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Abstract

We study the geometric structure of the boundary of Herman rings in a model family
of Blaschke products of degree 3. Shishikura’s quasiconformal surgery relates the Herman
ring to the Siegel disk of a quadratic polynomial. By studying the regularity properties
of the maps involved, we can transfer McMullen’s results on the fine local geometry of
Siegel disks to the Herman ring setting.

1 Introduction

We consider the dynamical system induced by the iterates of a rational map f : Ĉ→ Ĉ of
degree d ≥ 2, where Ĉ denotes the Riemann sphere or compactified complex plane. We

use the notation fn := f ◦
n)
· · · ◦ f to denote the nth iterate of f . Under this dynamics, the

Riemann sphere splits into two completely invariant sets: the Fatou set, formed by those
points for which the sequence {fn} is normal in some neighborhood; and its complement,
the Julia set. By definition the Fatou set is open and therefore the Julia set is a compact set
of the sphere. Connected components of the Fatou set, also known as Fatou components,
map onto one another and are eventually periodic [Sul85]. The Julia set is the common
boundary between the different Fatou components and, consequently, the dynamics on
this set is chaotic. For background on the dynamics of rational maps we refer for example
to [CG93] and [Mil06].

An especially relevant particular case of rational maps are polynomials, which are ex-
actly (up to Möbius conjugation) those rational maps for which infinity is a fixed point
and has no preimages other than itself. In particular this implies that infinity is a super-
attracting fixed point, and the dynamics are locally conjugate to z 7→ zd around this point
for some d ≥ 2, the degree of the polynomial; it also means that the basin of attraction
of infinity, that is the set of points attracted to infinity under iteration, is connected and
completely invariant. Therefore its boundary is compact in C and coincides with the Julia
set of the polynomial.

∗Partially supported by spanish grants MTM2011-26995-C02-02 and MTM2014-52209-C2-2-P.
†Partially supported by the Danish Council for Independent Research grant DFF-4181-00502
2000 Mathematics Subject Classification: Primary 37F10. Secondary 30D20.
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Periodic Fatou components of rational maps f are completely classified [Fat19]: a pe-
riodic component U is either part of a basin of attraction of an attracting or parabolic
cycle, or a rotation domain, which means that some iterate of f |U is conformally conju-
gate to a rigid rotation of irrational rotation number. Rotation domains may be simply
connected and then they are called Siegel disks; or doubly connected, in which case they
are known as Herman rings. By definition, Herman rings separate the Julia set and have
a disconnected boundary.

The dynamics of a rational map is determined, to a large exent, by the orbit of its
critical points, i.e. the zeros of its derivative. Indeed, any basin of attraction must
contain a critical point [Fat19] and every boundary component of a rotation domain is
accumulated by a critical orbit (i.e. the orbit of a critical point) [Fat19, Shi87]. In some
cases the relation is even stronger: any rotation domain with rotation number of bounded
type, that is whose entries in its continued fraction are bounded (see Section 1.1), have
Jordan boundaries which actually contain a critical point [Zha11]. In this work we will
only consider rotation domains with this property.

Herman rings are undoubtably the least well known among all possible types of periodic
Fatou components of rational maps, one reason being that they are not associated to any
periodic point with a certain multiplier, as all other types are (basins of attraction or
Siegel disks). Their closest relatives, Siegel disks, are much better understood, both in
terms of conditions for their existence and in terms of the different properties that their
boundaries possess. Relevant to our work will be, for instance, the string of geometric
results about the fine structure of Siegel disks, proven by McMullen in [McM98], like self-
similarity of the Siegel disk around the critical point or measurable depth of the critical
point in the filled Julia set (see Section 2).

But there is a procedure to relate Siegel disks and Herman rings, known as Shishikura’s
surgery (see Section 3 and [Shi87]). Roughly speaking, starting with a map that has a
Herman ring H (of a certain rotation number), this construction produces a map having
a Siegel disk S (of the same rotation number); at the same time it relates both functions
via a quasiconformal map Φ which is a partial conjugacy between them. Intuitively,
Shishikura’s procedure erases the hole from the Herman ring (and from all its preimages),
substituting the dynamics here by a rigid rotation (see Figure 1). The procedure is
reversible, and it therefore ties certain problems about Herman rings (like existence for
given rotation numbers) to the corresponding problem for Siegel disks.

The quasiconformal map Φ mentioned above opens up a possibility to transfer geomet-
ric properties between Siegel disks and their corresponding Herman rings. Some of them
are fairly obvious to transport: If the boundary of S is a Jordan curve, so will be both
boundaries of H; or they will all contain a critical point or none will. But other geometric
properties are not necessarily preserved by general homeomorphisms or quasiconformal
maps.

In this paper we study the extra regularity properties of the quasiconformal map Φ
and use them to transfer some of McMullen’s results about the fine geometry of Siegel
disks to corresponding statements about Herman rings. These are the principal contents
of Theorems A and B. In the latter, we additionally conclude that the full boundary of
the Herman ring is, surprisingly, tightly similar to that of a Siegel disk, even though one
of them is disconnected and the other is not. The concept of tight similarity, introduced
here, is stronger than regular similarity. In other words, zooming in around the critical
point, the holes of the Herman ring tend to become invisible, until the Siegel disk and the
Herman ring become indistinguishable form each other (see Figure 2).

