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Abstract

Following the attracting and preperiodic cases ([5]), in this paper
we prove the existence of weakly repelling fixed points for transcen-
dental meromorphic maps, provided that their Fatou set contains a
multiply-connected parabolic basin. We use quasi-conformal surgery
and virtually repelling fixed point techniques.

1 Introduction

Let f be a rational, transcendental entire or transcendental meromorphic
function. We say that a p-periodic point z0 of f is attracting (resp. re-
pelling) if the modulus of its multiplier ρ(z0) := (fp)′(z0) ∈ C is smaller
(resp. greater) than 1, and that it is parabolic if ρ(z0) = e2πiθ, with θ ∈ Q.
Furthermore, z0 is said to be weakly repelling if it is repelling or parabolic of
multiplier 1. For any rational map of degree greater than one, the existence
of at least one such fixed point is guaranteed by a theorem of Fatou [6].

As for global dynamics, points can be classified according to their long-
term behaviour under iteration of the function, thus one defines the Fatou
set F(f) (or simply F when possible) as the set of points z0 ∈ Ĉ for which
the family {fk}k∈N is defined and normal in a neighbourhood of z0, and the
Julia set as its complement, J = J (f) := Ĉ \ F(f). Then a connected
component of the Fatou set (Fatou component) U is called preperiodic if
there are integers p > q ≥ 0 such that fp(U) = f q(U), and, more precisely,
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p-periodic when q = 0 and fixed when, moreover, p = 1. On the contrary, a
Fatou component is called a wandering domain if it fails to be preperiodic.

According to the work of Cremer and Fatou, a p-periodic Fatou compo-
nent U is necessarily one of the following: immediate attractive basin, if U
contains an attracting p-periodic point z0 such that limn→∞ fnp(z) = z0 for
all z ∈ U ; parabolic basin or Leau domain, if ∂U contains a q-periodic point
z0, with q|p, such that limn→∞ fnq(z) = z0 for all z ∈ U (and (fp)′(z0) = 1);
Siegel disc, if there exists a holomorphic homeomorphism φ : U → D such
that (φ ◦ fp ◦ φ−1)(z) = e2πiθz for some θ ∈ R \ Q; Herman ring , if there
exist an r > 1 and a holomorphic homeomorphism φ : U → {1 < |z| < r}
such that (φ◦fp ◦φ−1)(z) = e2πiθz for some θ ∈ R\Q; Baker domain, if ∂U
contains a point z0, with fp(z0) not defined, such that limn→∞ fnp(z) = z0
for all z ∈ U . Nevertheless, rational maps happen to have neither wandering
domains (Sullivan [11]) nor Baker domains (for infinity is but a regular point
there).

With this setting, we are now able to describe the purpose and results of
this paper. In 1990, Shishikura [10] proved that if the Julia set of a rational
map f is disconnected, then f has at least two weakly repelling fixed points.
As a consequence, the connectedness of the Julia set of the Newton’s method
Nf := id − f/f ′ for a non-constant polynomial f is obtained forthwith—
since all its fixed points but infinity are attracting—, hence closing a problem
of which Przytycki [9], Meier [7] and Tan Lei [12] among others had given
partial results before.

As pointed out in [5], our purpose is to give the natural transcendental
versions of Shishikura’s results, namely: If the Julia set of a transcendental
meromorphic function f is disconnected, then f has at least one weakly re-
pelling fixed point; the connectedness of the Julia set of the Newton’s method
for transcendental entire functions would follow as a corollary. Notice the
equivalence between such hypothesis and at least one of the Fatou compo-
nents of f being multiply connected (as opposed to simply connected), which
allows each different type of Fatou component to be treated separately.

In [5] we proved the following result, which covers the immediate attrac-
tive basin and preperiodic Fatou component cases.

Theorem A. Let f be a transcendental meromorphic function with either a
multiply-connected immediate attractive basin or a multiply-connected Fatou
component U such that f(U) is simply connected. Then, there exists at least
one weakly repelling fixed point of f .

On the other hand, the case of the multiply-connected wandering domain
was proved by Bergweiler and Terglane in the search of solutions of certain
differential equations with no wandering domains (see [2]). Now the present
work is devoted to parabolic basins. More precisely, we prove the following.
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Theorem B. Let f be a transcendental meromorphic function with a multi-
ply-connected parabolic basin. Then f has at least one weakly repelling fixed
point.

The main tools involved in its proof are the method of quasi-conformal
surgery and a theorem of Buff on virtually repelling fixed points; we shall
briefly introduce such two concepts in Section 2. Then Section 3 contains
the actual proof for Theorem B.

2 The tools

2.1 Quasi-conformal surgery

Quasi-conformal surgery is a powerful technique that derives from an ana-
lytical study of quasi-conformal maps and has many applications in complex
dynamics, since it can produce holomorphic maps with some prescribed dy-
namics. In a first step, known as topological surgery , one takes a number of
spaces and functions having a certain behaviour locally or in some suitable
subspace. Roughly speaking, these can be cut and assembled together so as
to construct a map with the dynamics chosen a priori. Now the measurable
Riemann mapping theorem (Theorem 2.1) can be applied to such map in or-
der to make it holomorphic via a quasi-conformal conjugation. This second
step of the process is usually called holomorphic smoothing .

The following are just a few necessary definitions and results for the
surgery process to be completed. See for example [4] for a more comprehen-
sive text on quasi-conformal surgery.

Definition. Let U ⊂ C be an open set; a measurable function µ : U → C is
called a k-Beltrami coefficient of U if ||µ||∞ = k < 1.

Equivalently, one can associate to every k-Beltrami coefficient of U µ
an almost complex structure σ, that is, a measurable field of (infinitesimal)
ellipses in TU , defined up to multiplication by a positive real constant.
More precisely, the argument of the minor axis of such ellipses at a point
z ∈ U is arg(µ(z))/2, and its ellipticity—i.e. the ratio between its axes—
equals (1 − |µ(z)|)/(1 + |µ(z)|). Notice that this value is bounded between
(1 − ||µ||∞)/(1 + ||µ||∞) > 0 and 1 almost everywhere.

Definition. Let U and V be open sets in C; a homeomorphism φ : U →
V is said to be k-quasi-conformal if it has locally square integrable weak
derivatives (and therefore it is differentiable almost everywhere) and the
function

µφ(z) :=
∂φ/∂z̄

∂φ/∂z
(z) ,
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defined almost everywhere in U , is a k-Beltrami coefficient. A k-quasi-
regular map is the composition of a holomorphic function and a quasi-
conformal map, or, equivalently, a map which is locally quasi-conformal
around every point except for a discrete set of points — the critical points.

