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Abstract. We study the escaping set of functions in the class B∗, that is,
holomorphic functions f : C∗ → C∗ for which both zero and infinity are essential
singularities, and the set of singular values of f is contained in a compact annulus
of C∗. For functions in the class B∗, escaping points lie in their Julia set. If f is
a composition of finite order transcendental self-maps of C∗ (and hence, in the
class B∗), then we show that every escaping point of f can be connected to
one of the essential singularities by a curve of points that escape uniformly.
Moreover, for every essential itinerary e ∈ {0,∞}N, we show that the escaping
set of f contains a Cantor bouquet of curves that accumulate to the set {0,∞}
according to e under iteration by f .

1. Introduction

Complex dynamics concerns the iteration of a holomorphic function on a Rie-
mann surface S. Given a point z ∈ S, we consider the sequence given by its
iterates fn(z) = (f ◦ n· · · ◦f)(z) and study the possible behaviours as n tends to
infinity. We partition S into the Fatou set, or set of stable points,

F (f) :=
{
z ∈ S : (fn)n∈N is a normal family in some neighbourhood of z

}

and the Julia set J(f) := S \ F (f), consisting of chaotic points. If f : S → S

is holomorphic and Ĉ \ S consists of essential singularities, then there are three
interesting cases:

• S = Ĉ := C ∪ {∞} and f is a rational map;
• S = C and f is a transcendental entire function;
• S = C∗ := C \ {0} and both zero and infinity are essential singularities.

We study this third class of maps, which we call transcendental self-maps of C∗.
Such maps are all of the form

f(z) = zn exp
(
g(z) + h(1/z)

)
, (1.1)

where n = ind(f) ∈ Z is the index (or winding number) of f(γ) with respect to
the origin for any positively oriented simple closed curve γ around the origin, and
g, h are non-constant entire functions. Transcendental self-maps of C∗ arise in a
natural way in many instances, for example, when you complexify circle maps, like
the so-called Arnol’d standard family: fαβ(z) = zeiαeβ(z−1/z)/2, 0 6 α 6 2π, β > 0
[Fag99] (see Figure 1). Note that if f has three or more omitted points, then,
by Picard’s theorem, f is constant and, consequently, a non-constant holomorphic
function f : C∗ → C∗ has no omitted values. A basic reference on iteration theory
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in one complex variable is [Mil06]. See [Ber93] for a survey on the iteration of
transcendental entire and meromorphic functions.

Although the iteration of transcendental (entire) functions dates back to the
time of Fatou [Fat26], Rådström [Råd53] was the first to consider the iteration of
holomorphic self-maps of C∗. A complete list of references on this topic can be
found in [Mar14]. It is our goal in this paper to continue with the program started
in [Mar14] of a systematic study of holomorphic self-maps of C∗, extending the
modern theory of iteration of transcendental entire functions to this setting.

To that end, we recall the definition of the escaping set of an entire function f
I(f) := {z ∈ C : fn(z)→∞ as n→∞}

whose investigation has provided important insight into the Julia set of entire
maps. For polynomials, the escaping set consists of the basin of attraction of
infinity and its boundary equals the Julia set. For transcendental entire functions,
Eremenko showed that I(f)∩J(f) 6= ∅, J(f) = ∂I(f) and the components of I(f)
are all unbounded [Ere89]. Similar properties [Mar14, Theorems 1.1, 1.3 and 1.4]
hold for transcendental self-maps of C∗ once the definition is adapted to take both
essential singularities into account. More precisely, the escaping set of a transcen-
dental self-map of C∗ is given by

I(f) := {z ∈ C∗ : ω(z, f) ⊆ {0,∞}}
where ω(z, f) is the classical omega-limit set and the closure is taken in Ĉ,

ω(z, f) :=
⋂

n∈N
{fk(z) : k > n}.

As usual, the singular set sing(f−1) which denotes the set of the critical values
and the finite asymptotic values of f , plays an important role. In the entire setting,
the so-called Eremenko-Lyubich class

B := {f transcendental entire function : sing(f−1) is bounded}
consisting of bounded-type functions was introduced in [EL92] (see also [Six14]).
Eremenko and Lyubich showed that if f ∈ B, then I(f) ⊆ J(f) or, in other words,
the Fatou set has no escaping components. Functions in the class B have many
other useful properties; see, for example, [RRRS11,MR13,BF15]. In the context of
holomorphic maps of C∗, the analogous class to consider is that where the singular
values stay away from both essential singularities, hence we introduce the class of
bounded-type transcendental self-maps of the punctured plane as
B∗ := {f transcendental self-map of C∗ : sing(f−1) is bounded away from 0,∞}
and prove the following result.

Theorem 1.1. Let f ∈ B∗. Then I(f) ⊆ J(f).

As shown in [Mar], functions outside the class B∗ may have escaping Fatou
components: either Baker domains, which are periodic Fatou components in I(f),
or wandering domains, which are Fatou components U such that fm(U) = fn(U)
if and only if m = n. It remains an open question whether functions in the class B∗
can have wandering domains outside the escaping set, as it is the case for entire
functions in the class B [Bis15, Theorem 17.1].
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It is a natural question to investigate the relationship between entire functions
in the class B and self-maps of C∗ in the class B∗. Keen [Kee88] showed that if g
and h are polynomials and n ∈ Z, then the function f(z) = zn exp

(
g(z) + h(1/z)

)

has a finite number of singular values and hence belongs to the class B∗. The next
theorem extends this results to all functions in the class B when n = 0.

Theorem 1.2. Let g and h be entire functions in the class B. Then the function
f(z) = exp

(
g(z) + h(1/z)

)
is in the class B∗.

As opposed to the situation for entire functions, there is a deep relation between
the bounded-type condition for holomorphic self-maps of C∗ and their order of
growth. To be more precise, recall that the order and lower order of an entire
function f can be defined, respectively, as

ρ(f) := lim sup
r→+∞

log logM(r, f)

log r
and λ(f) := lim inf

r→+∞
log logM(r, f)

log r
,

where M(r, f) := max|z|=r |f(z)|. If f is a transcendental self-map of C∗, then we
also need to take into account the essential singularity at zero. Hence the order of
growth is given by the two quantities

ρ∞(f) := lim sup
r→+∞

log logM(r, f)

log r
and ρ0(f) := lim sup

r→0

log log 1/m(r, f)

log 1/r

where M(r, f) is as before and m(r, f) := min|z|=r |f(z)|. We say that f has
finite order if both ρ∞(f) < +∞ and ρ0(f) < +∞. Likewise, we can define two
quantities associated with the lower order of such functions, λ∞(f) and λ0(f),
by replacing lim sup by lim inf in the expression above. An important property
of entire functions f ∈ B is that λ(f) > 1/2 [BE95, Lan95] (see also [RS05a,
Lemma 3.5]). The next result shows that, surprisingly, the lower order of a function
in C∗ always equals its order and hence it is not relevant in this setting. Moreover,
if the order is finite, then it is an integer.