Our study is done using a model family of rational maps of degree 3, which is one of the
simplest that exhibits Herman rings of all rotation numbers. It also has the property that
Shishikura’s surgery relates it to the family of quadratic polynomials used in McMullen’s
results. However, in the same way that McMullen’s properties also hold for quadratic-
like mappings (maps which behave locally as a quadratic polynomial, see [DH85]), our
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theorems also extend to appropriate rational-like maps (see Remark 1.4).
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1.1 Setup and statement of results

Arithmetics play an important role in dynamics as well. It is important to distinguish
between three nested classes of irrational numbers. For a1, a2, . . . ∈ N, we let

[a1, a2, . . .] =
1

a1 +
1

a2 +
.. .

denote the continued fractional expansion with a1, a2, . . . as coefficients, and denote the
convergents by

pn
qn

= [a1, a2, . . . , an]. (1)

See [Khi97] for details. An irrational number θ is a quadratic irrational if the sequence
of coefficents a1, a2, . . . is eventually periodic. The quadratic irrationals are exactly the
irrational roots of quadratic equations with integer coefficients.

A more general set of irrational numbers are the irrationals of bounded type. They are
numbers whose coefficients satisfy sup an <∞.

An even more general class of irrationals is the class of Brjuno numbers which we
denote by B. A Brjuno number is charaterized by the denominators of its convergents; a
number is Brjuno if and only if

∑
log qn+1/qn <∞.

These classes of irrational numbers are relevant to dynamics. If f is a holomorphic
map in a neighborhood of the origin, such that f(0) = 0 and f ′(0) = e2iπα with α ∈ B,
then there is a neighborhood of 0 on which f is conjugate to an irrational rotation of
rotation α [Sie42, Brj65, Rüs67]. If the map is globally defined, this is part of a Siegel
disk. Conversely, if a quadratic polynomial has an invariant Siegel disk, its center is a
fixed point with multiplier e2iπα with α ∈ B [Yoc95].

Here and in the rest of the article, we fix an irrational number θ of bounded type. We
let λ = e2iπθ, and fix the quadratic polynomial

P (z) = λz + z2. (2)

This polynomial has a unique critical point ω := −λ2 . The origin is a fixed point of
multiplier P ′(0) = λ. We know that P posseses a Siegel disk S centered at z = 0, because
the numbers of bounded type form a subset of the Brjuno numbers.

On the rational end, we work with the simplest family that can exhibit Herman rings,
namely

fa,b(z) := bz2
az + 1

z + a
,

for a, b ∈ C. Every fa,b has superattracting fixed points at the origin and at infinity.
Additionally, there are two other criticial points which we denote by ω1 and ω2.

The family fa,b provides examples of Herman rings. It is well known [Brj65, Shi87,
Yoc95] that for any irrational α, there exists a, b such that fa,b has a Herman ring with
rotation number α, if and only if α is Brjuno. In [BFGH05], Buff, Fagella, Geyer and
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Henriksen show that for a Brjuno number α, there exists a pointed disk holomorphically
embedded in the a, b parameter space of fa,b, such that every mapping in the disk possesses
an invariant Herman ring with rotation number α.

From now on, we let a, b be parameters chosen such that fa,b has an invariant Herman
ring with rotation number θ. Since we shall not vary a, b, we drop the indexes and simply
denote the rational map by f . Hence

f(z) = bz2
az + 1

z + a
, (3)

has a Herman ring of rotation number θ, which we denote by H. The Herman ring has
two boundary components ∂jH, j = 1, 2, which are both quasicircles, each containing
a critical point ωj (this follows from results of Herman, Ghys, Douady, Światek and
Shishikura, see e.g. [BF14, Sections 7.2 and 7.3]). We number the components such that
∂1H is contained in the bounded component of the complement of H, and we number the
critical points, such that ωj ∈ ∂jH, j = 1, 2.

As mentioned, f has a fixed critical point at infinty. Dynamically this means that
infinity is a superattracting fixed point, the immediate attracting bassin of which we
denote by Af (∞). The boundary of Af (∞) is a proper subset of the Julia set J(f). This
is in contrast to what happens for P , the quadratic polynomial in (2), where the boundary
of the basin of infinity, AP (∞), coincides with J(P ).

In [Shi86], Shishikura introduced a surgery that could turn a map with a cycle of
Herman rings into a map with a cycle and Siegel disk and viceversa (see Section 3). We
will use a special case of his construction to show the first of our two main theorems.

Theorem A. Let θ be of bounded type and let P and f be as in (2) and (3) respectively.
In the setup above, there exists a P -invariant simply connected domain D b S, and a
quasiconformal mapping Φ : Ĉ→ Ĉ, such that

(a) Φ conjugates P to f on Ĉ \D
(b) Φ maps J(P ) onto ∂Af (∞), ∂S onto ∂2H, and ω to ω2.

(c) ∂̄Φ = 0 a.e. outside D := ∪∞n=0P
−n(D).

(d) Φ is C1+α-conformal at ω with Φ′(ω) 6= 0.

The notion of C1+α-conformal is due to McMullen and is defined as follows.

Definition 1.1 (C1+α conformality). A mapping φ is C1+α-conformal at z0 if there exists
α, δ,M > 0 such that

φ(z) = φ(z0) + φ′(z0)(z − z0) +R(z)

where
|R(z)| ≤M |z − z0|1+α

when |z − z0| < δ.
Note that this is stronger that saying that φ is C−differentiable at the point z0. We

say φ is C1+α-anticonformal at z0, if φ̄ is C1+α-conformal at z0.