Definition. Let U and V be open sets in C; a quasi-regular map φ : U → V
induces a contravariant functor φ∗ : L∞(V ) → L∞(U) defined by

φ∗µ :=
∂φ/∂z̄ + (µ ◦ φ)(∂φ/∂z)

∂φ/∂z + (µ ◦ φ)(∂φ/∂z̄)
.

Notice that if µ : V → C is a Beltrami coefficient, then so is its pull-back
φ∗µ : U → C. Moreover, if φ is a holomorphic map, then ||φ∗µ||∞ = ||µ||∞.

When the Beltrami coefficient µ is defined in terms of a quasi-regular
map ψ as above (µ ≡ µψ), one can check that φ∗µψ = µψ◦φ.

Definition. We call standard complex structure the constant Beltrami co-
efficient µ0 := 0 or, equivalently, the associated field of circles σ0.

By Weyl’s Lemma, we have that a quasi-regular map φ is holomorphic
if, and only if, φ∗µ0 = µ0.

Now, it is clear that a quasi-conformal map φ defines a Beltrami co-
efficient µφ. Conversely, given a Beltrami coefficient µ and the so-called
Beltrami equation

∂φ

∂z̄
= µ ·

∂φ

∂z
,

can we find an actual quasi-conformal map φ such that µφ ≡ µ (equivalently,
φ∗µ0 = µ)? The celebrated measurable Riemann mapping theorem answers
this question positively; the following is a version of the statement with
U = V = C (see also [1] or [4]).

Theorem 2.1 (Morrey, Bojarski, Ahlfors, Bers). Let µ be a Beltrami coeffi-
cient of C; then, there exists a unique (up to postcomposition with conformal
maps of C) quasi-conformal map φ : C → C such that ∂φ/∂z̄ = µ · ∂φ/∂z
(or µφ = µ), φ(0) = 0 and φ(1) = 1.

The application of this result to complex dynamics is the following. Sup-
pose that f : Ĉ → Ĉ is a quasi-regular map whose dynamics we would like
to see realised by a holomorphic map of Ĉ. Then, Theorem 2.1 guarantees
the existence of such a map as long as we can construct an appropriate f -
invariant almost complex structure. The precise statement reads as follows.

Corollary 2.2. Let µ be a Beltrami coefficient of C and f : Ĉ → Ĉ a quasi-
regular map such that f∗µ = µ; then, f is quasi-conformally conjugate to a
holomorphic map g : Ĉ → Ĉ.
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Proof. Applying the measurable Riemann mapping theorem to µ, there ex-
ists a quasi-conformal map φ with µ = φ∗µ0. Now, let us define g :=
φ ◦ f ◦ φ−1; we just need to see that g is indeed holomorphic:

g∗µ0 = (φfφ−1)∗µ0 = (φ−1)∗f∗φ∗µ0 = (φ−1)∗f∗µ = (φ−1)∗µ = µ0.

2.2 On virtually repelling fixed points

In the search of a weakly repelling fixed point, notice that the construction
of a polynomial-like map situation would indeed suffice. However, such
construction may not always be totally straightforward—or even possible—
because of the necessity to find a domain of definition of the map strictly
contained inside its own image. Nevertheless, a theorem of Buff (see [3]) gives
so-called virtually repelling fixed points under slightly milder hypothesis.
The key point about working with fixed points that are virtually repelling
instead of weakly repelling is that the first condition is slightly stronger than
the second one—and Theorem 2.3 provides them.

In what follows we define this concept and state Buff’s theorem.

Definition. The holomorphic index of a complex function f at a fixed point
z is the residue

ι(f, z) :=
1

2πi

∮

z

dw

w − f(w)
.

In the case of a simple fixed point (i.e., with multiplier ρ(z) 6= 1), the index
is also given by

ι(f, z) =
1

1 − ρ(z)
.

If we have that Re (ι(f, z)) < m/2, where m ≥ 1 denotes the multiplicity,
the fixed point z is called virtually repelling .

Theorem 2.3 (Buff). Let U ⊂ D be an open set and f : U → D a proper
holomorphic map of degree d ≥ 2. If |f(z) − z| is bounded away from zero
as z ∈ U tends to ∂U , then f has at least one virtually repelling fixed point.

Using the Riemann map, the theorem can be stated in a more general
form.

Corollary 2.4. Let V and D be open sets of C with V ⊂ D and D simply
connected, and let f : V → D be a proper holomorphic function. If |f(z)−z|
is bounded away from zero as z ∈ V tends to ∂V , there exists at least one
virtually repelling fixed point of f .
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Figure 1: Sketch of the proof of Corollary 2.4. Notice that D or V might be
unbounded, and that V has no topological conditions other than being open, so,
in particular, it need not be simply connected. This prevents us from using an
argument of polynomial-like mappings to find a weakly repelling fixed point, even
if ∂V ∩ ∂D = ∅.

Proof. Since the set D is open and simply connected, we have that there
exists a conformal Riemann mapping ϕ : D → D. This map takes the subset
V to some ϕ(V ) = U ⊂ D, as V is contained in D. (See Figure 1.)

Let us now define the map g := ϕ ◦ f ◦ ϕ−1, which is conjugate to f
by the conformal conjugation ϕ. Observe that g is proper and |g(z) − z|
is bounded away from zero as z ∈ U tends to ∂U . In this situation, g has
at least one virtually repelling fixed point z0 due to Theorem 2.3. Since
conformal conjugacies preserve this property of fixed points, we have that
there exists a virtually repelling fixed point ϕ−1(z0) of f (in V ).

Recall that a map f : X → Y is proper if the preimage set f−1(K) ⊂
X is compact for any compact set K ⊂ Y . Although our transcendental
meromorphic maps are of infinite degree and may not be proper globally,
Corollary 2.4 can still be applied to subsets V ⊂ Ĉ where the restriction f |V
be proper and hence of finite degree, as the following lemma shows.

Lemma 2.5. Let f be a transcendental meromorphic function, Y ⊂ C
an open, simply-connected set and X a bounded connected component of
f−1(Y ). Then, the restriction f |X : X → Y is a proper map.

Proof. First notice that f |X is of finite degree because X is bounded. Now,
let K be a compact set of Y ; it follows that ∞ /∈ K. Also, f−1(K) ⊂ X is
bounded, so f is locally (f |f−1(K) : f

−1(K) → K) holomorphic and, there-
fore, the preimage set f−1(K) of the compact setK ⊂ Y is also compact.
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3 Multiply-connected parabolic basin

In this section we prove Theorem B (see Section 1). Its proof involves
two different techniques. The first one is based upon Shishikura’s proof
and applies when preimages of certain sets do not behave too wildly in the
presence of the essential singularity. For the second one, the assumption of a
pole of f allows us to construct some sets where the hypothesis of Corollary
2.2 are met.

