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Dep. de Matemàtica Aplicada i Anàlisi
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Introduction

The technique of quasiconformal surgery on complex polynomials as a way of constructing
certain maps between parameter spaces was first introduced in [BD] to relate a certain cubic
parameter space to the 1/2–limb of the Mandelbrot set. Afterwards, surgery was used in [BF]
to construct homeomorphisms between some limbs of the Mandelbrot set. Recently, it has
been announced in [EY] the existence of products of Mandelbrot sets in the two–dimensional
complex parameter space of cubic polynomials, also by means of surgery.

The goal of this paper is to outline the results and proofs published in [BF] and presented
at the Göttingen Workshop on Siegel Disks on December 1995. They are presented hoping
that the reader can realize the important points in the proofs without entering into the many
details that are necessary to formalize the surgery process. We assume familiarity with the
basic definitions and concepts in complex dynamics, although we give a brief summary of
the necessary ones to state the main results. From that point on, we refer to the adapted
introduction in [BF] where the main tools are summarized, or to the original sources contained
in the bibliography. Finally, Sections 4 and 5 contain some new material on further results
(in progress) and some conjectures and questions on related topics.

1 Preliminaries and Main Results

For a complex polynomial f of degree d > 1, the point at infinity is always a superattract-
ing fixed point. Since infinity has no other preimage than itself, its basin of attraction is
connected. The complement of this basin is called the filled Julia set of f, that is,

K(f) = {z ∈ C | {fn(z)}n is bounded}.

The set K(f) is compact and simply connected by the observations above. Its connectedness
though, depends on the orbits of the critical points of f , or zeros of f ′. Indeed, K(f) is
connected if and only if all critical points of f belong to K(f) (see, for example, [Bl]).

We define the Julia set of f , denoted by J(f), as the common boundary of K(f) and
the basin of attraction of infinity. This definition only works for polynomials. In a general
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setting, the Julia set is the set of points for which the family of iterates does not form a
normal family.

If fa is a family of polynomials as the one above that depends on a parameter a ∈ C, we
can define its connectedness locus as the subset of the complex plane consisting of parameter
values for which the filled Julia set of the corresponding polynomial is connected, i.e.,

C(fa) = {a ∈ C | K(fa) is connected}.

The best known connectedness locus is, by far, the one associated to the family of quadratic
polynomials Qc(z) = z2 + c, called the Mandelbrot set (see Figure 1). Since the polynomials
Qc have only one critical point at ω = 0, the Mandelbrot set can be defined as

M = C(Qc) = {c ∈ C | {Qn
c (0)}n is bounded}.

The properties and structure of the Mandelbrot set are now almost completely understood
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Figure 1: The Mandelbrot set.

thanks to the work of A. Douady and J. Hubbard [DH1, DH2], D. Sullivan [MSS] and J-
C. Yocozz among others. However, the question about the local connectivity of M (MLC
conjecture) still remains unsolved.

We will also work with other connectedness loci, namely those associated to the one
parameter families of polynomials Pq,λ(z) = λz(1 + z/q)q (one for each value of q ∈ N). For
a given q ≥ 2, Pq,λ has two critical points: −q with multiplicity q − 1 and ωq = −q

q+1 with
multiplicity one (we will omit the subscript q whenever it creates no confusion). The orbit of
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−q is always bounded since Pq,λ(−q) = 0 and 0 is fixed. Hence, the connectedness locus is
defined as

Lq = C(Pq,λ) = {λ ∈ C | {Pn
q,λ(

−q

q + 1
)}n is bounded}.

(See Figures 2, 3 and 4). One can easily see [BF, Prop. 3.1] that any polynomial with these
properties must be of the form Pq,λ.

L1,0

•1 •2•0 •

Figure 2: The connectedness locus of P1,λ(z) = λz(1 + z) and the 0–limb L1,0. This is the well
known logistic family (see, for example, [De]) and its connectedness locus is a double covering of the
Mandelbrot set.

•1•0

L2,0

•

Figure 3: The connectedness locus of P2,λ and the 0–limb L2,0.

We call a connected component, Ω, of the interior of M or Lq a hyperbolic component if for
all parameters in Ω, the corresponding polynomials have an attracting periodic orbit. These
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Figure 4: The connectedness locus of P3,λ and the 0–limb L3,0.

polynomials are hyperbolic in the case of M and subhyperbolic in the case of Lq (except for
the component which consists of the unit disc). The period of the attracting orbit must be
the same for all parameters in Ω. Hence, we may call it the period of Ω.