Theorem 1.3. Let f be a transcendental self-map of C∗. Then λ0(f) = ρ0(f) and
λ∞(f) = ρ∞(f). If f has finite order, then f(z) = zn exp

(
P (z) + Q(1/z)

)
where

n ∈ Z and P,Q are polynomials, and therefore ρ0(f), ρ∞(f) ∈ Z and f ∈ B∗. In
particular, λ0(f), λ∞(f) > 1.

In [Ere89], Eremenko conjectured that if f is a transcendental entire function,
then the components of I(f) are all unbounded. A stronger version of this conjec-
ture states that every escaping point can be joined to infinity by a curve of points
that escape uniformly. Such curves are called ray tails and their maximal exten-
sions are called dynamic rays. Douady and Hubbard [DH85] were the first to intro-
duce dynamic rays to study the dynamics of polynomials, where I(f) consists of the
attracting basin of infinity which is connected. Devaney and Krych [DK84] showed
that for maps in the exponential family Eλ(z) = λez, λ ∈ (0, 1/e), the Julia set
consists of dynamic rays (that they called hairs). Devaney and Tangerman [DT86]
proved that the same holds for certain finite-type functions, that is, functions with
finitely many singular values, satisfying additional technical conditions, such as
the sine family Sλ(z) = λ sin(z), λ ∈ (0, 1). They coined the term Cantor bouquet
to describe the Julia set of these functions. They first defined a Cantor N -bouquet,
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where N ∈ N, to be a subset of J(f) homeomorphic to the product of a Cantor set
and the half-line [0,+∞), and then a Cantor bouquet to be an increasing union
of Cantor N -bouquets. However, this is somewhat different to the definition of
Cantor bouquet used more recently (and in this paper) in terms of a topological
object called a straight brush which is due to Aarts and Oversteegen [AO93] (see
Definition 9.1).

Figure 1. Period 8 cycle of rays landing on a repelling period 4
orbit in the unit circle for the function fαβ(z) = zeiαeβ(z−1/z)/2 from
the Arnol’d standard family, with α = 0.19725 and β = 0.48348.

Rottenfußer, Rückert, Rempe and Schleicher proved in [RRRS11, Theorem 1.2]
that the stronger version of Eremenko’s conjecture holds for transcendental entire
functions of bounded type and finite order or, more generally, a finite composition
of such functions: every escaping point can be joined to infinity by a curve of points
that escape uniformly. This result was proved independently by Barański [Bar07,
Theorem C] for disjoint-type functions, that is, transcendental entire functions for
which the Fatou set consists of a completely invariant component which is a basin
of attraction. Shortly after, Barański, Jarque and Rempe proved that, actually,
the Julia set of the functions considered in [RRRS11] contains a Cantor bouquet
[BJR12, Theorem 1.6].

In this article we prove the existence of dynamic rays for transcendental self-
maps of C∗ by adapting the construction of [RRRS11] to our setting. We use the
notation fn|γ → {0,∞} to mean that, under iteration by f , the points in γ escape
to zero, escape to infinity or accumulate to both of them and nowhere else.

Theorem 1.4. Let f be a transcendental self-map of C∗ of finite order or, more
generally, a finite composition of such functions. Then every point z ∈ I(f) can be
connected to either zero or infinity by a curve γ such that fn|γ → {0,∞} uniformly
in the spherical metric.
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Note that in the statement of Theorem 1.4 there is no assumption of bounded-
type. This is because, as we mentioned above, finite order transcendental self-maps
of C∗ are always in the class B∗ (see Lemma 4.6).

Given a holomorphic self-map of C∗, a lift of f is an entire function f̃ satisfying
exp ◦f̃ = f ◦ exp. Bergweiler [Ber95] proved that J(f̃) = exp−1 J(f). Seeing this
result one might think that every result about entire functions could be extended to
self-maps of C∗ via their lifts. Unfortunately, this is not possible. In particular, a
lift of a map of bounded type is never of bounded type, its singular set is contained
in a vertical band and so, we cannot apply directly the results from [RRRS11]. In
fact, in the opposite direction, Theorem 1.4 allows to construct dynamic rays for
certain entire functions that are not in the class B, but project to functions in the
class B∗ satisfying the hypothesis of Theorem 1.4.

Corollary 1.5. Let f be an entire transcendental function of finite order for which
there exists k ∈ Z so that f(z + 2πi) = f(z) + k2πi for all z ∈ C, or a finite
composition of such functions. Then every point z ∈ I(f) with |Re fn(z)| → +∞
as n→∞ can be connected to infinity by a curve of points that escape uniformly.

The main tool to prove Theorem 1.4 is the use of logarithmic coordinates, intro-
duced by Eremenko and Lyubich [EL92], and the expansivity of the logarithmic
transform near the essential singularities. The orbit of escaping points eventually
enters the tracts (unbounded Jordan domains which are mapped to a neighbour-
hood of zero or infinity) and remains there. We partition each tract into funda-
mental domains, each with a corresponding symbol, and consider itineraries on
them; see Section 5 for the precise definitions. Observe that the previous theorem
contains no claim of which dynamic rays actually exist. Our next result shows
that, under the hypothesis of Theorem 1.4, there is a unique dynamic ray for ev-
ery sequence of fundamental domains that contains only finitely many symbols.
Here P (f) denotes the postsingular set of f which is the closure of the union of
all the (forward) iterates of sing(f−1). We say that a dynamic ray γ lands if γ \ γ
is a single point.

Theorem 1.6. Let f be a transcendental self-map of C∗ of finite order or, more
generally, a finite composition of such functions, and let (Dn) be an admissible
sequence of fundamental domains of f containing finitely many symbols. Then the
function f has a unique nonempty dynamic ray γ with itinerary (Dn). Furthermore,
if (Dn) is periodic and the set P (f) is bounded in C∗, then the dynamic ray γ lands.

Observe that, for example, Theorem 1.6 implies that every fundamental domain
contains exactly one fixed dynamic ray.

We associate to each escaping point an essential itinerary e = (en) ∈ {0,∞}N
defined by

en :=

{
0, if |fn(z)| 6 1,

∞, if |fn(z)| > 1,

for all n ∈ N. Consider, for each e ∈ {0,∞}N, the set of points whose essential
itinerary is eventually a shift of e, that is,

Ie(f) := {z ∈ I(f) : ∃`, k ∈ N, ∀n > 0, |fn+`(z)| > 1⇔ en+k =∞}.
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Each of the sets Ie(f), e ∈ {0,∞}N, should be regarded as the analogue of the
whole of I(f) for a transcendental entire function f . In [Mar14, Theorem 1.1] it
is shown that, for each e ∈ {0,∞}N, Ie(f) ∩ J(f) 6= ∅. We follow the methods of
[BJR12] to show that, in fact, under the hypothesis of Theorem 1.4, each set Ie(f)
not only contains periodic ray tails (countably many) but a Cantor bouquet.