Recall that by p-periodic parabolic basin B we understand a connected
component of the Fatou set such that there exists a q-periodic point α ∈ ∂B,
q|p, with limn→∞ fnq(z) = α for all z ∈ B and, in particular, (fp)′(α) =
1 (i.e., the immediate basin associated to a one petal attached to a q-
periodic parabolic point). Notice that p is the period of B, not of α, so
B, f(B), . . . , fp−1(B) are pairwise disjoint. Also, p/q gives the number of
petals sharing α as a boundary point.

The rest of the section is the proof of Theorem B.
First notice that if p = 1 (and so q = 1) then there exists a fixed point

α ∈ ∂B such that f ′(α) = 1, i.e., there exists a weakly repelling fixed point
of f and we are done. So let us assume from now on that p > 1.

Let 〈α〉 be the cycle of points generated by the iteration of the q-periodic
parabolic point α. We want to construct a sequence of open sets {Uk}k,
starting with a simply connected one, such that 〈α〉∩∂Uk 6= ∅ and f(Uk+1) =
Uk for all k ≥ 0.

In the following we use the so-called Fatou coordinates, see e.g. [8]. With-
out loss of generality we can assume that α = 0 by a coordinate change, and
fp to be in normal form fp(z) = z(1 + azν + O(zν+1)), for some a ∈ C and
ν = p/q. Let U0 ⊂ B be the pull-back U0 := H−1({w : Rew > L}), where
H(z) := −1/νazν and L > 0 is large and to be precised later. It is easy to
check that H is an actual conjugacy between fp and

T (w) := (H ◦ fp ◦H−1)(w) = w + 1 + O(w−1/ν) ,

hence we can choose L large enough so that fp is injective on U0 (see Figure
2). Also, notice that fp(U0) ⊂ U0 ∪ {α} because of the action of T .

Now define {Uk}k∈N
by pulling back U0 under f , namely, Uk is the

connected component of f−k(U0) such that ∂Uk ∩ 〈α〉 6= ∅. Notice that
Uj ⊂ Up+j ⊂ U2p+j ⊂ . . . and f j(B) =

⋃
k≥1 Ukp−j, for all 0 ≤ j < p.

Because B is multiply connected, there exists a (minimal) n0 ∈ N such that
U := Un0 is also multiply connected. Call E one of the bounded connected
components of Ĉ \ U . Notice that E is compact and full, and E̊ need not
be connected.

Now preimages of compact sets under transcendental meromorphic maps
might become unbounded and eventually contain poles and prepoles. This
fact will be an obstacle to follow Shishikura’s proof of the rational case, as

7



α = 0

U0

B

H

L

Figure 2: Construction of U0 as an H-pull-back of the half-plane {w : Rew > L}
(example with ν = 3, so p = 3q). Notice that U0 contains no critical points, since
fp|U0

is injective. Furthermore, we can choose L in such a way that ∂U meets not
the postcritical set (orbits of the critical points). because critical points can only
accumulate at an essential singularity.

we will show later; so, at this point, we split the proof according to the
nature of ∂E.

Case 1: ∂E contains at least one pole

If ∂E contains at least one pole P , then f(U) is unbounded (since ∂E ⊂ ∂U)
and so is contained in some unbounded connected component of Ĉ\U (since
p > 1 and therefore U ∩ f(U) = ∅). Let V ⊂ Ĉ be a connected simply-
connected unbounded open set such that U ⊂ V and f(U) ⊂ Ĉ \ V , for
example, V could be the connected component of Ĉ \ f(U) containing E.
(Notice that E ⊂ V , for V is simply connected and E is bounded.) Now
there exists a connected component D of f−1(V ) such that P ∈ ∂D, and
D ⊂ E since points immediately outside E happen to be in U , thus mapped
into f(U) ⊂ Ĉ\V (see Figure 3). Notice that Lemma 2.2 gives the properness
of f |D : D → V , sinceD ⊂ E is bounded and V simply connected. Moreover,
D ⊂ E ⊂ V , so ∂D∩∂V = ∅ and we can apply Buff’s theorem (and Corollary
2.4) to find a weakly repelling fixed point of f .

Case 2: ∂E contains no poles

Now if ∂E contains no poles, f(U) is bounded (and simply connected by
construction) therefore no other component of Ĉ \ U can have poles on its
boundary. (Still, further images of U might be unbounded, for example,
if ∂E contains prepoles.) Let us assume, without loss of generality, that
f(U), . . . , fk−1(U) ⊂ E and fk(U) ⊂ Ĉ \ E, for some 1 ≤ k ≤ p. In that
case we will use the quasi-conformal surgery technique, but must be careful
with the set of preimages of α, that might intersect ∂U and make the whole
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ff
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Figure 3: If there exists a pole P on ∂E, then there exists a set D ⊂ E such that
f(D) = V , where V is an unbounded simply-connected set that contains U but not
f(U). The thick lines correspond to ∂U , while the sets D and V appear dark- and
light-shaded, respectively. The non-labelled points represent the different places
where α can lie. On the right, a case where ∂U ∩ ∂f(U) 6= ∅.

process somewhat laborious.
In fact, a key point during the surgery process is the construction of

an interpolating map between two different functions on two disjoint closed
curves. If such curves are to touch at preimages of α or at α itself, this
interpolation cannot be performed and an extra step previous to surgery
will be done. Since we are focusing our attention on boundary intersections
here, we shall still resplit this case into two finer subcases as follows.

Case 2.1: k < p, or k = p but ∂fp(U) ∩ ∂E = ∅

First notice that if k < p then ∂fk(U)∩∂E = ∅: fk(U) cannot be contained
in U because fp(U) is the first iteration back inside U , by construction;
therefore fk(U) must be contained in a component of Ĉ \ U other than E,
hence ∂fk(U)∩∂E = ∅ since two different components of Ĉ\U cannot form
a connected set. Then, we can apply quasi-conformal surgery as follows:
Define a quasi-regular map f2 : Ĉ → Ĉ that will map Ĉ \ E strictly inside
itself (after k iterations). More precisely, set V0 := Ĉ \ E and V1 := f(U),
which lies in either E (when k > 1) or Ĉ \ E (when k = 1). Set also

K := fk(U) and choose b ∈ f(U) and a = fk−1(b) ∈ K (see Figure 4).

