �lled Julia set of the polynomial-like map corresponding to Q3c0 .3 Parameter PlaneAs usual, the phenomena in dynamical plane are re
ected in parameter space. Recall thatthe parameter space of the family of quadratic polynomials Qc(z) = z2 + c contains theMandelbrot set de�ned as M = fc 2 C j fQnc (0)gn�0 is bounded gor, equivalently, the set of c values for which the �lled Julia set of Qc is connected (seeFig. 10).If we look at the parameter space for other functions, we very often encounter portions thatresemble the Mandelbrot set. This fact is again explained by the theory of polynomial-like9



Figure 10: The Mandelbrot setmaps. Since the Mandelbrot set appears when we consider families of quadratic polynomials,it is reasonable to expect that it should also appear when we consider families of polynomial-like maps of degree two, as long as these families are \nice" enough.Remark 3.1 For the sake of exposition, we consider here only one parameter families ofpolynomial-like mappings of degree two. For other cases see [DH3].3.1 Analytic families of polynomial-like mappingsDe�nition Let � be a Riemann surface and F = ff� : U 0� ! U�g be a family ofpolynomial-like mappings. Set U = f(�; z) j z 2 U�gU 0 = f(�; z) j z 2 U 0�gf(�; z) = (�; f�(z))Then, F is an analytic family of polynomial-like maps if it satis�es the following properties:1. U and U 0 are homeomorphic over � to �� D2. The projection from the closure of U 0 in U to � is proper3. The map f : U 0 ! U is holomorphic and properIf these properties are satis�ed, the degree of the maps is constant and it is called thedegree of F . We denote K� = Kf� and J� = Jf� . By the Straightening Theorem, for each �the map f� is hybrid equivalent to a polynomial of degree the degree of F . By analogy withpolynomials, we de�ne MF = f� 2 � j K� is connected g:In the next section, we give some conditions under which the set MF is homeomorphic to theMandelbrot set.3.2 Homeomorphic Copies of the Mandelbrot Set10



Let F be an analytic family of polynomial-like maps of degree two. Then, for each � 2MF ,f� is hybrid equivalent to a unique polynomial of the form Qc(z) = z2 + c. Hence the mapC : MF �! M� 7�! c = C(�)is well de�ned.Theorem 3.2 Let A 2 � be a closed set of parameters homeomorphic to a disc and contain-ing MF . Let !� be the critical point of f� and suppose that for each � 2 � n A, the criticalvalue f�(!�) 2 U� nU�0 . Assume also that as � goes once around @A, the vector f�(!�)�!�turns once around 0 (see Fig. 11). Then, the map C is a homeomorphism and it is analyticin the interior of MF .
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Figure 11: Illustration of theorem 3.2.Remarks 3.31. The assumption \f�(!�) 2 U� n U�0 if � 2 � nA" is equivalent to MF being compact.2. If the winding number of f�(!�)� !� around 0 is � > 1, then C is a branched coveringof degree �.Example A The purpose of this example is to illustrate that the conditions of the theoremare satis�ed for the Mandelbrot set itself. Consider the parameter plane for the quadraticfamily and let � = fc j GM (c) < 2�gA = fc j GM (c) � �gwhere GM denotes the Green's function of the Mandelbrot set. Given the way the Green'sfunction of M is de�ned, if c 2 @A then c lies on an equipotential curve of potential � inthe dynamical plane as well. So, for each c 2 @A, let �0c and �c be the equipotential curvesin the dynamical plane of Qc of potentials � and 2� respectively. The open sets enclosed by�0c and �c are the discs U 0c and Uc respectively and F = (QcjU 0c ; U 0c; Uc) the analytic familyof polynomial-like maps. Note that, by construction, for each c 2 � n A, the critical valueQc(0) = c lies in Uc n U 0c. Also, as c turns once around @A, the critical value c turns once11



around the critical point 0. In this case MF =M .Example B Consider the family of cubic polynomials P (z) = Pa;b(z) = z3+az+ b. For anygiven constants � and � we de�ne the parameter space �� = ��;� to be the set of polynomialsP such that:� one critical point !1 escapes to in�nity with escape rate �� another critical point !2 escapes to in�nity at a slower rate or stays bounded� the co-critical point !01 of !1 that is, the other preimage of P (!1) di�erent from !1,belongs to the external ray R(�) (see [Br3] for de�nitions of this terms and [Br2] formore in this example).Note that polynomials of this type are polynomial-like maps of degree two, as shown inexample B in Sect. 2.1. In [BH] Branner and Hubbard prove:Theorem 3.4 The parameter space �� is homeomorphic to a disc.Hence, polynomials in �� form a one-parameter family of polynomial-like maps of degree two.Let B� = B�;� be the set of polynomials in �� for which the orbit of !2 is bounded. Notethat examples B.1 and B.2 are in B� for some values of � and �. Also in [BH] we �nd thefollowing theorem:Theorem 3.5 Let � 2 B� and suppose that the connected component of c2 in K(P�) isperiodic. Then, the connected component of � in B� is a homeomorphic copy of the Mandelbrotset.Figure 12 shows the parameter space �0 with B0 in black.

Figure 12: The set B0 � �0 shown in black, with countably many components which are homeomor-phic copies of the Mandelbrot set. 12



Example C Let f�(z) = � cos(z) and let A be an appropriately chosen disc in the �-plane around � = �. One can check that for appropriate choices of U 0� and U�, the maps(f�jU 0� ; U 0�; U�) form an analytic family of polynomial-like maps. As � turns once around@A, the critical point stays �xed at �� while the critical value �� winds once around ��hence satisfying the conditions of theorem 3.2. In Fig. 13 we see the resulting copy of theMandelbrot set, with � = � as the center of its main cardioid.
•π

Figure 13: Copy of the Mandelbrot set in the parameter plane of f�(z) = � cos z.Example DLet A � � be a small discs of parameters centered at c w �1:755 and with c0 containedin A where c0 is as in example D in Sect. 2.1. For Qc� , the critical point is periodic of periodthree. One can check that for apropiate choices of �, Uc, U 0c and A, the conditions of thetheorem are satis�ed for the family F = fQ3c : U 0c ! Ucgc2�. Figure 14 shows the Mandelbrotset and a magni�cation of the homeomorphic copy that contains c0.
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Figure 14: Copy of the Mandelbrot set in the parameter plane of Qc. Range:[�1:8;�1:72] �[�0:038; 0:038].
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