Theorem 1.7. Let f be a transcendental self-map of C∗ of finite order or, more
generally, a finite composition of such functions. For each e ∈ {0,∞}N, there exists
a Cantor bouquet Xe ⊆ Ie(f) and, in particular, the set Ie(f) contains uncountably
many ray tails.

Although Theorem 1.4 is stated in terms of functions of finite order, its proof is
more general and applies to a class of functions satisfying certain good geometry
properties (see Definition 3.13). Rempe, Rippon and Stallard showed that, assum-
ing an extra condition (namely, that the tracts have what they call bounded gulfs),
the ray tails constructed in [RRRS11] consist of fast escaping points [RRS10, The-
orem 1.2]. It seems likely that similar conditions would imply that the dynamic
rays that we construct here are also fast escaping in the sense of [Mar14].

Remark 1.8. Lasse Rempe-Gillen pointed out that Theorem 1.4 may also be proved
using random iteration as described in the last paragraph of [RRRS11, Section 5]
by taking, for R > 0 sufficiently large,

f1(z) :=

{
f(z) if |f(z)| > R,
1/f(z) if |f(z)| < 1/R;

f2(z) :=

{
f(1/z) if |f(1/z)| > R,
1/f(1/z) if |f(1/z)| < 1/R;

which both have a logarithmic transform in the class Blog and then applying the re-
sults of [RRRS11] to a non-autonomous sequence of these two functions. However,
it seems natural to provide a direct proof.

Structure of the paper. Roughly speaking, the first half of the paper is de-
voted to describing the basic properties of functions in the class B∗ and in the
second half we investigate the existence of dynamic rays for these functions. In
Section 2, we study what is the relation between the classes B and B∗; the proof
of Theorem 1.2 is there. In Section 3, we describe the geometry of logarithmic
coordinates of functions in the class B∗ and give the proof of Theorem 1.1. Fi-
nite order functions are introduced in Section 4, where we prove Theorem 1.3,
and are shown to be examples of functions with good geometry. In Section 5, we
define symbolic dynamics, both in terms of essential itineraries (with respect to
essential singularities) and external addresses (with respect to tracts). In contrast
to what happens in the entire case, in our setting the Bernoulli shift map is a
subshift of finite type, where only some sequences are admissible. In Section 6,
we show that if an external address s is periodic, then the set Js(F ) consisting
of all points with that address contains an unbounded continuum of fast escaping
points - this is used later to prove Theorem 1.6 in Section 9. Dynamic rays are
introduced in Section 7. Finally the proofs of Theorem 1.4 and Theorem 1.7 are
sketched in Section 8 and Section 9, respectively, focusing on the differences with
the proofs of [RRRS11, Theorem 1.2] and [BJR12, Theorem 1.6], which concern
entire functions.
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Notation. In this paper N = {0, 1, 2, . . .}. If z ∈ C∗ and X ⊆ C∗, then dist(z,X)
denotes the Euclidean distance from z to X. If z0 ∈ C and 0 < r < r′, we define
the sets

D(z0, r) := {z ∈ C : |z − z0| < r}, A(r, r′) := {z ∈ C : r < |z| < r′}.
We define the half-planes H+ := {z ∈ C : Re z > 0}, H− := {z ∈ C : Re z < 0},
and, for r ∈ R, we put

H+
r := {z ∈ C : Re z > r}, H−r := {z ∈ C : Re z < −r},

and, for r > 0, H±r := {z ∈ C : |Re z| > r} = H+
r ∪H−r . If X is a set in C∗, then

the topological operations X and ∂X are taken in C∗ unless stated otherwise, and
we use X̂ to denote the closure of X in Ĉ. Finally, if X, Y are disjoint sets, we use
X t Y to denote the union of X and Y .

Acknowledgements. The authors thank Lasse Rempe-Gillen, Phil Rippon and
Gwyneth Stallard for useful discussions during the preparation of this paper and
Dave Sixsmith for reading the paper carefully and making very helpful comments.
We also thank Lasse Rempe-Gillen for kindly providing the picture from the intro-
duction.

2. Functions in the class B∗

Let f be a transcendental entire function or a transcendental self-map of C∗.
We say that v ∈ Ĉ is a critical value of f if v = f(c) with f ′(c) = 0. We say
that a ∈ Ĉ is an asymptotic value of f if there is a continuous injective curve
γ : (0,+∞) −→ Ĉ (the asymptotic path) such that as t → +∞, γ(t) → α, where
α is an essential singularity of f , and f

(
γ(t)

)
→ a. Let CP(f) denote the set

of critical point of f . The set of singularities of the inverse function, sing(f−1),
consists of the critical values of f , CV(f) := f(CP(f)), and the finite asymptotic
values of f , AV(f), that is

sing(f−1) = CV(f) ∪ AV(f).

Note that in C∗ by finite asymptotic value we mean that a /∈ {0,∞}. For trans-
cendental self-maps of C∗, we can decompose AV(f) as

AV(f) = AV0(f) ∪ AV∞(f),

depending on whether a ∈ AV(f) has an asymptotic path γ to zero or to infinity.
The set AV0(f) ∩ AV∞(f) may be nonempty. Finally, we define the singular set
of f , S(f), and the postsingular set of f , P (f), as

S(f) := sing(f−1), P (f) :=
⋃

n∈N
fn
(
sing(f−1)

)
.

We say that f has bounded type if S(f) is bounded. Similarly, we say that f has
finite type if S(f) is finite.

The next result relates the singular set and the postsingular set of a transcen-
dental self-map f of C∗ with the corresponding sets of a lift f̃ of f , which is a
transcendental entire function satisfying exp ◦f̃ = f ◦ exp. Its proof is straightfor-
ward and we omit it.
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Lemma 2.1. Let f be a transcendental self-map of C∗ and let f̃ be a lift of f .
Then S(f̃) = exp−1

(
S(f)

)
and P (f̃) ⊆ exp−1

(
P (f)

)
.

Recall that if f is a holomorphic self-map of C∗, we define ind(f) to be the index
of f(γ) with respect to the origin, where γ is any positively oriented simple closed
curve around the origin. Observe that, in the hypothesis of the previous lemma,
if |ind(f)| = 1, then P (f̃) = exp−1

(
P (f)

)
.

The following lemma is a basic property about the singular values of the com-
position of two functions.

Lemma 2.2. Let f and g be meromorphic functions in C. Then we have that
CP(g◦f) = CP(f)∪f−1

(
CP(g)

)
, CV(g◦f) ⊆ g

(
CV(f)

)
∪CV(g) and AV(g◦f) =

g(AV(f)) ∪ AV(g).