Lemma 3.1 (Interpolation Lemma). Let V0 and V1 be simply-connected
open sets in Ĉ, with V0 6= Ĉ, and f a holomorphic map from a neighbourhood
N of ∂V0 to Ĉ such that f(∂V0) = ∂V1 and f(V0∩N) ⊂ V1; choose a compact
set K in V0 and two points a ∈ V0 and b ∈ V1. Then, there exists a quasi-
regular mapping f1 : V0 → V1 such that
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ĈĈ

E
E

f2
f2

f2

f2

f(U) f(U)

fk(U)U
U fp(U)

∞

∞

Figure 4: In this case, intersection between ∂fk(U) and ∂E never occurs, which is
crucial for Lemma 3.1 to be applied in our case. We have drawn the cases 1 < k < p
(left) and k = p (right). In both of them, the cycle Ĉ \E, f(U), . . . , fk(U) ⊂ Ĉ \E
appears in grey.

• f1 = f in V0 ∩N1, where N1 is a neighbourhood of ∂V0 with N1 ⊂ N ;

• f1 is holomorphic in a simply-connected neighbourhood of K;

• f1(a) = b.

This Interpolation Lemma is a standard result and the details of its proof
can be found in [5] or [10]. Applied to our case, it provides us with a quasi-
regular map f1 : Ĉ \ E → f(U) which agrees with f on ∂E, is holomorphic
in a neighbourhood of fk(U) and satisfies f1(a) = b.

Now we construct a map f2 by setting f2 = f on E and f2 = f1 on
Ĉ \ E, which makes it a quasi-regular map of Ĉ, holomorphic in both a

neighbourhood of E and a neighbourhood of fk(U), with a k-periodic point,
given that fk2 (a) = fk−1(f1(a)) = fk−1(b) = a. Observe also that fk2 (Ĉ \

E) = fk(U) and fk(U) ⊂ Ĉ \ E; it follows that fk2 is a contraction and a a

global attractor for fk2 in Ĉ \ E.
We may define an almost complex structure σ by

σ :=





σ0 on f(U)

(fn2 )∗σ0 on f−n2 (f(U)), for n ∈ N

σ0 elsewhere.

Observe that σ = σ0 on
⋃k
i=1 f

i(U) (see Figure 5).
Furthermore, σ is f2-invariant by construction and has bounded distor-

tion, since orbits pass through Ĉ \ (E ∪ fk(U)) (the set where f2 is not
holomorphic) at most once.
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Ĉ

E

f

f2 f2f2

f(U)

fk(U)

Figure 5: Construction of the almost complex structure σ. In grey we find the
region where f2 is holomorphic. Orbits pass through Ĉ \ (E ∪ fk(U)) at most once.

Remark. At this point, notice the importance of the fact that f2 be defined
to be holomorphic on a neighbourhood of fk(U), which was only possible
because fk(U) is a relatively compact subset of Ĉ \ E.

These are precisely the hypothesis of Corollary 2.2, so there exists a map
g : Ĉ → Ĉ, holomorphic on the whole sphere—and hence rational—, which
is conjugate to f2 by some quasi-conformal homeomorphism φ.

Now a theorem of Fatou ensures the existence of a weakly repelling fixed
point z0 of g, except when deg g = 1 and g is an elliptic transformation. But
φ(a) is an attracting k-periodic point of g, so this can never be the case.

Besides, the family G = {gn|
φ(bC\E)

}n≥1 omits the open set φ(Ĉ \ (E ∪

fk(U))), therefore G is normal in φ(Ĉ \ E) by Montel’s Theorem, that is,
φ(Ĉ \E) ⊂ F(g). But weakly repelling fixed points belong to the Julia set,
so z0 ∈ φ(E). Because such points are preserved under conjugacy, also f2

has a weakly repelling fixed point φ−1(z0), in E; and so does f , since both
functions coincide precisely on this set.

Case 2.2: k = p and ∂fp(U) ∩ ∂E 6= ∅

For this case, let us first rename the elements of the periodic orbit and
shift the sequence {Uk}k so that α ∈ ∂U ≡ ∂Un0 , i.e., so that p|n0. More
precisely, it is clear that there exists 0 ≤ l < p such that U ⊂ f l(B); then,
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rename B ≡ f l(B), α ≡ f l(α), U0 ≡ f l(U0) and define the sets U1, . . . , Ul−1

accordingly. Notice that U0, . . . , Ul are all simply connected by construction.
Since p divides n0, we can define c := n0/p ∈ N, that is, the number of fp-
cycles from U0 to Un0 (see Figure 6).

E

U

f(U)

fp(U)

fp−1(U)

α

U0

Figure 6: The shifted sequence {Uk}k. From now on, this is the primary situation
we should always bear in mind. The sets U, f(U), . . . , fp(U) are the only ones in
{Uk}k that will later play a role during the quasi-conformal surgery process. Their
cyclic dynamics under the action of f is also shown here.

Also, the sets Ukp+1, . . . , U(k+1)p−1 ⊂ E are necessarily bounded, so only
those in the subsequence U0, Up, U2p, . . . might become unbounded from a
certain one on. In particular, only the sets of the form Ukp+1 can have poles
on their boundaries, and only the maps of the form f |Ukp

: Ukp → Ukp−1 can
be of infinite degree.

Furthermore, notice that if some intersection ∂Uk1 ∩ ∂Uk2 contains a
preimage of some pole, then the sets Uk1 and Uk2 necessarily belong to the
same subsequence Uj ⊂ Up+j ⊂ U2p+j ⊂ . . ., that is, k1 ≡ k2 (mod p) and
either Uk1 ⊂ Uk2 or Uk2 ⊂ Uk1 . In particular, only if this is the case can
∂Uk1 and ∂Uk2 share infinitely many preimages of α. This will be a key
point in later arguments.

We have seen that the fact that ∂fp(U) and ∂E did not share any contact
point was crucial for the quasi-conformal surgery construction of Case 2.1
(see Remark 3). Now, the condition ∂fp(U) ∩ ∂E 6= ∅ is exactly given by
hypothesis, so some extra work must be done, in the sense of modifying
slightly some sets, in order to start the surgical process proper.

On the other hand, notice that the sets {Uk}k are in some sense arbitrary,
since they were constructed by repeatedly pulling-back U0, chosen arbitrar-
ily. Also, notice that once these sets (and E) have been defined and during
the process of quasi-conformal surgery (that is to say, from the construction
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of the auxiliar quasi-regular maps on), the only sets in this sequence with
a role to play are U, f(U), . . . , fk(U) (or rather U, f(U), . . . , fp(U) for the
current case).