Theorem A is illustrated in Figure 1. The fact that the quasiconformal conjugacy
provided by Theorem A is C1+α at ω allows us to see that the boundary components of
H are locally similar to the boundary of S. To make a precise statement, we introduce
a notion of similarity that is stronger than Tan Lei’s notion of asymptotic similarity
introduced in [Tan90]. Let B(c, r) denote the open ball of center c ∈ C and radius r > 0.

Definition 1.2 (Tight similarity). We say that two compact sets A,B are tightly similar
at z0 if there exists δ, β > 0 and L > 0 such that

(1) a ∈ A ∩B(z0, δ)⇒ d(a,B) ≤ L|a− z0|1+β

4
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Figure 1: We illustrate Theorem A for θ =
√
5−1
2 , the golden mean. The dynamics

of P is illustrated in the figure to the left, which is symmetric with respect to ω.
We have colored the completely invariant set D in red, and J(P ) in black. The
dynamics of f is illustrated in the figure to the right, which has been rotated,
scaled and translated to illustrate the similarity with P . The Herman ring and
its preimages are colored yellow and J(f) black. By Theorem A, there exists a
quasiconformal homeomorphism Φ which is conformal outside the red set. Outside
D, Φ conjugates P to f , and Φ is C1+α-conformal at ω.

(2) b ∈ B ∩B(z0, δ)⇒ d(b, A) ≤ L|b− z0|1+β

When A and B are tightly similar at z0, we write

A∼
z0

B.

A compact set A is tightly self-similar around z0 ∈ A if

A− z0∼
0
κ(A− z0)

for some κ ∈ C, with |κ| > 1.

It is easy to check that the notion of tight similarity at z0 is an equivalence relation
on the compact subsets of C. We are now ready to state the second main theorem.

Theorem B. Let θ be of bounded type and let P and f be as in (2) and (3) respectively.
In the setup above, the following are satisfied.

(a) There exists a scaling factor L ∈ C \ {0} such that

L(J(P )− ω)∼
0
∂Af (∞)− ω2∼

0
J(f)− ω2.

(b) When θ is a quadratic irrational, ∂2H is tightly self-similar around ω2.

(c) The Siegel disk S admits an Euclidean triangle with vertex at ω, if and only if H
admits Euclidean triangle with vertex at ω2.
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Figure 2: On the left column Julia sets of the quadratic polynomial P as in (2)

with θ =
√
5−1
2 . To the right is illustrated the Julia set of f as in (3), with (a, b)

chosen so that θ is as above. Going down, we increase the zoom around ω and ω2

respectivley, and see that similarity becomes more and more pronounced.
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Theorem B is illustrated in Figure 2. There we can see the simililary between J(P ), ∂Af (∞)
and J(f). Even though J(f) and ∂Af (∞) are topologically very different, the compo-
nents of J(f) \ ∂Af (∞) have increasingly small diameters, and get increasingly close to
Af (∞) as we zoom in at ω2.

Theorem B can be applied when searching for mappings in fa,b with Herman rings of
bounded type rotation number. Indeed, if qn denotes the denominator of the convergents
to θ defined in (1), from Theorem A we know

fqn+1(ωj)− ωj
fqn(ωj)− ωj

=
Φ (P qn+1(ω))− Φ(ω)

Φ (P qn(ω))− Φ(ω)

=
P qn+1(ω)− ω +O

(
|P qn+1(ω)− ω|1+α

)
P qn(ω)− ω +O (|P qn(ω)− ω|1+α)

=
P qn+1(ω)− ω
P qn(ω)− ω

(
1 +O

(
|P qn(ω)− ω|1+α

))
for j = 1, 2.

Therefore the points (a, b) where fa,b has a Herman ring with rotation number θ satisfy

P qn+1(ω)− ω
P qn(ω)− ω

≈
f
qn+1

a,b (ωj)− ωj
fqna,b(ωj)− ωj

, j = 1, 2,

when n is large, which narrows the search to a one-complex-dimensional set of parameters.
Let us finally note that we can use the dynamics to extend the results to any point ω′

that under iteration goes to ω, and any point u that is eventually mapped to either ω1 or
ω2.

Corollary 1.3. Suppose that ω′ and u satisfy Pn(ω′) = ω and fm(u) ∈ {ω1, ω2}. Then,

(a) Φ is C1+α-conformal at ω′.

(b) There exists a scaling factor L′ ∈ C \ {0} such that

L′(J(P )− ω′)∼
0
J(f)− u.

(c) If θ is a quadratic irrational, H ′ is some connected component of f−k(H), k ≥ 0,
and u ∈ ∂H ′, then ∂H ′ is tightly self-similar around u.

(d) The preimage P−n(S) admits an Euclidean triangle with vertex at ω′, if and only if
f−n(H) admits Euclidean triangle with vertex at u.

Remark 1.4. McMullen’s results extend to a much more general class than quadratic
polynomials, namely to all quadratic-like maps with a fixed point of derivative e2πiθ, being
θ and irrational of bounded type (see [McM98, Theorem 5.1]). Using this result, one can
see (not without some work) that Theorems A and B also extend to a more general setting
than the model family considered above. More precisely, if g is a rational like map that
straightens to a member of the model family fa,b having a Herman ring of rotation number
θ (an irrational of bounded type) then our results apply to the small Julia set of g.

2 Preliminaries about P and its Siegel disk

Before proving our two main theorems, we review some facts about the Julia set J(P )
and the Siegel disk S.