Proof. By the chain rule, (g ◦ f)′(z) = g′
(
f(z)

)
f ′(z), and thus

CP(g ◦ f) = CP(f) ∪ f−1
(
CP(g)

)
,

CV(g ◦ f) = (g ◦ f)
(
CP(g ◦ f)

)

⊆ (g ◦ f) CP(f) ∪ g
(
CP(g)

)

= g
(
CV(f)

)
∪ CV(g).

Observe that the set f−1
(
CP(g)

)
may be empty, and hence the other inclusion

does not hold in general.
Finally, if γ is an asymptotic path of g ◦ f with asymptotic value a, then either

f
(
γ(t)

)
)→ b ∈ AV(f) as t→ +∞, where g(b) = a, or f(γ) is an asymptotic path

of g and a ∈ AV(g). Therefore AV(g ◦ f) ⊆ g
(
AV(f)

)
∪ AV(g) and the opposite

inclusion follows easily. �

Let B and B∗ be the bounded-type classes defined in the introduction. Observe
that, by Lemma 2.2, both B and B∗ are closed under composition. Recall that
Theorem 1.2 establishes a way to construct functions in B∗ from functions in B.
To prove this theorem, we need the following preliminary result.

Proposition 2.3. Let f(z) = zn exp
(
g(z) + h(1/z)

)
with n ∈ Z and g, h non-

constant entire functions. If the functions f∞(z) := zn exp
(
g(z)

)
and f0(z) :=

zn exp
(
−h(z)

)
as well as 1/f∞ and 1/f0 have bounded type, then f ∈ B∗.

Note that if n > 0, then f∞ and f0 are transcendental entire functions, while
if n < 0, then they are meromorphic functions with a pole at the origin (which is
omitted).

Proof of Proposition 2.3. We can express

f(z) = zn exp
(
g(z) + h(1/z)

)
= f∞(z) · exp

(
h(1/z)

)
.

Outside a disk of radius r, the functions f and eh(0)f∞ are as close as we want pro-
vided that r is large enough. Therefore AV∞(f)=eh(0) ·AV(f∞). Differentiating f ,
we get

f ′(z) = f(z)

(
−h

′(1/z)

z2
+
f ′∞(z)

f∞(z)

)
,
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or, equivalently,
zf ′(z)

f(z)
= −h

′(1/z)

z
+
zf ′∞(z)

f∞(z)
.

It follows easily from [EL92, Lemma 1] that if f ∈ B then there is a constant
R0 > 0 such that

∣∣∣∣z
f ′(z)

f(z)

∣∣∣∣ >
1

4π

(
log |f(z)| − logR0

)
, for z ∈ D(0, R0), (2.1)

and hence

ηf := lim
R→+∞

inf

{∣∣∣∣z
f ′(z)

f(z)

∣∣∣∣ : |f(z)| > R

}
= +∞. (2.2)

If n < 0, the function f∞ is meromorphic but, since the pole at z = 0 is omitted
and sing(f−1∞ ) is bounded away from the origin, the same proof of Lemma 3.6
can be used to obtain inequality (2.1) in this case as well. Suppose that f∞ has
bounded type, then

inf

{∣∣∣∣z
f ′∞(z)

f∞(z)

∣∣∣∣ : |f∞(z)| > R

}
→ +∞ as R→ +∞.

Since f∞ is entire, the components of the set {z ∈ C : |f∞(z)| > R} are all
unbounded and tend to infinity as R→ +∞ (see Lemma 3.2). Therefore, since

exp
(
h(1/z)

)
→ exp

(
h(0)

)
and

h′(1/z)

z
→ 0 as z →∞,

there exists M,N > 0 such that if |f(z)| > R and |z| > 1 then

|f∞(z)| =
|f(z)|

exp
(
Re h(1/z)

) > R

M
and

∣∣∣∣
h′(1/z)

z

∣∣∣∣ < N,

and so

inf

{∣∣∣∣z
f ′(z)

f(z)

∣∣∣∣ : |f(z)|>R, |z|>1

}
> inf

{∣∣∣∣z
f ′∞(z)

f∞(z)

∣∣∣∣ : |f∞(z)|>
R

M

}
−N → +∞

as R → +∞. Hence, CV(f) cannot contain a sequence of critical values whose
critical points are in C \D that accumulate to infinity, because if f(z) is a critical
value, then the quantity zf ′(z)/f(z) = 0. Similarly, in a neighbourhood of zero,

inf

{∣∣∣∣z
f ′(z)

f(z)

∣∣∣∣ : |f(z)|<
1

R
, |z|61

}
> inf

{∣∣∣∣z
f ′0(z)

f0(z)

∣∣∣∣ : |f0(z)|>
R

M ′

}
−N ′ → +∞

as R→ +∞, and thus f has no critical values accumulating to zero whose critical
points are in D. Finally, since we are assuming that the functions 1/f∞ and 1/f0
have bounded type too, 0 /∈ sing(f−1∞ )′ ∪ sing(f−10 )′, so the sets

inf

{∣∣∣∣z
f ′(z)

f(z)

∣∣∣∣ : |f(z)|<
1

R
, |z|>1

}
, inf

{∣∣∣∣z
f ′(z)

f(z)

∣∣∣∣ : |f(z)|>R, |z|61

}
→ +∞

as R→ +∞. And hence f ∈ B∗. �
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Sixsmith [Six14] showed that if f /∈ B, then ηf = 0, where ηf is the quantity
defined in (2.2), and thus provided and alternative characterisation of functions in
the class B. This was later generalised by Rempe-Gillen and Sixsmith in [RS15].

Theorem 1.2 states that if g, h ∈ B, then the function f(z) = exp
(
g(z)+h(1/z)

)

is in class B∗. Thus, it can be used to produce examples of functions in the class B∗
from functions in the class B (see Example 2.6). Recall that Keen proved that if
g and h are polynomials and n ∈ Z, then f(z) = zn exp

(
g(z) + h(1/z)

)
is in the

class B∗ as well (see Proposition 4.5 and Lemma 4.6).

Proof of Theorem 1.2. Let f∞ = exp ◦ g where g ∈ B. By Lemma 2.2,

AV(f∞) = AV(exp) ∪ exp(AV(g)) = exp(AV(g)) ∪ {0},
CP(f∞) = CP(g) ∪ g−1

(
CP(exp)

)
= CP(g) ∪ g−1

(
∅
)
= CP(g),

and both CV(f∞) = exp
(
CV(g)

)
and AV(f∞) are bounded in C. On the other

hand,

AV(1/f∞) = AV(exp) ∪ exp(AV(−g)) = exp(−AV(g)) ∪ {0},
CP(1/f∞) = CP(−g) = CP(g),

and therefore CV(1/f∞) = exp
(
−CV(g)

)
and AV(1/f∞) are bounded in C too.