Thus, it seems that we can modify these sets U, f(U), . . . , fp(U) slightly
and only close to the odd contact points, so that their boundaries share
as little points as possible — the following result provides us with such
modification. Its proof is rather technical and will be given separately, at
the end of this section.

Proposition 3.2. In the situation described hitherto, there exists a con-
nected multiply-connected set U ⊂ U such that fp(U) is simply connected,
fp(U) ⊂ U ∪ {α} and ∂fp(U) ∩ J (f) = {α}.

Now call E the bounded component of Ĉ \U that contains E. The point
α need not be on ∂E , so it could happen that ∂fp(U) ∩ ∂E = ∅. Were
that the case, notice that fp(U) ⊂ Ĉ \ E and therefore we could just repeat
the surgery process of Case 2.1—replacing U and E by their respective
modifications—to find a weakly repelling fixed point of f .

Otherwise, we have ∂fp(U) ∩ ∂E = {α} and, as there seems to be no
neat way to separate E from α, we will just work with a small extension
of E whose interior contains α. More precisely, we first define V0 := Ĉ \ E
and V1 := f(U) ⊂ E ⊂ E , and use the Interpolation Lemma 3.1 to find
a quasi-regular map f1 : Ĉ \ E → f(U), as usual—however, notice that we
marked no compact set K nor points a and b, since now f1 need not be
holomorphic in any subset of Ĉ \E . Also, recall that f1 actually agrees with
f in a neighbourhood N1 of ∂E—call N := E ∪N1, a neighbourhood of E .

Lemma 3.3. There exist a sufficiently small neighbourhood of α in fp(U),
W∗, an open neighbourhood of E ∪ fp(W∗) in N , E∗, and a quasi-conformal
map h : Ĉ → Ĉ such that

• W∗ ⊂ N ;

• fp(W∗) ⊂ E∗ and E∗ ∩W∗ \ ∂fp(U) ⊂ W∗;

• h = id in E∗ and h(fp(U)) ⊂ W∗.

Roughly speaking, the map h pushes the points in fp(U) towards E , but
will leave points there untouched so that the action of any post-composed
map be preserved entirely (see Figure 7).

Proof. We define the set W∗ as the connected component of f−(c−1)p(WR)
in fp(U) that has α on the boundary, with R so large as for W∗ ⊂ N (see the
construction of W in Subsection 3.1). By construction, it is a neighbourhood
of α in fp(U), i.e., α /∈ fp(U) \ W∗, and fp(W∗) ⊂ W∗ ∪{α}. In particular,
the existence of one such E∗ follows from the latter.
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α

U

N

E

E∗
f(U)

fp(U)

fp−1(U)

Figure 7: The case where ∂V ∩ ∂E = {α}, with the sets N , W∗ (light-shaded),
fp(W∗) (dark-shaded) and E∗. Notice that points in fp(W∗) will never leave E∗

under the action of f .

Now let S be the simply-connected open set fp(U) \ E∗ with a marked
boundary segment at l := ∂S ∩ ∂E∗. There exists a (conformal) Riemann
map ϕ : S → Q that sends l to one of the sides of the open unit square Q.
Consider a (quasi-conformal) homothetic transformation h̃0 : Q → h̃0(Q)
such that h̃0|ϕ(l) = id and h̃0(Q) ∩ ϕ(S ∩ ∂W∗) = ∅.

Finally, define the conjugate map h0 := ϕ−1 ◦ h̃0 ◦ ϕ : S → h0(S), which
is quasi-conformal (see Figure 8). Notice that h0|l = id, so we can define

h :=

{
h0 on S = fp(U) \ E∗

id on E∗

and extend it quasi-conformally to a map h : Ĉ → Ĉ.

Now consider the quasi-regular map f2 : Ĉ → Ĉ defined as

f2 :=

{
f ◦ h on E∗

f1 ◦ h on Ĉ \ E∗
=

{
f on E∗

f1 ◦ h on Ĉ \ E∗.

Also, consider the (shrinking) f2-cycle C := f(W∗) ∪ . . . ∪ fp(W∗) ⊂ E∗.
Indeed, it is cyclic because f2(C) = f(C) ⊂ C (see Figure 9).
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l

ϕ(l)S
∩
∂W

∗

S Q

ϕ

ϕ

h0 h̃0

h0(S)

h̃0(Q)

Figure 8: For the construction of the map h : Ĉ → Ĉ, we first define an auxiliary
map h0 : S → h0(S) as a conjugation of a quasi-conformal map on Q, where it is
easy to define the desired local dynamics. In grey we find S∩W∗ (and its ϕ-image),
the subset where we want h0(S) to end up.

Ĉ

E∗

U

f2

f2

Figure 9: The action of f2 on the cycle C, shaded. Notice that fp(W∗) ⊂ W∗, so
its f2-image falls again in f(W∗).

Setting X := Ĉ \ E∗, orbits of f2 pass through X at most twice, since

· · ·
f2
7−→ f−1

2 (X)
f2
7−→ X

h
7−→ X ⊂ Ĉ \ E

f1
7−→ f(U)

fp−1
27−→ fp(U)

h
7−→ W∗ f

7−→ f(W∗) ⊂ C
f2
7−→ C

f2
7−→ · · · ⊂ Ĉ \X.15



Define the almost complex structure

σ :=





σ0 on C

(fn2 )∗σ on f−n2 (f(W∗)), n ∈ N

σ0 elsewhere,

which clearly is f2-invariant by definition, and has bounded dilatation since
f2 fails to be holomorphic only at most twice. Therefore we can use Corollary
2.2 to find a rational map g : Ĉ → Ĉ conjugate to f2 by a quasi-conformal
homeomorphism φ.

Thus,

gp+1(φ(X)) = φ(f2(f
p
2 (X))) ⊂ φ(f2(fp(U))) ⊂ φ(C) ⊂ φ(C) ∪ 〈φ(α)〉 ,

so φ(X) is contained in the basin of an attracting or parabolic point. By
Fatou’s theorem, g has a weakly repelling fixed point in φ(Ĉ \X) = φ(E∗),
hence f has a weakly repelling fixed point in E∗.

3.1 Proof of Proposition 3.2

When removing points of ∂fp(U)∩∂E, there is a particular point we cannot
ignore — that is α itself: Because its attracting dynamics in a whole petal
contained in the parabolic basin (Fatou coordinates about a parabolic point),
if we redefined U as some Ũ in such a way that α were not on its boundary,
then points close to α would become even closer under the action of fp, and
the condition fp(Ũ ) ⊂ Ũ would be lost (see Figure 10).