Recall that P (z) = e2iπθz + z2, with θ of bounded type, and ω = − e
2πiθ

2 , the critical
point. In [Pet96], Petersen showed the following theorem.
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Theorem 2.1. The Julia set J(P ) is a locally connected set of zero Lebesgue measure.

McMullen proved a string of geometric results in [McM98]. He showed that J(P ) has
Hausdorff dimension strictly less than two. He also showed that ω is a density point of
the filled Julia set of P . In fact, he showed an even stronger result, namely that ω is a
measurable deep point in a subset of the filled in Julia set K(P ) := C \AP (∞).

Definition 2.2 ((Measurable) deep point). Let z0 ∈ C and E be a Borel set. For r > 0,
let s(r) be the largest radius so that B(z, s(r)) ⊂ B(z0, r) \ E, for some z ∈ C. We say
that z0 is a deep point in E if there exists α > 0 such that

s(r) ≤ r1+α, for all r small enough.

We call z0 a measurable deep point in E, if there exists constants M,β, δ > 0 such that

Area(B(z0, r) \ E) ≤M r2+β , whenever r < δ.

It is obvious that measurable deep implies deep. Observe also that if E ⊂ E′ are Borel
sets and z0 is a measurable deep point in E then z0 is a measurable deep point in E′.

Theorem 2.3 ([McM98, Cor. 4.5]). Let ε > 0 be arbitrary and define

Sε = {z ∈ K(P ) : d(Pnc (z), S) < ε for all n ≥ 0}.

Then ω is a measurable deep point in Sε.

If φ : Ĉ → Ĉ is quasiconformal and the support of µφ gets thin close to a point z0,
we can expect φ to be regular at z0. There are several results in this direction (see e.g.
[LV73, Chapter 6]), and we will find use for the following theorem of McMullen.

Theorem 2.4 ([McM96, Theorem 2.19]). Suppose φ : U → V is quasiconformal and let
Ω = U \ suppµφ. If z0 is a measurable deep point of Ω, then φ is C1+α at z0 for some
α > 0, and φ′(z0) 6= 0 .

Remark 2.5. The last conclusion, i.e. the derivative being nonzero, is implicitely used
in McMullen’s text although not explicitely stated. For completeness, let us show how it
follows from the condition of measurable depth. In [LV73, Lemma 6.1] it is proven that
if the dilatation of φ, say D(z), satisfies that the integral∫ ∫

|z|<r

D(z)− 1

|z|2
dσ

is convergent for every r, then φ is complex differentiable at 0 with nonzero derivative.
By breaking the disk of radius r into a series of annuli An = { 1

2n+1 < |z| < 1
2n }, one can

bound the integral on each annulus by 4(K−1)M
2βn

, where M and β are the constants given
by the fact that 0 is a measurable deep point of Ω, and K is the bound on the dilatation
of µ. The integral is thus bounded from above by a geometric series and hence finite.

McMullen also showed that when θ is a quadratic irrational, the Siegel disk is self-
similar at the critical point ω. More precisely he showed the following.

Theorem 2.6 ([McM98, Theorem7.1]). Suppose θ is a quadratic irrational, and let s
denote the periodicity of the coefficients of its continued fraction. Let P be as in (2) and
S be its Siegel disk. Then, there exist α > 0 and a locally defined homeomorphism ψ,
conjugating P qn to P qn+s on ∂S for n sufficiently large. More precisely, we have

ψ(z) =

{
ω + κ(z − ω) +O((z − ω)1+α) if s even

ω + κ(z − ω) +O((z − ω)1+α) if s odd

for some complex number κ with 0 < |κ| < 1.
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It follows from the theorem, that when s is even, ψ is C1+α-conformal at ω, and when
s is odd, ψ is C1+α-anticonformal.

Remark 2.7 (Tight self-similarity of S). We will see later (see Remark 4.4) that this
implies that the Siegel disk is actually tightly self-similar. More precisely, if s is even,
then

∂S − ω∼
0
κ(∂S − ω),

and, when s is odd,
∂S − ω∼

0
κ(∂S − ω),

where κ is the scaling factor in Theorem 2.6.

With the preceeding theorem in hand, Buff and Henriksen [BH99] were able to prove

that for some values of θ, such as the golden mean
√
5−1
2 , the Siegel disk S contains an

Euclidean triangle with a vertex at the critical point.

3 Quasiconformal surgery and Proof of Theorem A

In this section we prove Theorem A. We shall see that the proofs of (a), (b) and (c).
follow directly from a surgery construction due to Shishikura, whereas the last part can
be derived by bounding the relative area of the support of the quasiconformal distorsion of
Φ as we approach ω. The main idea of the surgery is simply to replace the dynamics in the
hole of the Herman ring with an irrational rotation. In this way we obtain a quasiregular
map F , which is quasiconformally conjugate to P . Letting Φ denote the conjugacy from
P to F , we then check that it has the stated properties. Details are as follows (c.f. [Shi87]
and [BF14, Section 7.2]).

We keep the notation from the setup in Section 1.1. Let φ0 : H → {z : r < |z| < 1}
denote the linearizing map, conjugating f to Rθ : z 7→ e2iπθz. Define three topological
disks U1 b U2 b U3, such that ∂U1 ⊂ H and ∂U2 ⊂ H are f−invariant curves and U3 is
the polynomially convex hull of H which in this case is the complement of the unbounded
component of the complement of H. The image under φ0 of ∂U1 is a circle, i.e., the
boundary of a disk V1. Similarly, we define V2 to be the disk whose boundary is φ0(∂U2),
and we let V3 = B(0, 1). See Figure 3.