Similarly, since h ∈ B the functions f0(z) = exp
(
−h(z)

)
and 1/f0 have bounded

type. Therefore f∞ and f0 satisfy the hypothesis of Proposition 2.3 and the func-
tion f(z) = exp

(
g(z) + h(1/z)

)
is in the class B∗. �

Remark 2.4. Observe that if n 6= 0 and f(z) = zn exp
(
g(z)

)
with g ∈ B, even if

CV(g) is bounded the set CV(f) may accumulate to zero (n > 0) or to infinity
(n < 0). Thus Theorem 1.2 is optimal.

Remark 2.5. The converse of Theorem 1.2 is not true in general as the critical
values of g can be unbounded in a vertical band and the critical values of f∞ be
bounded in an annulus. For example, the Fatou function g(z) = z+1+ e−1 is not
in the class B while the function f(z) = exp

(
g(z) + 1/z) is in the class B∗.

Example 2.6. We give a couple of examples of functions in the class B∗ cons-
tructed from functions in the class B using Theorem 1.2.

(i) The function f(z) = exp
(
(sin z+1)/z

)
is in B∗ and sing(f−1) is an infinite

set which accumulates to z = 1.
(ii) The function f(z) = exp(exp z + 1/z) is in B∗ and has a finite asymptotic

value a = 1.

3. Logarithmic coordinates for the class B∗

Let a ∈ Ĉ and for r > 0 choose U(r) to be a connected component of f−1
(
D(a, r)

)

such that if r1 < r2 then U(r1) ⊆ U(r2). We say that U is a logarithmic singularity
over a if f : U(r)→ D(a, r)\{a} is a universal covering for some r > 0 (see [Ive14]
for a classification of the singularities of the inverse). Transcendental self-maps
of C∗ have logarithmic singularities over both zero and infinity.
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Definition 3.1 (Logarithmic tract). Let f ∈ B∗ and let A ⊆ C be a topological
annulus bounded away from zero and infinity that contains the set S(f). Denote
W = W0∪ W∞, where W0 and W∞ are the components of C∗ \A whose closure in
Ĉ contains, respectively, zero and infinity. A (logarithmic) tract of f is a connected
component of V = f−1(W0) ∪ f−1(W∞).

Note that if V is a tract of f , then the map f : V → Wi is a universal covering,
where i ∈ {0,∞}. The following lemma is a well-known classification of the cov-
erings of the punctured disk D∗ := D(0, 1) \ {0} (see, for example, [Hat02]). If X
is a topological space, we say that two coverings p1 : X̃1 → X and p2 : X̃2 → X

of X are equivalent if there exists a homeomorphism p21 : X̃2 → X̃1 such that
p2 = p1 ◦ p21.

Lemma 3.2 (Coverings of D∗). Let U ⊆ Ĉ and let f : U → D∗ be a holomorphic
covering. Then either U is biholomorphic to D∗ and f is equivalent to zd, or
U is simply connected and f is the universal covering, hence equivalent to the
exponential map.

In particular, the closure of each tract in Ĉ contains only one of the essential
singularities. Now we are going to introduce a logarithmic change of variables.

Definition 3.3 (Logarithmic coordinates). Let f ∈ B∗ and consider T := exp−1(V)
and H := exp−1(W ) = H0 t H∞ where H0 = exp−1(W0) and H∞ = exp−1(W∞)
contain, respectively, a left and a right half-plane. A logarithmic transform of f is
a continuous function F : T → H which makes the following diagram commute.

T
exp

��

F // H

exp
��

V
f
// W

The connected components of T are called tracts of F and can be classified into
four types

T =: T 0
0 t T ∞0 t T 0

∞ t T ∞∞ ,

where the lower index indicates if the tracts have zero or infinity in their closure
and the upper index indicates if they are mapped to H0 or H∞ by F . We define
T0 := T 0

0 t T ∞0 and T∞ := T 0
∞ t T ∞∞ .

In the entire case, often the expressions ‘lift’ and ‘logarithmic transform’ are
used indistinctly to refer to F defined on the tracts. In this paper we reserve the
word lift for an entire function f̃ such that exp ◦f̃ = f ◦ exp.

Remark 3.4. Observe that we can obtain F as the restriction of a lift f̃ of f to
the set T . However, since F is only defined on T , we can add a different integer
multiple of 2πi to F on each tract T , and hence F is not necessarily the restriction
of a transcendental entire function f̃ .
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Figure 2. Logarithmic coordinates for a function f ∈ B∗.

Theorem 3.5. If f ∈ B∗, then a logarithmic transform F : T → H of f satisfies
the following properties:

(a) H is the disjoint union of two 2πi-periodic Jordan domains H0 and H∞
containing, respectively, a left and a right half-plane;

(b) every component of T is an unbounded Jordan domain with real parts either
bounded below and unbounded from above or unbounded below and bounded
from above;

(c) the components of T have disjoint closures and accumulate only at zero
and infinity;

(d) for every component T of T , F : T → H is a conformal isomorphism;
(e) for every component T of T , exp|T is injective;
(f) T is invariant under translation by 2πi.

Moreover, there exists a curve δ ⊆ C∗\V joining zero to infinity, where V = exp T .
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Proof. These properties follow easily from the fact that the exponential map is a
holomorphic cover and, in particular, a local homeomorphism. The fact that there
exists a curve δ ⊆ C∗ \ V joining zero to infinity is a straight consequence from
(b) and (c) in the case that V consists of finitely many tracts. Otherwise, this
follows from Carathéodory’s theorem and the fact that V is locally connected (see
[BF15, Lemma 2.1]). Hence, we can define a continuous branch of the logarithm
on T . �

We denote by B∗log the class of holomorphic functions F : T → H satisfying
properties (a) to (f) in Theorem 3.5, regardless of the fact that they come from a
function f ∈ B∗ or not. The main advantage of working in the class Blog defined
in [RRRS11] or, in our case, the class B∗log, is that functions satisfy the following
expansivity property (3.1) which implies that points in I(f) eventually escape at
an exponential rate.

Lemma 3.6. Let F : T → H be a function in the class B∗log. There exists R > 0
sufficiently large such that if |Re F (z)| > R, then

|F ′(z)| > 1

4π
|Re F (z)| −R.

In particular, there exists R0=R0(F )>0 so that

|F ′(z)| > 2 for |Re F (z)| > R0. (3.1)

See [EL92, Lemma 1] for the original result for entire functions. The proof relies
on properties (a), (d) and (e) of logarithmic transforms, which are common in both
settings, and Koebe’s 1/4-theorem.