α

fp

B Ũ

Figure 10: If the new set Ũ left out some neighbourhood of α, there would be
points in it stepping outside it under fp. The shaded set represents the attracting
petal attached to α given by the Fatou coordinates.

Rather, for the construction of one such U we need to modify the sets
U, f(U), . . . , fp(U) close to the contact points between their boundaries ex-
cept those in the cycle 〈α〉 (see Figure 11).
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α

α

fp(U)
fp(U)

f(α)f(α)

f(U)f(U)
fp−1(α)fp−1(α)

UU

fp−1(U)fp−1(U)

or

Figure 11: The situation we want, with the points in 〈α〉 marked. Notice that
a priori we do not know whether α is on ∂E or not, since the set E was chosen
arbitrarily as one of the bounded connected components of the complement of
U ; in particular, α could even happen to be on the boundary of the unbounded
component of the complement of U . It is clear that surgery cannot be used just as
in Case 2.1 when ∂fp(U) ∩ ∂E remains nonempty (right-hand side figure).

When doing so, it is clear that if the point α lies not on the intersection
∂fp(U)∩ ∂E (Figure 11, left), the situation is then identical to that of Case
2.1, and therefore we can conclude the case following an analogous surgical
procedure. In case α does belong to ∂fp(U)∩∂E (Figure 11, right), yet one
last auxiliar map shall be defined in order to finish the proof with a different
quasi-conformal surgery argument.

Let us now construct the modification of U, f(U), . . . , fp(U). The idea
is the following: Since the ultimate aim of such modification is to eliminate
contact points between ∂fp(U) and ∂E, it suffices to modify only the set
Un0−p ≡ fp(U) and redefine the sets Un0−p+1 ≡ fp−1(U), . . . , Un0 ≡ U by
repeatedly pulling-back this first modification, appropriately. Of course if
the changes on these sets are arbitrarily small, and, therefore, the new sets
are arbitrarily close to the original ones, their respective connectivities are
also to be preserved (see Figure 12).

Following such reasoning, one could think that the modification of fp(U),
which we can call V, could simply be obtained by removing from fp(U) a disc
of arbitrarily small radius centered at every contact point between ∂fp(U)
and ∂E (see Figure 13).

But of course we want to keep the property fp(U) ⊂ U for the subse-
quent surgical work, and, if we just removed those discs taking no control
whatsoever over their preimages, such inclusion could be lost: Consider a
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fp(U) f(U) U

Figure 12: The set U is multiply connected and so is its modification (shaded
here) if it differs not much from U . Similarly, the sets f(U), . . . , fp(U) are simply
connected and so are their modifications.

E

fp(U)

Figure 13: The shaded set represents a first attempt towards the construction of
V .

point a ∈ A := ∂fp(U)∩∂E\{α} ⊂ J (f) — for instance some a ∈ O−(α) —
with some preimage b ∈ f−p(a) on the same set A. If, when defining V, and
since a, b ∈ A, we removed from fp(U) discs of small radius centered at
these points, say Bε(a) and Bε(b), and if the preimage of Bε(a) under fp

happened to become so big as to contain points in the complement of Bε(b),
then there would be points z0 ∈ (f−p(Bε(a)) ∩ fp(U)) \ Bε(b) such that
fp(z0) ∈ Bε(a) ⊂ Ĉ\V, that is to say, z0 /∈ f

−p(V) and, therefore, we would
have z0 ∈ V \ f−p(V) 6= ∅, which is precisely what we want to avoid. (See
Figure 14.)

This very description of the problem with the preimages of points we
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a

Bε(a)

b

Bε(b)

z0

U

fp(U)

V fp

fp

∈ f−p(Bε(a) ∩ fp(U))

Figure 14: We want to keep fp(U) ⊂ U after the modification, i.e., we want a set
V such that V ⊂ f−p(V). However, if we defined it as the shaded set in this figure,
there would exist points z0 ∈ V \ f−p(V) — so we need to take some control over
the preimages of the discs we remove from fp(U).

remove from fp(U) for the construction of V also provides us with a hint
about how to solve it, since, in the previous example, it would have been
enough to take f−p(Bε(a)) ∩ f

p(U) instead of Bε(b) so as to avoid points
like z0.

In other words, we must also exclude from V all the points in fp(U)
whose fp-image falls on points we “already” removed from fp(U). In fact,
this generates, in turn, more points whose preimage need be controlled; and
so on. Regardless of what may be expected, this is not an endless recurrent
process, since fp(U) ≡ Un0−p ⊂ f−n0+p(U0) and, therefore, after n0 − p
iterations all the points in fp(U) happen to be close to α — precisely in U0,
and we will see that we can make U0 ⊂ V provided that the radius of the
discs initially removed from fp(U) is small enough (see Figure 15). At the
same time, we shall be careful when taking all these preimages, since they
could become so big as to impede the construction of V.

For all ε > 0, let

Vε := fp(U) \
⋃

a∈A

c−2⋃

k=0

f−kp(B2kε(a)).

The remaining part of the proof consists on showing that, for ε small enough,
the set V ≡ Vε is exactly the one we want.
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α

U0

a1 a2

al

fp

fp

fp

Bε(a1)

fn0−p

fp(U)

∈ f−p(Bε(a1))

∈ f−(l−1)p(Bε(a1))

Figure 15: Given a sequence of points al 7→ · · · 7→ a2 7→ a1 on A, with 1 ≤ l < c
(since fp(U) ≡ Un0−p = U(c−1)p and fp(U0) ⊂ U0 ∪{α}, so ∂fp(U) cannot contain

preimages of higher order), the points z0 ∈ f−(l−1)p(Bε(a1)) will eventually fall
inside U0 ⊂ V , therefore we need not worry about their preimages any more.

First of all notice that fp(Vε) ⊂ Vε by definition. Now we will show that
the preimages f−kp(B2kε(a)) can be controlled in such a way that none of
them reaches the point α, otherwise excluded from Vε. The following lemma
gives sufficient conditions for this not to happen.

Lemma 3.4. In the situation described hitherto, there exists ε0 > 0 such
that α ∈ ∂Vε for all ε < ε0.

Before its proof, we define two sets which, because of their importance,
will be used also beyond this result. These sets are both neighbourhoods (in
fp(U)) of α and provide useful information about the dynamics of fp close
to this point.