-Φ
�

Ψ

-φ1

Rθ

V3

V2

V1

F

U3

U1

U2

P

Figure 3: Quasiconformal surgery to produce the polynomial P with a Siegel disk
starting from the rational map f with the Herman ring H.

We modify and extend φ0 as to define it on all of U3. Define φ1 : U3 → V3 by letting
it be equal to φ0 on U3 \ U2, by requiring that it maps (U1, 0) conformally to (V1, 0)
and interpolating quasiconformally on the annulus U2 \ U1, so we get a quasiconformal
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mapping φ1 : U3 → V3, which we shall use to paste the rigid rotation into the Herman
ring.

We have set up the machinery to plug the hole of the Herman ring. Let

F :=

{
f on Ĉ \ U2

φ−11 ◦Rθ ◦ φ1 on U2.

This is a model of a quadratic polynomial, since the pole of f no longer exists and
the global degree is now two. It is, however, only quasiregular. To remedy this, we will
define an F−invariant Beltrami coefficient µ with bounded dilatation with the intention of
applying the Measurable Riemann Mapping Theorem. This Beltrami coefficient is defined
by pieces. We start by defining it in U3, by pulling back the standard Beltrami coefficient
µ0 = 0 under φ1, that is µ = φ∗1(0) on U3 or equivalently, µ(z) = ∂̄φ1/∂φ1. Observe that
µ is invariant by F |U3

by construction, and it has bounded dilatation, precisely that of
φ1.

We can extend µ recursively to the backward orbit of U3, by letting µ := (Fn)∗(µ) on

F−n(U3), for every n ≥ 1. Finally we can extend it to all of Ĉ by letting µ vanish outside
the backwards orbit of U3.

Since µ is invariant by F |U3 , the extension is invariant by F . Also, since F is analytic
outside U2 it follows that ||µ||∞ = ||µ|U3

||∞ =: k < 1. Hence, F is holomorphic with
respect to the almost complex structure defined by µ, and therefore we can apply the
Measurable Riemann Mapping theorem (see e.g. [BF14, Theorem 1.27]) to obtain a a

quasiconformal homeomorphism Ψ = Ψµ : Ĉ → Ĉ, satisfying µ = Ψ∗(0) or, equivalently,
∂̄Ψ = µ∂Ψ. Since Ψ is unique up to fixing the image of three points, we normalize it by
requiring Ψ(ω2) = ω, Ψ(φ−11 (0)) = 0, and Ψ(∞) =∞.

The map Q = Ψ ◦F ◦Ψ−1 is a quadratic polynomial. Indeed, it is a holomorphic map
of degree two having a fixed critical point at infinity. Observe that 0 is fixed by Q. Since
φ1 is conformal on U1, so is F , and F ′(0) = R′θ(0) = e2πiθ. This implies that Ψ is also
conformal on U1 and hence Q′(0) = F ′(0) = e2πiθ. Hence z = 0 is a Siegel point of Q.
Additionally, ω = −e2πiθ/2 is a critical point, thus we conclude that Q = P .

Let Φ := Ψ−1 and D := Ψ(U2) (see Figure 3). We now show that Φ satisfies properties
(a) to (d). in Theorem A.

Property (a). First notice that φ1◦Φ is conformal on Ψ(U3) and conjugates P to Rθ on
this domain. So Ψ(U3) ⊂ S. By maximality of H, Ψ(U3) = S, because if Ψ(U3) were only
a subdisk of S then H would not the maximal domain of linearization. By construction,
Φ conjugates P to F everywhere, but since F = f except on U2, Φ conjugates P to f
everywhere except on D. Finally, since U2 b U3 we know D b S.

Property (b). Recall that AP (∞) denotes the basin of attraction of infinity of P .
We have ∂AP = J(P ). On AP (∞), Φ conjugates P to f . Hence Φ(AP (∞)) ⊂ Af (∞).
Similarly Ψ conjugates f to P on Af (∞), and therefore Af (∞) ⊂ Φ(AP (∞)). Hence
Φ(AP (∞)) = Af (∞), and Φ(J(P )) = ∂Φ(AP (∞)) = ∂Af (∞). We have already seen
that S = Ψ(U3). Hence Φ(∂S) = ∂U3 = ∂H2. That Φ(ω) = ω2 is evident from the
normalization of Ψ.

Property (c). By construction, ∂̄Ψ = 0 on the complement of Û = ∪∞n=0f
−n(U2), and

thus locally conformal on the complement of the closure of this set. Hence the inverse
map Φ is locally conformal on the complement of the closure of D = Ψ(Û). The boundary
of D consists of a countable number of closed real analytic curves as well as the boundary
of J(P ). By Petersen’s theorem, Theorem 2.1, the boundary of D has measure zero. Thus
we can conclude ∂̄Φ = 0 almost everywhere on the complement of D.

Property (d). In view of Theorem 2.4, it is enough to prove that ω is a measurable
deep point in the complement of D. To show this, McMullen has done the heavy lifting by
proving Theorem 2.3: ω is a measurable deep point in Sε. Since D is a definite distance
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away from ω and again using the J(P ) has measure zero, we deduce that ω is a measurable
deep point of Sε \ (D ∪ J(f)). Hence it is enough to show that Sε \ (D ∪ J(f)) ⊂ (C \ D).