For each hyperbolic component Ω, there exists a conformal isomorphism ρΩ : D → Ω
such that Qc (resp. Pq,λ) have an attracting cycle of multiplier t if and only if c (resp. λ)
equals ρΩ(t) (see [DH2]). This isomorphism extends to the boundary and we thus obtain
a parametrization of ∂Ω by γΩ(t) = limr→1 ρΩ(re2πit). For each point t ∈ R/Z, the point
γΩ(t) ∈ ∂Ω is said to have internal argument t.

The largest hyperbolic component in M , denoted by Ω0, is the component bounded by the
main cardioid, and it corresponds to those polynomials that have an attracting fixed point.
Attached to each point c = γΩ(p/q) ∈ ∂Ω0, where 0 < p/q < 1 is in lowest terms, there is a
unique hyperbolic component of period q which we denote by Ωp/q (see Figure 1). We define

the p/q–limb of M as the connected component of M \ Ω0 attached to the point γΩ0
(p/q),

union this point, and we denote it by Mp/q. It has been shown that the Mandelbrot set is

the union of Ω0 with all the limbs of M (see [La] and [Y]).

The unit disc plays the same role in Lq as Ω0 in M . Indeed, if |λ| < 1, the point z = 0 is an
attracting fixed point of multiplier exactly λ. Hence, in this case, ρΩ0

≡ Id and γΩ(t) = e2πit.
The difference with Ω0 resides in the fact that, also at the point λ = 1 = γD(0), there is
attached a hyperbolic component, naturally of period one. Analogously to the case of the
Mandelbrot set, we define the r/s–limb of Lq as the connected component of Lq \D attached
to the point λ = γD(r/s), union this point, and we denote it by Lq,r/s. Of special importance
in this paper will be the 0–limb Lq,0.

The main theorem reads as follows.

Theorem A Let p and q be positive integers such that p < q, q ≥ 2 and gcd(p, q) = 1.
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Then, there exists a homeomorphism

φp/q : Mp/q −→ Lq,0,

which is holomorphic in the interior of Mp/q.

By composing the maps in Theorem A, one obtains several interesting corollaries that
relate the limbs of the Mandelbrot set either to themselves or to others with the same de-
nominator (see Figure 5).

Corollary A.1 Let p/q and p′/q be as in Theorem A. There exists a homeomorphism

Φ = Φq
pp′ : Mp/q −→Mp′/q

where Φq
pp′ := φ−1

p′/q ◦ φp/q. This map is holomorphic in the interior of Mp/q.

Several years ago J-C. Yoccoz observed (unpublished) that the 1/5–limb and the 2/5–limb
of the Mandelbrot set were homeomorphic, and that, probably, corresponding polynomials
would have conjugate dynamics on the filled Julia set. As we will see, the homeomorphisms
Φq
pp′ do not relate polynomials with conjugate dynamics but they instead have another re-

markable property.

Definition Let K1 and K2 be two compact sets of C and h : K1 → K2 a homeomorphism.
We say that h is compatible (resp. reversely compatible) with the embeddings of K1 and K2

in the plane if there exist U1 and U2 neighborhoods of K1 and K2 such that h extends to a
homeomorphism h′ : U1 → U2, preserving (resp. reversing) orientation.

We note that a homeomorphism between two limbs of M that preserved the dynamics (homeo-
morphisms with this property have been announced in [LS]) could not possibly be compatible
with the embedding of the limbs in C. Indeed, they would have to change the cyclic order
of the antenae at every branching point. The homeomorphisms we construct do not relate
polynomials with conjugate dynamics (although their dynamics are related) but they are
compatible with the embeddings of the limbs in the plane (see Sect. 4).

The 0–limbs of the connectedness loci Lq are obviously symmetric with respect to the real
axis. If we combine this property with Theorem A we obtain the following corollary.

Corollary A.2 Let p, q be as in Theorem A, and C(z) = z. Then, the homeomorphism

Ip/q := φ−1
p/q ◦ C ◦ φp/q : Mp/q −→Mp/q,

is an involution (i.e., I2
p/q = Id) and antiholomorphic in the interior of Mp/q. The fixed

points of Ip/q form a topological arc through the limb.
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L5,0
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Figure 5: The composition of the maps in Theorem A to obtain the homeomorphism between the
1/5–limb and the 2/5–limb of M . Corresponding points are c0, λ0 and c′0, centers of hyperbolic
components of periods 5, 1 and 5 respectively. Also c1, λ1 and c′1, centers of hyperbolic components
of periods 6, 2 and 8 respectively. See Figures 10 and 11 for their filled Julia sets.
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One can see [BF, Sect. 6] that these involutions can also be obtained by combining the
homeomorphisms of Theorem A with the symmetry of M with respect to complex conjuga-
tion. More precisely,

Ip/q = Φq
(q−p)p ◦ C = C ◦ Φq

p(q−p).