Sullivan proved that rational maps have no wandering domain [Sul85]. Following
this result, Keen [Kee88], Kotus [Kot87] and Makienko [Mak87] proved indepen-
dently that transcendental self-maps of C∗ with finitely many singular values have
no wandering domains. In [Kot87], Kotus also showed that finite-type maps in
C∗ have no Baker domains. Here we show that bounded-type functions have no
escaping Fatou component adapting the proof that Eremenko and Lyubich gave
for class B [EL92, Theorem 1].

Proof of Theorem 1.1. Suppose to the contrary that there is z0 ∈ F (f) ∩ I(f).
Then, by normality, there exists some R > 0 so that B0 := B(z0, R) ⊆ F (f)∩ I(f).
Since the sets Bn := fn(B0) are escaping, they are eventually contained in the
tracts of f as n→∞ and we can assume without loss of generality that Bn ⊆ V for
all n > 0. Let C0 := logB0 and let Cn := F n(C0) for all n > 0. Then exp(Cn) = Bn

accumulates to {0,∞} as n→∞ and hence |Re Cn| → +∞ uniformly as n→∞.
Take any ζ0 ∈ C0 and, for all n > 0, let ζn := F n(ζ0) ∈ Cn and set dn :=
dist(ζn, ∂Cn). Koebe’s 1/4-theorem tells us that

dn+1 >
1

4
dn|F ′(ζn)|.

As n→∞, since |Re F (ζn)| → +∞, by Lemma 3.6 we have |F ′(ζn)| → +∞ and
hence dn → +∞. But this contradicts property (e) of functions in the class B∗log
because T does not contain any vertical segment of length 2π. �
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Property (a) in Theorem 3.5 says that the set H contains the union of two
half-planes of the form

H±R := {z ∈ C : |Re z| < R} = H−R tH+
R

for some R > 0. We call F normalised if H = H±R for some R > 0 and F satisfies
the expansivity property (3.1).

Definition 3.7 (Normalisation). We say that a logarithmic transform F : T → H
in B∗log is normalised if T ∩ {z ∈ C : Re z = 0} = ∅, the set H = H±R for some
R > 0 and the expansivity property (3.1) is satisfied in all H. We denote this class
of functions by B∗nlog.

Logarithmic transforms of transcendental entire functions can be normalised so
that H is the right half-plane H. In contrast, in the punctured plane, when we say
that F is normalised we need to specify the constant R. The next lemma shows
that we can always assume that F is in the class B∗nlog by restricting the function
to a smaller set.

Lemma 3.8. Let F : T → H be a function in the class B∗log. There exists a
constant R = R(F ) > 0 such that H±R ⊆ H and the restriction of F to F−1(H±R) is
a normalised logarithmic transform.

Proof. Suppose that F is not normalised. Let {Bn}, n ∈ Z, denote the connected
components of the set C \ exp−1(δ), where δ is the curve from Theorem 3.5. For
n ∈ N, the sets

Xn = T0 ∩Bn ∩H+, Yn = T∞ ∩Bn ∩H−,

are bounded and hence their images F (Xn) and F (Yn) have bounded real part.
All the sets F (Xn) and F (Yn), n ∈ N, are vertical translates of F (X0) and F (Y0)
and hence F (T0 ∩H+) and F (T∞ ∩H−) have bounded real part. Therefore, there
exists R1 > 0 sufficiently large such that

(
F (T0 ∩H+) ∪ F (T∞ ∩H−)

)
∩H±R1

= ∅.
Then, if R0 = R0(F ) > 0 is the constant from Lemma 3.6 so that |F ′(z)| > 2 if
|Re F (z)| > R0, it is enough to put R := max{R0, R1}. �

The following lemma is a stronger version of the expansivity property (3.1) for
functions in B∗nlog, and says that escaping orbits eventually separate at an exponen-
tial rate. The construction in the proof of [RRRS11, Lemma 3.1] can be adapted
easily to this setting.

Lemma 3.9. Let F : T → H be in the class B∗nlog with H = H±R for some R > 0.
If T is a tract of F and z, w ∈ T are such that |z − w| > 8π then

|F (z)− F (w)| > exp

( |z − w|
8π

)
·
(
min{|Re F (z)|, |Re F (w)|} −R

)
.

Next we introduce a subclass of B∗log consisting of the functions F for which the
image F (T ) covers the whole of T and have nicer properties.
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Definition 3.10 (Disjoint type). We say that a function F : T → H in the
class B∗log is of disjoint type if T ⊆ H.

If f ∈ B∗ and A = C∗ \W is an annulus containing S(f), then f(C∗ \ T ) ⊆ A,
where T = f−1(W ). Moreover, if f has a logarithmic transform F that is of
disjoint type (with H = exp−1(W )), then f(A) ⊆ A. Hence A ⊆ F (f) and, in
fact, the set F (f) consists of a single doubly-connected component U which is
the immediate basin of attraction of a point in A. Note that the classification of
doubly-connected Fatou components in [BD98, Theorem 4] does not apply because
U is not relatively compact in C∗.
Remark 3.11. Independently of [RRRS11], Barański showed that the Julia set of
bounded-type maps in the class B consists of disjoint hairs that are homeomorphic
to [0,+∞) (we call them dynamic rays) and that the endpoints of these hairs are
the only points in J(f) accessible from F (f) [Bar07, Theorem C].
Example 3.12. The function f(z) = exp

(
0.3(z+1/z)

)
is in the class B∗ and has

a logarithmic transform of disjoint type (see Figure 3).

Figure 3. Phase space of the function f(z) = exp
(
0.3(z + 1/z)

)

which has a disjoint-type logarithmic transform (see Example 3.12).
In orange, the basin of attraction of the fixed point z0 ' 2.2373.
Left, z ∈ [−16, 16] + i[−16, 16]; right, z ∈ [−0.3, 0.3] + i[−0.3, 0.3].

Sometimes tracts exhibit nicer properties that make them easier to study. We
will see later on that this is the case of finite order functions.
Definition 3.13 (Good geometry properties). Let F ∈ B∗log and let T be a tract
of F .

(a) We say that T has bounded wiggling if there exist K > 1 and µ > 0 such
that for every z0 ∈ T , every point z on the hyperbolic geodesic of T that
connects z0 to ∞ satisfies

|Re z| > 1

K
|Re z0| − µ.
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In the case K = 1 and µ = 0 we say that T has no wiggling. A function
F ∈ B∗log has uniformly bounded wiggling if the wiggling of all tracts of F
is bounded by the same constants K,µ.

(b) We say that T has bounded slope if there exist constants α, β > 0 such that

| Im z − Im w| 6 αmax{|Re z|, |Re w|}+ β

for all z, w ∈ T . Equivalently, T contains a curve γ : [0,∞)→ T such that
|F (γ(t))| → ±∞ and

lim sup
t→∞

| Im γ(t)|
|Re γ(t)| <∞.