The invariant set D has two preimages; D itself and another one D′. Choosing ε small
enough, we can assume Sε does not meet D′. Any point z ∈ Sε \ (D ∪ J(f)) lies in the
Fatou set, and is thus eventually mapped into S. Clearly, z is not an element of D ∪D′.
However, since Sε is forward invariant, none of the iterates of P can map z into D′. So z
is not an element of D. This concludes the proof of Theorem A.

In the course of the proof, we showed that ω is a measurable deep point C \ D. We
shall use this later, so we formally state it.

Lemma 3.1. The critical point ω is a measurable deep point of C \ D.

4 Preliminaries about C1+α-conformal mappings and
tightly similar sets

To prove Theorem B, we need to establish some elementary properties of C1+α-conformal
homeomorphisms and tightly similar sets. We see in this section that the two notions
complement each other well.

First we prove that C1+α regularity extend to inverses when the map in question is
quasiconformal.

Proposition 4.1. Let φ : U → V be a homeomorphism between the open sets U and V ,
and suppose φ is C1+α-conformal at z0 ∈ U with φ′(z0) 6= 0. Then φ−1 is C1+α-conformal
at φ(z0).

Proof. We can assume that φ′(0) = 1, so by hypothesis

φ(z) = z +R(z), where |R(z)| < M |z|1+α when |z| < δ

for some M and δ > 0.
When |z| is small enough, |φ(z)| ≥ |z|/2. Hence there exists δ′ > 0 so that when

w ∈ B(0, δ′), |φ−1(w)| ≤ 2|w| and φ−1(w) ∈ B(0, δ). Since w = φ(φ−1(w)) we can write

w = φ−1(w) +R(φ−1(w))

and hence we have
φ−1(w) = w −R(φ−1(w)) = w + R̃(w),

with
|R̃(w)| = |R(φ−1(w))| ≤M |φ−1(w)|1+α ≤M |2w|1+α

when w ∈ B(0, δ′), which concludes the proof.

Proposition 4.2. Let A ⊂ B ⊂ C be compact sets. Then A∼
z0

C implies A∼
z0

B∼
z0

C.

Proof. Let β, δ, and K be such that 1. and 2. in definition 1.2 holds for A and C.
To prove A∼

z0
B, it is enough to prove that when b ∈ B ∩B(z0, δ), we can find a ∈ A

such that |a− b| ≤ K|b− z0|1+β . But since b ∈ C, and A∼
z0

C, we can find such a.

To prove B∼
z0

C, it is enough to prove that when C ∈ C ∩B(z0, δ), we can find b ∈ B

such that |c− b| ≤ K|c− z0|1+β . Since b ∈ C, and A∼
z0

C, we can find such b ∈ A ⊂ B,

satisfying the inquality.

We end this section by seeing that tight similarity at a point is preserved by homeo-
morphisms which are C1+α-conformal at the point.
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Proposition 4.3. Let A be a compact set and φ a homeomorphism which is C1+α-
conformal at z0.

1. If φ(z0) = z0, φ′(z0) = 1 then A∼
z0

φ(A).

2. If φ′(z0) 6= 0 and B is a compact such that A∼
z0

B, then φ(A) ∼
φ(z0)

φ(B).

Proof. To see the first statement, notice that for any a ∈ A ∩ B(z0, δ), we have
φ(a) = a+R(a). Hence

|a− φ(a)| ≤M |a− z0|1+α

for some M > 0. This is the first of the requirements of Definition 1.2. The second
requirement follows by applying the same argument to φ−1, which is C1+α-conformal by
Proposition 4.1.

We can deduce the second statement from the first. Since scaling A and B around z0
does not change whether they are tightly similar or not, we can suppose φ′(z0) = 1. Then

φ(A)∼
z0

A∼
z0

B∼
z0

φ(B),

and the two image sets are tightly similar.

Remark 4.4. From this proposition, together with Theorem 2.6 , we can see that S is
tightly self similar if θ is a quadratic irrational. Indeed, let s be the period of the continued
fraction, and assume it is even. Let ψ be the homeomorpfism and κ the scaling factor in
Theorem 2.6, which ensure the self-similarity of S. Then, the map

h(z) = (1/κ)(ψ(z + ω)− ω)

sends κ(∂S − ω) to ∂S − ω, and is of the form h(z) = z + O(|z|1+α). It follows from
Proposition 4.3 that ∂S − ω∼

0
κ(∂S − ω). When s is odd, h(z) = (1/κ)(ψ(z + ω)− ω)

gives the tight self-similarity between ∂S − ω and κ(∂S − ω)∗, where (∂S − ω)∗ denotes
the set obtained from first translating ∂S and then reflecting in the real axis.

5 Geometry invariance.
Proof of Theorem B and Corollary 1.3

In this section we prove Theorem B. Most of the statements are fairly obvious by the
results we have uncovered by now. The delicate part is to prove that ∂Af (∞)∼

ω2

J(f).

Recall that Φ denotes the quasiconformal homeomorphism given in Theorem A, con-
jugating P to f on Ĉ\D, which is conformal outside D = ∪∞n=0P

−n(D). Our strategy will
be to prove that J(P )∼

ω
D. Since Φ is C1+α -conformal at ω, Φ(J(P )) = ∂Af (∞), and

we shall see that Φ(D) contains J(f), this will be sufficient to prove the desired similarity
by Propositions 4.2 and 4.3.