The fixed points are the image under φp/q of the points in Lq,0 that belong to the real axis,
and hence a topological arc bissecting the limb. Similar arcs have been shown to exist in
[BD], supporting the conjecture of the arcwise connectivity of the Mandelbrot set. Although
in principle it could be possible to obtain the homeomorphisms of Corollary A.1 (and hence
the involutions) from direct surgery on quadratic polynomials, it is not clear that, without
reference to the polynomials Pq,λ, the existence of these arcs would follow.

From the proof of Theorem A one obtains several results on the dynamical planes. They
relate the filled Julia sets of parameters in Mp/q with their corresponding ones in Mp′/q under
the map Φq

pp′ . Their statements can be found in Section 3.

The paper is structured as follows. Section 2 contains a discussion of the proof of Theorem
A, paying special attention to the topological part of the surgery. As it was mentioned,
in Section 3 we state some of the results on the dynamical plane. Section 4 deals with
the compatibility of Φq

pp′ with the embeddings of the limbs in C (work in progress), and
includes some combinatorial results on external rays of M . Finally, Section 5 mentions some
conjectures and open questions related to this topic.

2 Proof of Theorem A

In this section we will discuss the proof of Theorem A. As usual, the hard work needs to be
done in the dynamical plane. Consider c ∈Mp/q and, from now on, assume that c is not equal
to the root point γΩ0

(p/q). We must modify the space and the map Qc in order to obtain a
polynomial Pq,λ and, in particular, a value of λ ∈ Lq. This is done by a surgery procedure.
This process, after mapping the root point of Mp/q to the root point of Lq,0, defines the map
φp/q. Finally one needs to show the continuity and bijectivity of φp/q.

2.1 Surgery

The steps of the surgery procedure are as follows.

1. Topological surgery We start in the dynamical plane of Qc for a fixed c ∈ Mp/q.
Through cutting and sewing (i.e., making some identifications) we construct a new

“truncated” space, CT , and a new map f
(1)
c , which is the first return map. This map

has several lines of discontinuity but already exhibits the combinatorial and topological
properties of a polynomial Pq,λ.

2. Quasiconformal surgery We modify f
(1)
c in neighborhoods of the lines of discontinuity

(called sectors) and obtain a C1 map, f
(2)
c , which is quasiregular.

7



3. Holomorphic smoothing We use the Measurable Riemann Mapping Theorem to ob-

tain a holomorphic map f
(3)
c which is polynomial–like of degree q + 1. Finally, the

Straightening Theorem gives the required polynomial Pq,λ.

For simplicity we explain each step for the particular case of p/q = 1/3, which already
contains all the important points of the proof of the general case [BF, Sect. 5.2].

Dynamical characterizations of Qc with c ∈M1/3

Let Kc = K(Qc) and Jc = J(Qc). Since c /∈ Ω0, the two fixed points of Qc are repelling.
Let βc denote the most repelling one, which is always the landing point of the 0–ray. Let αc

denote the remaining fixed point.

Since c ∈ M1/3, there are three external rays landing at αc. The arguments of these
rays must form a period three cycle under the doubling map, and have rotation number 1/3.
These conditions determine that the external rays must be Rc(1/7), Rc(2/7) and Rc(4/7).
Because of the symmetry with respect to the origin, −αc is the landing point of the remaining
preimages of these rays which are Rc(1/14), Rc(9/14) and Rc(11/14).

The rays landing at αc and −αc divide the plane into five closed subsets (see Figure 6).
We denote by V 0

c the one that contains the critical point ω = 0, and the others V 1
c , V 2

c and
Ṽ 1
c = −V 1

c and Ṽ 2
c = −V 2

c as shown in Figure 6. Each of these subsets contains a connected
component of Kc \ {αc,−αc} in its interior.

