Ergod. Th. & Dynam. Sys. (2003), **23**, 493–508 DOI: 10.1017/S0143385702001323 © 2003 Cambridge University Press Printed in the United Kingdom

Surgery on Herman rings of the complex standard family

NÚRIA FAGELLA[†] and LUKAS GEYER[‡]

 † Universitat de Barcelona, Departamento de Matemàtica Aplicada i Anàlisi, Gran Via 585, Barcelona, Spain (e-mail: fagella@maia.ub.es)
‡ Universität Dortmund, Fachbereich Mathematik Vogelpothsweg 87, D-44221 Dortmund, Germany (e-mail: geyer@math.uni-dortmund.de)

(Received 3 July 2001 and accepted in revised form 17 September 2002)

Abstract. We consider the standard family (or Arnold family) of circle maps given by $f_{\alpha,\beta}(x) = x + \alpha + \beta \sin(x) \pmod{2\pi}$, for $x, \alpha \in [0, 2\pi)$, $\beta \in (0, 1)$ and its complexification $F_{\alpha,\beta}(z) = ze^{i\alpha} \exp[\frac{1}{2}\beta(z-\frac{1}{z})]$. If $f_{\alpha,\beta}$ is analytically linearizable, there is a Herman ring around the unit circle in the dynamical plane of $F_{\alpha,\beta}$. Given an irrational rotation number θ , the parameters (α, β) such that $f_{\alpha,\beta}$ has rotation number θ form a curve T_{θ} in the parameter plane. Using quasi-conformal surgery of the simplest type, we show that if θ is a Brjuno number, the curve T_{θ} can be parametrized real-analytically by the modulus of the Herman ring, from $\beta = 0$ up to a point (α_0, β_0) with $\beta_0 \leq 1$, for which the Herman ring collapses. Using a result of Herman and a construction in I. N. Baker and P. Domínguez (*Complex Variables* **37** (1998), 67–98) we show that for a certain set of angles $\theta \in \mathcal{B} \setminus \mathcal{H}$, the point β_0 is strictly less than 1 and, moreover, the boundary of the Herman rings with the corresponding rotation number have two connected components which are quasi-circles, and do not contain any critical point. For rotation numbers of constant type, the boundary consists of two quasi-circles, each containing one of the two critical points of $F_{\alpha,\beta}$.

1. Introduction

The standard family of maps of the circle is a two-parameter family given by

 $f_{\alpha,\beta}(x) = x + \alpha + \beta \sin(x) \pmod{2\pi},$

for $x, \alpha \in [0, 2\pi)$ and $\beta \in (0, 1)$. These maps are simple perturbations of rigid rotations and it is well understood how their dynamics vary in terms of the parameters α and β .