The idea in proving J(P ) ∼
ω
D is that the area of components of D must quickly

decrease as we approach ω. By bounded geometry, this means that the diameter of the
components of D must also quickly decrease. Each connected component D′ of D is
contained in a connected component F ′ of the Fatou set F (P ). The modulus of the
annulus F ′ \D′ is independent of which component D′ we are considering and so for any
z ∈ D′ the distance d(z, ∂F ′) is comparable to the diameter of D′, i.e., quickly decreasing
as we approach ω. This is the idea, it remains to fill in the details.

Definition 5.1. Let U be a bounded simply connected domain and z a point in U . The
inner radius r(U, z) is given by

sup {r : B(z, r) ⊂ U}
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whereas the outer radius r̄(U, z) is

inf {r : U ⊂ B(z, r)}

Claim 1. There exists K1 ∈ (1,∞) such that for any connected component D′ of D,

1 ≤ r̄(D′, α′)

r(D′, α′)
≤ K1,

where α′ denotes the preimage of the Siegel point lying in D′.

The claim follows from Koebe’s Distortion Theorem (see e.g. [CG93]) . Let φ : S →
B(0, 1) denote a map linearizing P , and F ′ the component of the Fatou set F (P ) that
contains D′. When n is sufficiently large, φ◦Pn : F ′ → B(0, 1) is a conformal isomorphism
and, by construction of D′ (see Section 3), it maps D′ onto a round disk B(0, s), and α′

to the origin. Applying Koebe’s Distortion Theorem to the inverse map, we get

r̄(D′, α′)

r(D′, α′)
≤
(

1 + s

1− s

)2

=: K1.

Claim 2. There exists K2,K3 ∈ (0,∞) such that for any connected component D′ of D,

K2

√
AreaD′ ≤ r̄(D′, α′) ≤ K3

√
AreaD′

where α′ ∈ D′ is eventually mapped to the Siegel point.

The claim is trivial, since π times in-radius squared gives a lower bound on the area,
π times the out-radius squared gives an upper bound, and in-radius and out-radius are
comparable by Claim 1.

Claim 3. There exists K4 ∈ (2,∞) such that for any connected component D′ of D, and
any z ∈ D′,

d(z, J(P )) < K4 r̄(D′, α′),

where α′ is the point in D′ that is eventually mapped to the Siegel point.

This claim is a consequence of Gröztsch’s inequality. Letting F ′ denote the component of

the Fatou set that contains D′, the modulus of F ′ \D′ is equal to the modulus m of S \D.
Put r̄ = r̄(D′, α′). There exists a constant c > 1 only depending on m, such that the
modulus of B(α′, c r̄) \B(α′, r̄) equals 2m (we could have chosen any other number larger
than m). If B(α′, c r̄) were contained in F ′, then B(α′, c r̄) \ B(α′, r̄) would be contained

in F ′ \ D′ in contradiction with Gröztsch’s inequality. So there exists z′ ∈ ∂F ′ ⊂ J(P )
with |z′−α′| ≤ c r̄. By the triangle inequality, |z− z′| ≤ |z−α′|+ |α′− z′| ≤ r̄ +c r̄, which
proves the claim, with K4 := c+ 1.

Lemma 3.1 tells us that ω is measurable deep in the complement of D, i.e. there exist
constants β, δ > 0 and M so Area(D ∩B(ω, r)) ≤Mr2+β , when r < δ. Pick r0 > 0 small
enough so that

• r0 < δ
4 , and

• letting γ = (1 + β/2)
−1

< 1, 2
(
K3

√
M
)γ
r ≤ 1

2r
γ , when r ≤ r0.

Claim 4. There exists δ′, β > 0 and K, so that

d(z, J(P )) ≤ K|z − ω|1+β/2

whenever z ∈ D ∩B(z0, δ).

13



There are only finitely many components D′ of D with r̄(D′, α′) > r0. If there were
infinitely many, then by Claim 2, there area of D would be infinite, but D is contained in
the filled-in Julia set of P , and it is well known that the latter set is contained in B(ω, 2).
Hence we can pick δ′ > 0 so that

• δ′ ≤ δ/2
• B(ω, δ′) does not meet a component of D with r̄(D′, α′) > r0.

Consider an arbitrary z ∈ D ∩ B(ω, δ′). Such z lies in a component D′ of D, and
we have chosen δ′ so that r := r̄(D′, α′) ≤ r0. Notice D′ ⊂ B(ω, |z − ω| + 2r). As
|z − ω| < δ′ ≤ δ/2, and 2r ≤ 2r0 ≤ δ′, it holds that D′ ⊂ B(ω, δ). So

AreaD′ ≤ AreaD ∩B(ω, |z − ω|+ 2r) ≤M(|z − ω|+ 2r)2+β .

Using Claim 2, we get

r ≤ K3

√
M (|z − ω|+ 2r)

1+β/2 ⇔ rγ − 2r
(
K3

√
M
)γ
≤
(
K3

√
M
)γ
|z − ω|.

Since r ≤ r0, and by the choice of r0, the left hand side is bounded from below by rγ

2 ,
and we get that

r ≤ K5|z − ω|1+β/2,

for some K5 :=∈ (0,∞). By Claim 3, d(z, J(P )) ≤ K3K5|z−ω|1+β/2 which proves Claim
4.

Claim 5. J(P )∼
ω
D.

We have just established one of the two requirements of Definition 1.2. The set D is a
completely invariant closed set contaning more than two points, so J(P ) ⊂ D. Hence, the
other requirement is automatically satisfied.