Vc
0

Vc
0

Vc
1~

Vc
2~

Vc
1

Vc
2

Rc(1/14)

Rc(11/14)Rc(9/14)

Rc(4/7)

Rc(2/7)
Rc(1/7)

ω=0

Vc
0Vc

1

Vc
2 Vc

1~

~ Vc
2

ω=0

Rc(4/7)

Rc(11/14)

Rc(1/14)

Rc(9/14)

Rc(1/7)

Rc(2/7)

α c

−α c

Kc

Figure 6: Filled Julia set of Qc for c ∈M1/3 and sketch of a typical one.
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Looking at the dynamics of the rays, we see that Qc acts on this partition as follows:

V 0
c

2−1
−→ Ṽ 1

c

V 1
c , Ṽ

1
c

1−1
−→ Ṽ 2

c

V 2
c , Ṽ

2
c

1−1
−→ V 0

c ∪ V 1
c ∪ V 2

c

Dynamical characterizations of P3,λ for λ ∈ L3,0

Polynomials in L3,0 share the property of having the fixed point z = 0 as the landing point
of only one fixed ray, chosen to be Rλ(0) (see [BF, Sect. 3.1] for details on the fact that this
is not a monic family of polynomials). Since the only preimage of 0 apart from itself is the
critical point −3, all other preimages of Rλ(0), namely

Rλ(1/4), Rλ(1/2), Rλ(3/4),

must land at −3.

These three rays divide the complex plane into three close subsets which we denote by
V 0
λ , V 1

λ and V 2
λ as shown in Figure 7. There is a connected component of Kλ \ {−3} in each

of these sets.

Vλ
0

Vλ
2

Vλ
1Vλ

0

Rλ(0)

Rλ(1/4)

Rλ(1/2)

Rλ(3/4)

0 -3ω=−3/4 ω=-3/4

0

-3Rλ(0)

Rλ(1/4)

Rλ(1/2)

Rλ(3/4)

Vλ
0

Vλ
1

Vλ
2

Figure 7: Filled Julia set of P3,λ for c ∈ L3,0 and sketch of a typical one. These dynamical planes
have been rotated 180 degrees.

The other critical point ω = −3/4 lies in the interior of V 0
λ . Hence, P3,λ acts on these

sets as follows.
◦

V 0
λ

2−1
−→ C \ (Rλ(0) ∪ {0})

◦

V 1
λ,

◦

V 2
λ

1−1
−→ C \ (Rλ(0) ∪ {0})
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Topological surgery

Given c ∈M1/3, we want to modify the dynamical plane of Qc in order to create a new map
with the dynamical characterizations of a polynomial P3,λ for some λ ∈ L3,0. In order to
do that, we cut along the rays Rc(1/7) and Rc(4/7) and identify them equipotentially (see
Figure 8). That is, we define the truncated complex plane as

CT
c = (V 0

c ∪ V 1
c ∪ V 2

c )/ ∼

where ∼ is the equivalence relation that identifies a point z ∈ Rc(1/7) with the unique point
z′ ∈ Rc(4/7) such that Gc(z) = Gc(z

′). This new space is a Riemann surface isomorphic to
C. Note that no identification takes place in the filled Julia set. We define the truncated filled
Julia set as

KT
c = Kc ∩ CT

c = Kc ∩ (V 0
c ∪ V 1

c ∪ V 2
c ).

We proceed to define a new map f
(1)
c on CT

c which is the first return map on this space,
that is

f (1)c (z) =





Q3
c(z) if z ∈ V 0

c ,

Q2
c(z) if z ∈ V 1

c ,

Qc(z) if z ∈ V 2
c .

ω=0

α

α'

Qc

Qc

Qc

Qc

2

3

3

Vc

Vc

Vc

Vc

0

0

1

2

Rc(1/14)

Rc(11/14)

Rc(9/14)

Rc

f(1)
c

Figure 8: The truncated complex plane CT
c and the first return map. An equipotential curve and its

preimage under f
(1)
c have been drawn to show the shift discontinuity at the rays landing at −αc.

Note that the map is not well defined on the rays Rc(1/14), Rc(9/14) and Rc(11/14),
since a shift discontinuity occurs.

The reader should view the sets V i
c for i = 0, 1, 2 as those that will become the sets V i

λ.
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Indeed, the first return map acts on these sets by mapping

◦

V
0

c
2−1
−→ C \ (Rc ∪ {αc})

◦

V
1

c ,
◦

V
2

c
1−1
−→ C \ (Rc ∪ {αc}),

where Rc denotes the two identified rays.

Note that f
(1)
c is well defined on Rc. It is also holomorphic wherever defined, except at

−αc. However, f
(1)
c already has many of the topological and combinatorial properties of a

polynomial P3,λ for some λ ∈ L3,0. We have just seen some of them but, moreover,

• The map f
(1)
c has topological degree four, i.e., every point in CT

c \Rc has four preimages
(counting multiplicity).

