Surgery on Herman rings of the complex standard family

NÚRIA FAGELLA \dagger and LUKAS GEYER \ddagger
\dagger Universitat de Barcelona, Departamento de Matemàtica Aplicada i Anàlisi, Gran Via 585, Barcelona, Spain
(e-mail: fagella@maia.ub.es)
\ddagger Universität Dortmund, Fachbereich Mathematik Vogelpothsweg 87, D-44221 Dortmund, Germany
(e-mail: geyer@math.uni-dortmund.de)

(Received 3 July 2001 and accepted in revised form 17 September 2002)

Abstract

We consider the standard family (or Arnold family) of circle maps given by $f_{\alpha, \beta}(x)=x+\alpha+\beta \sin (x)(\bmod 2 \pi)$, for $x, \alpha \in[0,2 \pi), \beta \in(0,1)$ and its complexification $F_{\alpha, \beta}(z)=z e^{i \alpha} \exp \left[\frac{1}{2} \beta\left(z-\frac{1}{z}\right)\right]$. If $f_{\alpha, \beta}$ is analytically linearizable, there is a Herman ring around the unit circle in the dynamical plane of $F_{\alpha, \beta}$. Given an irrational rotation number θ, the parameters (α, β) such that $f_{\alpha, \beta}$ has rotation number θ form a curve T_{θ} in the parameter plane. Using quasi-conformal surgery of the simplest type, we show that if θ is a Brjuno number, the curve T_{θ} can be parametrized real-analytically by the modulus of the Herman ring, from $\beta=0$ up to a point (α_{0}, β_{0}) with $\beta_{0} \leq 1$, for which the Herman ring collapses. Using a result of Herman and a construction in I. N. Baker and P. Domínguez (Complex Variables 37 (1998), 67-98) we show that for a certain set of angles $\theta \in \mathcal{B} \backslash \mathcal{H}$, the point β_{0} is strictly less than 1 and, moreover, the boundary of the Herman rings with the corresponding rotation number have two connected components which are quasi-circles, and do not contain any critical point. For rotation numbers of constant type, the boundary consists of two quasi-circles, each containing one of the two critical points of $F_{\alpha, \beta}$.

1. Introduction

The standard family of maps of the circle is a two-parameter family given by

$$
f_{\alpha, \beta}(x)=x+\alpha+\beta \sin (x) \quad(\bmod 2 \pi)
$$

for $x, \alpha \in[0,2 \pi)$ and $\beta \in(0,1)$. These maps are simple perturbations of rigid rotations and it is well understood how their dynamics vary in terms of the parameters α and β.