Having proven Claim 5, we have navigated the rough part of the proof; the rest is
smooth sailing. By Theorem A, Φ(J(P )) = ∂Af (∞). Again using Theorem A we obtain
that L := Φ′(z0) 6= 0. Hence, Claim 5 together with Proposition 4.3 imply that

Φ(J(P )) = ∂Af (∞)∼
ω2

Φ(D).

Let h(z) := z/L+ω, and g(z) := z−ω2. Then, the map Ψ := g ◦Φ ◦h maps L(J(P )−ω)
onto ∂Af (∞)−ω2. Moreover Ψ maps the origin to itself, is C1+α and has derivative 1 at
this point. So, in view of Proposition 4.3,

L(J(P )− ω)∼
0
∂Af (∞)− ω2.

Let us now see that ∂Af (∞) ⊂ J(f) ⊂ Φ(D). The first inclusion is immediate. If
z ∈ J(f) \ Φ(D), then u := Φ−1(z) has a bounded forward orbit that avoids D. Since u
can never be mapped to S \D (otherwise z would eventually be mapped to H), we must
have Φ−1(z) ∈ J(P ) ⊂ D. Hence z ∈ Φ(D).

Since ∂Af (∞) ⊂ J(f) ⊂ Φ(D), and Af (∞) ∼
ω2

Φ(D), Proposition 4.2 shows that

∂Af (∞)∼
ω2

J(f). This finishes the proof of Theorem B, statement (a).

To see part (b), notice that ∂S is self-similar by Remark 2.7. The mapping ψ of
Theorem 2.6 can be turned into mapping of ∂H2 by letting ψ̃ = Φ◦ψ◦Φ−1. By Propostion
4.1 this composition is C1+α-conformal or anticonformal, and has the same conformal or
anticonformal derivative κ as ψ. We can conclude that ∂H2 is self-similar in the sense of
McMullen.
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For part (c), assume that S contains an open triangle T with vertices a, b and ω.
Shrinking T we can assume T ∩ ∂S = {ω}. We know from Theorem A (d), that Φ is
C-differentiable at ω and Φ′(ω) 6= 0. Moreover, by Proposition 4.1, we have that Φ−1 is
also C-differentiable at ω2. The image Φ([ω, a]) is a curve in H having a tangent at the
starting point, and Φ([ω, b]) is a curve in H having a tangent at the starting point. The
angle between the two tangents is the same as the angle of T at ω, since Φ′(ω) exists and
is non-vanishing. Thus a line segment in the gap between the the two tangents, will not
intersect the two image curves in a small enough neighborhood of ω2. Hence there is room
for a triangle in H with a vertex at ω2. As the inverse map Φ−1 is C-differentiable at ω2

with non-vanishing derivative, we can use the exact same argument to establish that the
existence of a triangle in H with a vertex at ω2 implies the existence of a triangle in S
with a vertex at ω.

Proof of Corollary 1.3

It only remains to prove Corollary 1.3. The statements of Theorem A and B hold true if
we replace ω2 with ω1. When f is viewed as a mapping of the sphere, ω1 and ω2 do not
play different roles. If we change coordinates by the map z 7→ 1/z, then f takes the form
g(z) = 1/f(1/z) = b−1 az+1

z+a , i.e. we get a mapping of the form covered by Theorems A
and B. The change of coordinates interchanges outer and inner boundary of H and ω1

and ω2. More precisely, z 7→ 1/z maps ω1 for f to ω2 for g, and ω2 for f to ω1 for g.
Theorems A and B for g use the change of coordinates to get the approiate statements
for ω1. In particular, when proving the corollary, we can suppose fm(u) = ω2.

Let k ≥ 0 and v be such that P k(v) = ω. Let us first see that there exists an inverse
branch of P mapping a neighborhood of ω conformally onto a neighborhood of v. Indeed,
the boundary of S is included in the accumulation set of the forward orbit of ω which
must be infinite. So P j(v) 6= ω, for j = 0, 1, . . . , k − 1. Since ω is the only zero of P ′,
this implies in particular that (P k)′(v) 6= 0, which guarantees the existence of the inverse
branch.

The same argument shows that if k ≥ 0 and fk(v) = ω2, then there exists an invere
branch of fk mapping a neighborhood of ω2 onto a neighborhood of v.

Part (a). We know that Φ conjugates P to f on Ĉ \D. Hence Φ conjugates Pn to fn

on Ĉ \ ∪n−1j=0 (D). That means Φ = f−n ◦ Φ ◦ Pn in a neighborhood of ω′, for a suitably

chosen branch of f−n. Since the property of being C1+α at a point is clearly preserved
by compostion with conformal mappings, we get that f−n ◦Φ ◦ Pn is C1+α-conformal at
ω′.

Part (b). Using a suitably chosen branch of P−n and Propostion 4.3, we get

J(P )− ω∼
0
J(P )− ω′.

Using a suitably chosen branch of f−m in the same way, we get

J(f)− ω2∼
0
J(f)− u.

Part (c). There exists an inverse branch f−m that maps ω2 to u, and maps the part
of the boundary of H that lies in some neighborhood of ω2 onto the part of the boundary
of H ′ that lies in some neighborhood of u. Using this inverse branch, we can tranport the
mapping φ expressing the self-similarity at ω2 into a map φ̃ by conjugating with f−n.

Part (d). Is also proven using that inverse branches are conformal isomorphism. We
leave the details to the reader.
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[BF14] Bodil Branner and Núria Fagella, Quasiconformal surgery in holomorphic dy-
namics, Cambridge studies in advanced mathematics, no. 141, Cambridge Uni-
versity Press, 2014.
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