• There is a new critical point at −αc with multiplicity two. Intuitively, this can be
checked by seeing how the image of any small neighborhood of −αc wraps three times
around the critical value αc. This critical point is prefixed.

Quasiconformal surgery

We will outline the process where we modify f
(1)
c to obtain a quasiregular map f

(2)
c , which

still preserves the properties of f
(1)
c . Recall that a quasiregular map is a quasiconformal map

which is allowed to have critical points. More precisely, it is a composition of a quasiconformal
homeomorphism with a holomorphic map.

We start by modifying f
(1)
c on a neighborhood of the rays of discontinuity. These neigh-

borhoods are contained in CT
c \ KT

c and called sectors (see Figure 9). They are actually
defined on the complement of the unit disc (or equivalently, on the right half plane) and then
pulled back by the Böttcher coordinate ψc (see [BF, Sect. 4.1.1] for details). We denote these
sectors by Sc(1/14), Sc(9/14) and Sc(11/14) respectively, and let S′

c be equal to their union.

All points in S′
cc are mapped under f

(1)
c to a sector around Rc (by choice) which we denote

by Sc.

In order for these sectors not to overlap, we must restrict to a bounded set around KT
c ,

namely the region enclosed by an equipotential curve γc of fixed potential η > 0. Let Xc be
this region. We define a simple curve γ′c in Xc which, outside the sectors, coincides with the

preimage of γc under f
(1)
c , i.e., some disjoint pieces of equipotential curves. The segments

inside S′
c, are chosen to be C∞ curves that join the two disconnected ends (see Figure 9). Let

X ′
c be the domain bounded by γ′c.

The map f
(2)
c : X ′

c → Xc is defined as follows.

f (2)c (z) =

{
f
(1)
c (z) if z /∈ S′

c

g(z) if z ∈ S′
c
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ω=0

α

α'

Xc

Xc’

Sc(9/14)

Sc(11/14)Sc(1/14)

Rc

Figure 9: The sectors defined around the rays of discontinuity, and the domain and image of f
(2)
c .

where g is chosen to be a C1 diffeomorphism such that it defines the same tangent map

as f
(1)
c on the boundary of the sectors. In this definition, a pullback process is used (see

[BF, Sect. 5.2] for details), so that f
(2)
c is quasiregular or, equivalently, the field of ellipses

Ex = (Txf
(2)
c )−1(S1) has bounded dilatation ratio.

Remark 2.1 An essential point for this construction to work is the fact that orbits enter
the sectors at most once (Shishikura principle on surgery). Since the map is holomorphic
everywhere else, the bound on the dilatation ratio is constant everywhere.

Holomorphic smoothing and definition of φp/q

The next step is to obtain a holomorphic map f
(3)
c with the same properties as f

(2)
c but which

is polynomial–like map of degree four. We then can apply the Straightening Theorem (see
[DH3] or [BF, Sect. 2.2]) to obtain an actual polynomial P3,λ.

The procedure goes as follows.

• Construct a measurable field of ellipses (or an almost complex structure) σc on Xc with

bounded dilatation ratio which is invariant under f
(2)
c , and which consists of circles on

KT
c .

• Apply the Measurable Riemann Mapping Theorem (see [A] or [BF, Sect. 2.2]) to obtain

a quasiconformal homeomorphism ϕc :
◦

Xc → D that integrates σc, i.e., that makes the
map

f (3)c = ϕc ◦ f
(2)
c ◦ ϕ−1

c : D′

c −→ D

holomorphic on D′
c = ϕc(

◦

X ′
c).
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• Since ϕc is a homeomorphism, f
(3)
c is still a ramified covering of degree four with

two critical points. Moreover D′
c is relatively compact in D, hence the map f

(3)
c is

polynomial-like of degree four. We may hence apply the Straightening Theorem to
obtain a degree four actual polynomial P and a hybrid equivalence χc that conjugates

f
(3)
c to

P = χc ◦ f
(3)
c ◦ χ−1

c

on neighborhoods of KT
c and K(P ) respectively.

• Finally, we check that P has all the properties of a polynomial in the family P3,λ, with
λ ∈ L3,0. Hence, after conjugating by an affine map we may assume that the polynomial
obtained is of this form, for some λ = λ(c). One can see that the value of λ does not
depend on the choices made during the construction. Thus, we can define

φ1/3 : M1/3 −→ L3,0

by setting φ1/3(c) = λ(c), and mapping the root point to the root point.