We say that T has zero slope if this limit is zero.

We say F has good geometry if the tracts of F have bounded slope and uniformly
bounded wiggling.

Remark 3.14. (i) Observe that it is enough that a tract T from Tα, α ∈ {0,∞},
has bounded slope to ensure that all tracts in Tα do. We can use the same
constants (α, β) for T∞ and T0: if they have bounded slope with different
values (α1, β1) and (α2, β2) it is enough to take α := max{α1, α2} and
β := max{β1, β2}.

(ii) If F,G ∈ B∗nlog and G has bounded slope, then G ◦ F has bounded slope
with the same constants as G.

4. Order of growth in C∗

The order of an entire function is defined to be the infimum of ρ ∈ R ∪ {∞}
such that log |f(z)| = O(|z|ρ) as z →∞. Equivalently,

ρ(f) = lim sup
r→+∞

log logM(r, f)

log r
,

where

M(r, f) := max
|z|=r
|f(z)| < +∞.

Polynomials have order zero and exp(zk), k ∈ N, has order k. There are also
transcendental entire functions of order zero and of infinite order.

When we deal with holomorphic self-maps of C∗, controlling the growth means
looking at how |f(z)| tends to zero or infinity when we approach one of the essential
singularities z = 0 or z = ∞. Observe that if f is such map, then 1/f is also
holomorphic on C∗, and

m(r, f) := min
|z|=r
|f(z)| = 1

M(r, 1/f)
> 0.

For simplicity, from now on we will write M(r) and m(r) when it is clear what the
function f is.
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A priori, the notion of order of growth in this context splits into the following
four quantities:

ρ∞max(f) := lim sup
r→+∞

log logM(r)

log r
, ρ0max(f) := lim sup

r→0

log logM(r)

− log r
,

ρ∞min(f) := lim sup
r→+∞

log
(
− logm(r)

)

log r
, ρ0min(f) := lim sup

r→0

log
(
− logm(r)

)

− log r
.

For entire functions, if f has no zeros then ρ(f) = ρ(1/f) as a consequence of the
fact that you can write the order in terms of the Nevanlinna characteristic function
T (R, f):

ρ(f) = lim sup
r→∞

log T (r, f)

log r

and Jensen’s formula says that

T (r, f) = T (r, 1/f) + log |f(0)|
(see section 1.2 of [Hay64]). From the general expression of a transcendental self-
map of C∗ [Bha69]

f(z) = zn exp(g(z) + h(1/z))

with n ∈ Z and g, h non-constant entire functions, it follows that

log |f(z)| = n log |z|+ Re g(z) + Re h(0) + o(1) as z →∞,
and therefore

logM(r, f) = logM(r, eg) +O(log r) as z →∞.
Note that in a neighbourhood of infinity the term h(1/z) is not relevant and the
same happens with g(z) in a neighbourhood of the origin. Then, putting this into
our definition of order for C∗ and using Jensen’s formula we obtain that

ρ∞max(f) = ρ∞max(e
g) = ρ(eg) = ρ∞min(e

g) = ρ∞min(f)

and similarly at zero

ρ0max(f) = ρ∞max(e
h) = ρ(eh) = ρ∞min(e

h) = ρ0min(f).

Definition 4.1 (Order of growth). Let f be a transcendental self-map of C∗ of
the form

f(z) = zn exp
(
g(z) + h(1/z)

)

with n ∈ Z and g, h non-constant entire functions. We say that f has finite order
if both quantities

ρ∞(f) := ρ(eg) and ρ0(f) := ρ(eh)

are finite.

Example 4.2. The functions f(z) = zn exp(P (z) + Q(1/z)) with n ∈ Z and
P,Q ∈ C[z] have finite order and ρ∞(f) = degP and ρ0(f) = degQ.



18 N. FAGELLA AND D. MARTÍ-PETE

Remark 4.3. In [Kee88] Keen defines the order of such functions using

M̃(r, f) = max
z∈∂Ar

|f(z)| and m̃(r, f) = min
z∈∂Ar

|f(z)|

for r > 0, where Ar := {z ∈ C : 1/r < |z| < r}. It follows from the Maximum
principle that M̃(r, f) and m̃(r, f) are respectively the maximum and minimum of
|f(z)| in the whole annulus Ar (in the same way that, for an entire function, we
have M(r) = maxz∈D(0,r) |f(z)|). In our notation,

M̃(r, f) = max{M(r), M(1/r)}, m̃(r, f) = min{m(r), m(1/r)}.
Now we will see that, in fact, every holomorphic self-map of C∗ that has finite

order necessarily has to be as in Example 4.2. We will begin by stating a classical
result concerning entire functions of finite order due to Pólya [Pól25].

Lemma 4.4. If f is a non-constant entire function of finite order with no zeros,
then f(z) = exp(h(z)) and h is a polynomial.

While there is a huge variety of entire functions of finite order, the next result
shows that having finite order in C∗ is a quite restrictive property.

Proposition 4.5. Every transcendental self-map of C∗ of finite order is of the
form

f(z) = zn exp(P (z) +Q(1/z))

for some n ∈ Z and P,Q ∈ C[z].

Keen proved the stronger result that every topological conjugacy class of analytic
self-maps of C∗ contains a function of this form [Kee89, Theorem 1], but we give
a direct proof of Proposition 4.5 for completeness.

Proof. We know that every transcendental self-map of C∗ is of the form

f(z) = zn exp
(
g(z) + h(1/z)

)

for some n ∈ Z and g, h non-constant entire functions. It is a well-known fact that
if P is a polynomial and f is a general entire function, ρ(P · f) = ρ(f). Then

ρ(eg) = ρ∞(f) < +∞
and so it follows from Lemma 4.4 that g has to be a polynomial. On the other
hand,

ρ(eh) = ρ0(f) < +∞
and so h has to be a polynomial as well. �

Keen also showed that, in C∗, finite order implies finite type [Kee89, Propo-
sition 2]. This is very different to what happens for the entire case, where we
have functions of finite order in the class B that are not in the Speiser class S of
finite-type transcendental entire functions. An example of such a function is given
by sin(z)/z which has order one and infinitely many critical values in any open
interval in R containing the origin. We state Keen’s result for future reference.

Lemma 4.6. Let f be a transcendental self-map of C∗. If f has finite order with
ρ∞(f) = p and ρ0(f) = q, then sing(f−1) consists of at most p + q critical values
and the asymptotic values zero and infinity.
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Finally, we show that the tracts of finite order functions have a fairly simple
geometry.

Proposition 4.7. Let f be a transcendental self-map of C∗ of finite order and let
F ∈ B∗nlog be the logarithmic transform of f . Then f has a finite number of tracts.
Moreover the tracts of F have zero slope and can be chosen to have no wiggling.