The first set to be constructed, C, is a neighbourhood of α whose bound-
ary is clean of points of A. For this, notice that A consists only of points
of O−(α) and O−(∞), since A ⊂ ∂fp(U) ∩ J (f) and, by construction of
the sequence {Uk}k, we have f (c−1)p(∂fp(U)) = ∂U0 ⊂ F(f) ∪ {α}. More
precisely,

A ⊂
⋃

1≤k<c

(f−kp(α) ∪ f−(k−1)p(∞))

or, simply,

A ⊂ f−(c−1)p(α) ∪
c−2⋃

k=0

f−kp(∞)
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if we take into account that α is q-periodic and so p-periodic. In particular,
the set A finds its accumulation points only in

⋃c−2
k=0 f

−kp(∞), and the points
in f−(c−1)p(α)∩A are all isolated in A (since f−(c−1)p(α)∩

⋃c−2
k=0 f

−kp(∞) = ∅
because α is a periodic point). In the same way, since α is not an accumula-
tion point of A, there exists a simply-connected open sector C ⊂ fp(U) such
that α ∈ ∂C, α /∈ fp(U) \ C and C ∩A = ∅ (see Figure 16). Actually, we can
still shrink it slightly so that A does not meet a whole (sufficiently small)
neighbourhood of C — we will use this later, in order to see some technical
detail.

α

C

fp(U)

Br/2(α)
Br(α)

Figure 16: The non-labelled points represent the set A. Since they never accu-
mulate on α, there certainly exists such an open set C, as shown. Furthermore,
because α is a parabolic point, in a sufficiently small neighbourhood of it fp(U)
is essentially a wedge like that of an attracting petal, so we can even take C as
Br(α) ∩ fp(U) with r so small as for C to be connected and C ∩ A = ∅. Even
more, taking C = Br/2(α) ∩ fp(U) we ensure not only its closure but also a whole

neighbourhood of C free from points of A.

On the other hand, we want to construct another neighbourhood of α
in fp(U), to be called W, with dynamics similar to that of U0 in the sense
that fp(W) ⊂ W ∪ {α}; in other words, the set W will control those points
in fp(U) that happen to be already close to the point α. Notice that we
cannot take U0 itself as W because U0 need not be a neighbourhood of α in
fp(U), that is, α ∈ fp(U) \ U0 in general; but the construction of U0 does
inspire the use of Fatou coordinates in order to provide W with its same
dynamics. More precisely, we will construct a subset of U0 in a very similar
fashion and then define W as an appropriate preimage of it in fp(U).

In fact, for all R > L, let

WR := H−1({w ∈ C : Rew > L, Rew + |Imw| > R}) ⊂ U0,

where recall that H(z) = −1/νazν conjugates the maps fp and T (w) =
w + 1 + O(w−1/ν), and L > 0 is large enough for fp to be injective on U0
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(see Figure 17).

α = 0
H

WR U0 L R

H−1(L)

H−1(R)

H−1(L− (R − L) i)

H−1(L+ (R − L) i)

L+ (R − L) i

L− (R − L) i

Rew + Imw = R

Rew − Imw = R

Figure 17: Using the same Fatou coordinates setting as in the construction of U0,
we can define WR as a subset of it in such a way that fp keeps its injectivity also in
the subset. By taking R sufficiently large, WR can be embedded in any (arbitrarily
small) neighbourhood of α.

It is clear that since we took L so large as for T (w) ≈ w+1 and fp(U0) ⊂
U0 ∪ {α}, then, for any R > L, also fp(WR) ⊂ WR ∪ {α} holds. Moreover,
WR is a neighbourhood of α in U0 (i.e., α /∈ U0 \WR), since H(α) = ∞ and
H(U0 \WR) = {w ∈ C : Rew ≥ L, Rew+ |Imw| ≤ R}, which is a compact
set.

Consider now the connected component of the preimage f−(c−1)p(WR) in
fp(U) that has α on the boundary (or, equivalently, contains WR). If R were
close to L, then WR would be close to U0 and its preimage close to fp(U),
so the character of neighbourhood of α would be lost. Let us show, then,
that we can choose a sufficiently large R in such a way that this preimage
lies even inside the just-constructed neighbourhood C: Consider the image
set f (c−1)p(C) ⊂ U0; notice that α /∈ U0 \ f (c−1)p(C) since, by construction
of C, there are no preimages of α on C. Therefore, there exists R0 > L such
that WR ⊂ f (c−1)p(C) ⊂ U0 for any R > R0 (see Figure 18). Define W
as the connected component of f−(c−1)p(WR) in fp(U) that has α on the
boundary, for R > R0, and thus W ⊂ C. It follows that fp(W) ⊂ W ∪ {α}
and α /∈ fp(U) \ W, since, once again, C ∩ A = ∅.

This concludes the construction of the sets C and W, so we are now in a
position to prove Lemma 3.4.

Proof of Lemma 3.4. Consider one of the preimages f−kp(B2kε(a)) and sup-
pose that α ∈ f−kp(B2kε(a)). If this were the case, and because α ∈ ∂W,
we would have that f−kp(B2kε(a)) ∩W 6= ∅; so let z0 ∈ f−kp(B2kε(a)) ∩W.
Then,

C ⊃ W ⊃ fp(W) ⊃ · · · ⊃ fkp(W)

∈ ∈ ∈

z0 fp(z0) fkp(z0)
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α

fp(U)

WR

C

f(c−1)p(C)

U0

Figure 18: Since α /∈ U0 \ f (c−1)p(C), the set WR can be shrunk arbitrarily until
WR ⊂ f (c−1)p(C). Notice that f (c−1)p(C), shaded here, need not be contained in C,
so C itself or even an image of it serve not as WR.

that is to say, fkp(z0) ∈ C. On the other hand, from the fact that z0 ∈
f−kp(B2kε(a)) ∩ W it also follows that fkp(z0) ∈ B2kε(a); therefore, the
point fkp(z0) would belong to both sets: fkp(z0) ∈ C ∩B2kε(a).

However, since A does not meet some neighbourhood of C, it is clear
that there exists ε0 > 0 such that C ∩B2kε(a) = ∅ for any ε < ε0 and a ∈ A.
Therefore, it suffices to take ε < ε0 to obtain fkp(z0) /∈ C ∩ B2kε(a) = ∅
and α /∈ f−kp(B2kε(a)). But α does belong to ∂fp(U) so, right from the
definition of Vε, we have α ∈ ∂Vε for all ε < ε0.

Remark. Notice that the key point of this proof lies in the fact that the
preimages f−kp(B2kε(a)) are considered only up to order k = c−2. Of course,
if we were to take preimages of B2kε(a) indefinitely, we would surely end up
meeting C because B2kε(a) is a neighbourhood of a point a ∈ A ⊂ J (f); but,
then, also preimages of α would accumulate on α itself so the construction
of one such C would never be possible for a start.