2.2 The map φp/q is a homeomorphism

In this section we comment on the necessary steps to prove that the map defined above is
actually a homeomorphism which is moreover analytic in the interior of the limbs.

Bijectivity

The bijectivity of φp/q is proven by explicitely constructing an inverse map

ξp/q : Lq,0 −→Mp/q,

and showing that the composition both ways equals the identity. The construction of the
inverse is done again by a surgery procedure which, intuitively, consists on “undoing” ev-
erything that was done before. Hence this time we must “add” to the dynamical plane of a
polynomial Pq,λ, with λ ∈ Lq,0, the parts of the plane that were removed in the construction
of φp/q, and define a new map accordingly. Once the analogous to the first return map has
been defined, the remaining steps of surgery are as above.

To show that the composition of both maps is equal to the identity, it is important to note
that, as it is the case of quadratic polynomials Qc, the family of polynomials Pq,λ contains a
single element of each hybrid equivalence class, that is, if Pq,λ and Pq,λ′ are hybrid equivalent
then λ = λ′ [BF, Prop. 3.3]. Hence the proof consists of showing that the polynomials Pq,λ

and Pq,λ′ where λ′ = φp/q ◦ ξp/q(λ) are hybrid equivalent and that the same holds for Qc and
Qc′ where c′ = ξp/q ◦ φp/q(c). This is accomplished by following the surgery procedures and
making the right choices for the boundaries and sectors at each step (see [BF, Sect. 5.3] for
details).
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Analyticity in the interior of the limbs

If ΩM is a hyperbolic component of the interior of M , it is easy to see that φp/q is analytic
in ΩM . Indeed, by following the surgery procedure, we see that if ω = 0 is attracted to a
periodic cycle by Qc then the critical point ωq = −q/(q+1) is attracted to a periodic cycle by
Pq,λ where λ = φp/q(c). The periods of the cycles are not equal but their multipliers coincide.
Hence, ΩL = φp/q(ΩM ) is a hyperbolic component of Lq,0 and moreover

φp/q|ΩM
= ρΩL

◦ ρ−1
ΩM

,

where ρΩL
: D → ΩL and ρΩM

: D → ΩM are the respective parametrizations given by
the multiplier maps. Since these maps are conformal isomorphisms, this shows that φp/q is
holomorphic on ΩM . A paralel statement holds for ξp/q.

It is not yet known that all components of the interior of M are hyperbolic (this is known
as the hyperbolicity conjecture and it would be a consequence of MLC). Some of them might
be non–hyperbolic or (as they are frequently called) queer components. If c belongs to a
non–hyperbolic component, it is known that Kc must have empty interior and Jc must be of
positive measure.

To show that φp/q is holomorphic in a non–hyperbolic component we use the same argu-
ment as above but with a different parametrization, namely the deformations of the unique
(up to rotation) invariant line field of Qc and Pq,λ (see [BF, Sect. 5.4] for details).

Continuity at points on the boundary

Given a sequence cn → c ∈ ∂Mp/q, let λn = φp/q(cn) and λ = φp/q(c). To prove continuity at
c we need to show that λn → λ or, equivalently (since Lq,0 is compact), that any convergence

subsequence λnk
→ λ̃ satisfies λ̃ = λ.

A key property of the family of polynomials Pq,λ is the following.

Lemma 2.2 (BF, Lemma 5.22) Suppose λ ∈ ∂Lq, λ
′ ∈ C and the polynomials Pq,λ and

Pq,λ′ are quasiconformally conjugate. Then, λ′ = λ.

This is known to hold for the family Qc (see [DH3]) and it makes it sufficient to show that the
polynomials Pq,λ and P

q,λ̃
are quasiconformally conjugate (see [BF, Lemma 5.25]) in order

to conclude continuity.

We remark that this argument works only at points of the boundary, since the lemma is
not true for points in the interior of M , and no more than quasiconformal conjugacy can be
shown. For interior points, we are not able to show continuity directly, i.e., without going
through the multiplier map.

An important point in the proof of continuity is to realize that most of the choices in the
surgery construction (the boundary of the truncated space, the almost–complex structure,
etc.) have been done once and for all on the complement of the unit disc (or in fact, on

14



the right half plane) and then pulled back by (a restriction of) the Böttcher coordinates ψc.
Since the map ψc varies analytically with respect to c, it follows that the truncated space,

the sectors and the map f
(2)
c vary analytically with c. This is not a precise statement and it

needs to be formalized by the use of holomorphic motions and the λ–lemma (see [BF, Lemma
5.24]).

3 Results on the dynamical plane

From the proof of Theorem A we obtain the following results on the dynamical plane.

Theorem B (BF, Thm. G) Let c ∈Mp/q and λ = φp/q(c) ∈ Lq,0. LetWλ be a neighborhood
of Kλ = K(Pq,λ) which is the filled level set of a chosen equipotential curve. There exists a
homeomorphism

Hc : Xc −→Wλ,

which satisfies ∂Hc = 0 on KT
c and conjugates f

(2)
c to Pq,λ.

The homeomorphism Hc is basically the composition of the integrating map ϕc and the
straightening map χc. However, in this composition one must add a hybrid equivalence that
makes sure that relevant sectors, boundaries, etc. are sent to their corresponding ones. The
only reason for this is to deduce the following corollary.

Corollary B.1 Let Φq
pp′ : Mp/q → Mp′/q be as in Corollary A.1, and let c ∈ Mp/q and

c′ = Φq
pp′(c). There is a homeomorphism

Φ̂c : Kc −→ Kc′

which is holomorphic in the interior of Kc and compatible with the embeddings of Kc and Kc′

in C.

(Other similar results can be obtained from the involutions in Corollary A.2). To construct
this map one first defines Φ̂T

c : Xc \ Sc → Xc′ \ Sc′ as Φ̂T
c = Hc ◦H

−1
c′ where Sc and Sc′ are

the sectors around the identified rays and Hc, Hc′ are given by Theorem B. Afterwards, set

Φ̂c =

{
Φ̂T
c (z) if defined

−Φ̂T
c (−z) otherwise.

We refer to [BF, Sect. 5.6] for details and to Figures 10 and 11 for some examples of corre-
sponding Julia sets.
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4 Compatibility with the embeddings

To prove that the homeomorphisms Φq
pp′ : Mp/q →Mp′/q are compatible with the embeddings

of Mp/q and Mp′/q in C, it is necessary to extend the map Φq
pp′ to a neighborhood of the limbs.

The first temptation is to define this extension in the most intuitive way, namely mapping
external rays to external rays equipotentially, in such a way that it “matches” with Φq

pp′ on
the boundary of the limbs. In fact, we only require a map on external arguments.

Theorem 4.1 (BF, Thm. C) Let θ±p/q and θ
±

p′/q be the arguments of the external rays land-
ing at the root points of the limbs Mp/q and Mp′/q, respectively. Then there exists an orien-
tation preserving homeomorphism

Θq
pp′ : [θ−p/q, θ

+
p/q] −→ [θ−p′/q, θ

+
p′/q]

such that for θ ∈ [θ−p/q, θ
+
p/q] ∩ Q, the ray RM (θ) lands at the point c ∈ Mp/q if and only if

RM (Θq
pp′(θ)) lands at Φq

pp′(c) ∈Mp′/q.

In fact, by construction, the map Θq
pp′ only has this property for Misiurewicz points. The

remaining rational arguments (and many irrational ones) are obtained after taking limits. If
M is locally connected then this result extends to all irrational arguments and we obtain:

Theorem 4.2 (BF, Thm. E) Assume M is locally connected. Then, the map Φq
pp′ is com-

patible with the embeddings of the limbs in C.

However, the compatibility with the embeddings is true without the assumption of local
connectivity, as we will show in a forthcoming paper. The extension of Φq

pp′ to a neighborhood
of the limbs must be done in a different way.

To define the map Φq
pp′ for values of c outside of Mp/q (but in a small neighborhood), we

again need to perform surgery as we did for the proof of Theorem A. Even if the Julia sets
are now disconnected, in principle there is no problem in repeating the process except for
two facts.

The first one is the definition of the sectors. When Kc is connected, the sectors are
defined in the right half plane and then pulled back by the Böttcher coordinates so that the
continuity with respect to c is assured. But when c is outside of the Mandelbrot set, the
Böttcher coordinates are no longer continuously defined in the whole complement of Kc, but
only for points with potential larger than Gc(c). To solve this problem, we have to define
the sectors on the right half plane as before but only up to an equipotential curve of fixed
potential η > Gc(c). We can then pull back by the Böttcher coordinate and define the
remaining pieces of the sectors in a dynamical way directly on the dynamical plane of Qc.
In this way, we assure that the sectors will not intersect the Julia set.