The next step towards the construction of V is to insure that U will keep
multiple connectivity. This is precisely what the following lemma does.

Lemma 3.5. In the situation described hitherto, there exists ε1 > 0 such
that f−p(Vε) has a multiply-connected component in U that separates E and
the unbounded connected component of Ĉ \ U , for all ε < ε1.
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Proof. Since U is multiply connected, let γ ⊂ U be a generator path of its
fundamental group (as a topological space) such that E and the unbounded
connected component of Ĉ\U sit in different connected components of Ĉ\γ
(see Figure 19).

Ĉ

U

∞

γ

Figure 19: One such generator path γ, as seen on the Riemann sphere. Notice
that it need not separate all the connected components of Ĉ \U pairwise, although
it might separate components other than E and the unbounded one.

Consider now the images {fkp(γ)}1≤k<c in fp(U). Because γ accumu-

lates not on points of J (f), neither do the curves fkp(γ) accumulate on
points of A, and, therefore, there exist {ε1,k > 0}1≤k<c such that, for each

1 ≤ k < c, fkp(γ) ∩B2kε(a) = ∅ for any ε < ε1,k and a ∈ A (see Figure 20).
In this way, if ε < ε1, where

ε1 := min
1≤k<c

ε1,k ,

then fkp(γ) ∩ B2kε(a) = ∅ for any 1 ≤ k < c and a ∈ A. Let us show that
it follows from here that γ ⊂ f−p(Vε) for all ε < ε1: If it were otherwise,
γ * f−p(Vε), then we would have fp(γ) * Vε and, since fp(γ) ⊂ fp(U) and
Vε = fp(U) \

⋃
a∈A

⋃c−2
k=0 f

−kp(B2kε(a)), there would exist 0 ≤ k ≤ c− 2 and
a ∈ A for which fp(γ)∩f−kp(B2kε(a)) 6= ∅. So let z0 ∈ fp(γ)∩f−kp(B2kε(a));
taking fkp-images we would have fkp(z0) ∈ f (k+1)p(γ) ∩ B2kε(a) for some
0 ≤ k ≤ c− 2, that is, fkp(γ) ∩B2kε(a) 6= ∅ for some 1 ≤ k < c, which is in
contradiction with the construction of ε1.

Finally, from the fact that γ ⊂ f−p(Vε) for all ε < ε1 and from the choice
of γ ⊂ U , the lemma follows straightforwardly.

Last, and in a similar spirit to that of the previous lemma, we also
want to control the topology of Vε itself, since it might happen to consist of
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α

fp(U)

fkp(γ)

ε1,k

ε1,k

ε1,k

Figure 20: For each 1 ≤ k < c, the radius ε1,k can be chosen in such a way
that fkp(γ) ∩ B2kε(a) = ∅ for any ε < ε1,k and a ∈ A. Here, the set A is again
represented by the non-labelled points, and we show just one step 1 ≤ k < c for
the sake of clarity.

more than one connected component due to the removal of the preimages
f−kp(B2kε(a)) (see Figure 21).

α

fp(U)

Figure 21: When removing the preimages f−kp(B2kε(a)) (shaded) from fp(U),
the resulting set might be disconnected.

This will pose no problem if we focus only on the connected component
of Vε that has α on its boundary, V ∗

ε ; but we do have to make sure that the
fp-preimage of such component will generate a multiply-connected set, as
expected.

Lemma 3.6. In the situation described hitherto, there exists ε2 > 0 such
that f−p(V ∗

ε ) has a component like that of the previous lemma, for all ε < ε2.

Proof. The construction here is very similar to the proof of Lemma 3.5. In
fact, consider fp(γ) ⊂ fp(U), where γ ⊂ U is that path which separates E
and the unbounded connected component of Ĉ \ U . Since fp(U) is simply

25



connected and, in particular, path-connected, there exists a (continuous)
path

ξ : [0, 1] → fp(U) ∪ {α}

such that ξ(0) = α and ξ(1) ∈ fp(γ) (see Figure 22).

α = ξ(0)

fp(U)

ξ

ξ(1)

fp(γ)

Figure 22: We can connect α and fp(γ) by a path ξ in fp(U) ∪ {α}.

Consider now the images {fkp(ξ)}0≤k≤c−2 in fp(U). Because ξ accumu-

lates not on points of J (f) \ {α}, neither do the curves fkp(ξ) accumulate
on points of A, and, therefore, there exist {ε2,k > 0}0≤k≤c−2 such that, for

each 0 ≤ k ≤ c− 2, fkp(ξ)∩B2kε(a) = ∅ for any ε < ε2,k and a ∈ A. In this
way, it is clear that if ε < ε2, where

ε2 := min
0≤k≤c−2

ε2,k ,

then ξ ∩ f−kp(B2kε(a)) = ∅ for any 0 ≤ k ≤ c− 2 and a ∈ A, that is to say,
ξ ⊂ Vε and therefore fp(γ) ⊂ V ∗

ε .
Using an identical argument to that of the proof of Lemma 3.5 the result

follows.

This completes the construction of the modification of fp(U), since now
it just remains to define V ⊂ fp(U) as V ∗

ε for some ε < ε0, ε1, ε2, and U ⊂ U
as the multiply-connected component of f−p(V) that separates E and the
unbounded connected component of Ĉ \ U given by Lemma 3.6.
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structures presque complexes, The Mandelbrot set, theme and varia-
tions, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge Univ.
Press, Cambridge, 2000, pp. 307–324.
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[6] Pierre Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France
47 (1919), 161–271, and 48 (1920), 33–94 and 208–314.

[7] Hans-Günter Meier, On the connectedness of the Julia-set for rational
functions, preprint no. 4 RWTH Aachen, 1989.

[8] John Milnor, Dynamics in one complex variable, Friedr. Vieweg &
Sohn, Braunschweig, 1999, Introductory lectures.

[9] Feliks Przytycki, Remarks on the simple connectedness of basins of
sinks for iterations of rational maps, Dynamical systems and ergodic
theory (Warsaw, 1986), Banach Center Publ., vol. 23, PWN, Warsaw,
1989, pp. 229–235.

[10] Mitsuhiro Shishikura, The connectivity of the Julia set and fixed
points, Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 257–
276.

[11] Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. I.
Solution of the Fatou-Julia problem on wandering domains, Ann. of
Math. (2) 122 (1985), no. 3, 401–418.

[12] Tan Lei, Branched coverings and cubic Newton maps, Fund. Math. 154
(1997), no. 3, 207–260.

27