We find the second obstacle once we have defined the required polynomial like map f
(3)
c

and we want to obtain the actual polynomial Pq,λ. The Straightening Theorem also applies to
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polynomial–like maps with a disconnected Julia set but, in that case, the resulting polynomial
is no longer unique. As a result, although one can always make a choice that assures the
continuity of the Straightening map, the resulting extension of Φq

pp′ will not necessarily be
injective. Fortunately, this problem has motivated a recent result of X. Buff who, by means
of the Douady–Earle extension, has shown that a continuous extension (plus some conditions
as the ones given in Theorem 4.1) is sufficient in order to show the compatibility of the
embeddings. (See [Bu]).

5 Conjectures and open problems

In this section we state some questions and conjectures related to the topics in this paper.

Quasiconformality of the homeomorphisms

Conjecture 1 The homeomorphisms Φq
pp′ are quasiconformal.

Recall that the maps Φq
pp′ are holomorphic in the interior of the limbs but that only continuity

has been proven at points on the boundary of the limbs. This conjecture is based on the
proof of M. Lyubich that primitive copies of M (those with a cusp) are quasiconformal copies
(see [Ly]).

Other limbs of Lq

Throughout the paper we have only considered the 0–limb of each connectedness locus Lq.
Let Lq,r/s denote the r/s–limb of Lq as defined in Section 1. For a polynomial Pq,λ with
λ ∈ Lq,r/s, the point z = 0 is still a repelling fixed point but this time is the landing point of
a cycle of s external rays. Indeed, z = 0 experiments an s–tupling bifurcation when λ is at
the point in the unit circle with internal argument r/s. Consequently, the critical point −q
is now the landing point of q · s external rays, exactly the remaining preimages of the rays
landing at 0.

Conjecture 2 Let r and s be positive integers such that r < s and gcd(r, s) = 1. For any
positive integers p and q such that p < q ·s and gcd(p, q ·s) = 1, there exists a homeomorphism

h = h(r, s, p, q) : M p

q·s
−→ Lq, r

s
.

The combinatorial or topological part of the surgery procedure seems to be clear, although
we not only need to “cut away” some part of the filled Julia set of Kc but also “add” extra
pieces which are copies of the existing ones. This seems to suggest that surgery techniques
as those in the second part of [BD] (opening modulus) will need to be used.
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Secondary limbs of M

Let Ω be a hyperbolic component of M of period P > 1 and let γΩ : S1 → ∂Ω be the
parametrization of its boundary that sets γΩ(0) equal to the root of Ω. For any 0 < p/q < 1
in lowest terms we define the {Ω, p/q}–limb, Ωp/q as the connected component of M \ Ω
attached to ∂Ω at the point γΩ(p/q).

We know that, using a tuning procedure (see [DH3]), there is a homeomorphic copy of
the Mandelbrot set that corresponds the hyperbolic component Ω with the main cardioid of
M . Consequently, each {Ω, p/q}–limb contains a copy of the actual p/q–limb of M . This
suggests the following question.

Question Can we apply surgery techniques as above to conclude that all the {Ω, p/q}–limbs
with the same denominator are homeomorphic? Are they related to the limbs of Lq′ for some
q′?

Generalizing surgery

It is clear that the technique of surgery on complex polynomials in order to construct homeo-
morphisms between parameter spaces varies from one case to another only on the topological
or combinatorial part. The rest of the process consists of a lot of hard work but seems to be
relatively similar in all instances. We believe it could be very useful and interesting to gen-
eralize the procedure into a result which, after checking certain hypothesis, could be applied
to conclude, for example, the continuity of the constructed homeomorphisms or, even more,
the existence of the homeomorphisms themselves.

Exponentials

The family of polynomials Pq,λ was studied in [F] as a way of approximating the family of
entire transcendental functions Gλ(z) = λz exp(z) after letting q tend to infinity. It is clear
that the polynomials Pq,λ tend to the maps Gλ uniformly on compact sets but there are also
some kinds of dynamical convergence. For the case of the exponential, this phenomenon was
studied in [DGH]. Recently, B. Krauskopf and H. Kriete have obtained several interesting
results on convergence of hyperbolic components and other aspects, not only for this family
but also for others with similar properties (see for example [KK1, KK2]). Although this is
a topic with many remaining open questions, we chose to formulate the following (somehow
vague) one, given its relation with the Mandelbrot set.

Question In view of results like Theorem A and the convergence of Pq,λ to Gλ, what can
we say about the limit of M1/q when q → ∞ (known as the limit elephant)?
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