Proof. Suppose that ρ∞(f) = p and ρ0(f) = q with p, q > 1. By Proposition 4.5,

f(z) = zn exp
(
P (z) +Q(1/z)

)
,

where n ∈ Z and P,Q are, respectively, polynomials of degree p, q. We focus on
the tracts whose closure in Ĉ contains infinity, the case where the closure contains
zero is similar. We have

|f(z)| = exp
(
Re (azp) + o(Re (zp))

)
as z →∞, (4.1)

where a ∈ C. Let φ = arg(a). For large values of R, the tracts of f defined
by |f(z)| > R are contained in the sectors determined by the preimages of the
imaginary axis by the map azp, that is the radial lines of angle (kπ + π/2− φ)/p,
k ∈ Z. Tracts that map to a neighbourhood of infinity lie in the sectors con-
taining the radial lines of angle (2kπ − φ)/p, 0 6 k < p, while tracts that map
to a neighbourhood of zero lie in the sectors containing the radial lines of angle
((2k + 1)π − φ)/p, 0 6 k < p. The preimages of radial lines by the exponential
function are horizontal lines and hence the tracts of F are contained in horizontal
bands and have zero slope.

Finally, since the boundaries of the tracts tend asymptotically to those horizontal
lines, the tracts of F can be chosen to have no wiggling if R is sufficiently large. �

It follows from Proposition 4.5 that, in the punctured plane, functions of finite
order (as well as entire functions with no zeros) can only have integer orders ρ0(f)
and ρ∞(f). There are always exactly 2ρ∞(f) asymptotic paths to infinity corres-
ponding, asymptotically, to the preimages of the positive (asymptotic value infi-
nity) or negative (asymptotic value zero) real line by zd where d = ρ∞(f). There-
fore the asymptotic paths alternate as you go around a circle of large radius (see
Figure 4). Similarly, in a neighbourhood of zero there are 2ρ0(f) asymptotic paths
with the same structure. Each of these asymptotic paths is contained in a loga-
rithmic tract and vice versa.

Another basic property of entire functions in the class B is that they have lower
order greater or equal than 1/2 [RS05a, Lemma 3.5]. This is due to the fact that
f is bounded on a path to infinity. Remember that the lower order of an entire
function is

λ(f) := lim inf
r→+∞

log logM(r, f)

log r
.

If f is a transcendental self-map of C∗ we can consider

λ∞(f) := lim inf
r→+∞

log logM(r, f)

log r
and λ0(f) := lim inf

r→0

log log 1/m(r, f)

log 1/r
.

Recall that Theorem 1.3 in the introduction states that in this setting λ0(f) =
ρ0(f) and λ∞(f) = ρ∞(f). To prove it, we shall need also the Borel-Carathéodory
theorem [Val49, Theorem 8].
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Figure 4. Logarithmic tracts of functions of finite order with
ρ∞(f) = 3 and ρ0(f) = 2 (left) and infinite order (right). The color
of every point z ∈ C∗ has been chosen according to the modulus
(luminosity) and argument (hue) of f(z).

Lemma 4.8 (Borel-Carathéodory theorem). Let f be a transcendental entire func-
tion and define, for r > 0,

B(r, f) := min
|z|=r

Re f(z), A(r, f) := max
|z|=r

Re f(z).

Then, there is r0 > 0 and C > 0 such that

B(r) 6M(r) <
R

R− r
(
4A(R) + C

)

for all R > r > r0.

Proof of Theorem 1.3. We treat separately the cases where f has finite order and
infinite order. For simplicity we only consider ρ∞(f) and λ∞(f), the proof for
ρ0(f) and λ0(f) is completely analogous.

Let f(z) = zn exp
(
g(z) + h(1/z)

)
with n ∈ Z and g, h non-constant entire

functions. Then, using equation (4.1),

λ∞(f) = lim inf
r→+∞

log logM(r, f)

log r
= lim inf

r→+∞
logA(r, g)

log r
.

Suppose that ρ∞(f) = p < +∞. Then, by Proposition 4.5, g is a polynomial
and, since arp, a > 0, is an increasing function for r > R for some R > 0, it is
clear that λ∞(f) = ρ∞(f).

Now suppose that ρ∞(f) = +∞. We use Lemma 4.8 with R = 2r, there is
C > 0 and r0 > 0 such that

M(r) < 2
(
4A(2r) + C

)
for all r > r0.

We have

λ∞(f) = lim inf
r→+∞

logA(r, g)

log r
> lim inf

r→+∞
logM(r/2, g)

log r
= lim

r→+∞
logM(r, g)

log r
= +∞

because g is a transcendental entire function. �
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Observe that if F ∈ B∗log, then the tracts of F in each of the sets T0 and T∞ can
be ordered with respect to the vertical position around infinity. Therefore it makes
sense to speak about a tract being in between two other tracts. This ordering is
known as the lexicographic order (see Definition 5.9) and we will come back to it
later on.

5. Symbolic dynamics and combinatorics

Maps in class B∗log are defined on a set T , which is a union of tracts, and,
therefore, the orbits of some points in T are truncated if F k(z) /∈ T for some
k ∈ N. We denote by J(F ) the set of points that can be iterated infinitely many
times by F .

Definition 5.1 (Julia set of F ). Let F : T → H be a map in class B∗log. We define
the Julia set of F to be

J(F ) := {z ∈ T : F n(z) is defined and in T for all n > 0},
and, for K > 0, we put

JK(F ) := {z ∈ T : |Re F n(z)| > K for all n > 0}.
As we will show in the following lemma, the reason why J(F ) is called the Julia

set of F is that points of J(F ) project to points in J(f) by the exponential map.
However, note that in the case that F ∈ B∗log is the logarithmic transform of a
function f ∈ B∗, there exists an entire function f̃ that is a lift of f and then
J(F ) ⊆ J(f̃) = exp−1 J(f) by a result of Bergweiler [Ber95].

Lemma 5.2. Let f be a transcendental self-map of C∗ and let F ∈ B∗log be a
logarithmic transform of f . If F ∈ B∗nlog, then exp J(F ) ⊆ J(f) and, if F is of
disjoint type, then exp J(F ) = J(f).

Proof. Suppose to the contrary that z0 ∈ exp J(F ) ∩ F (f) 6= ∅. Then proceeding
as in the proof of Theorem 1.1 we get a contradiction between the expansivity
of F (3.1) and the fact that T does not contain vertical segments of length 2π.
Note that in the normalised case we are using the expansivity with respect to the
Euclidean metric, that is, |F ′(z)| > 2 for all z ∈ T (see Lemma 3.6), while in the
disjoint-type case we use the expansivity with respect to the hyperbolic metric on
H because T is compactly contained in H.

If F is of disjoint type, the inclusion J(f) ⊆ exp J(F ) follows from the fact that
f(C∗ \ V) ⊆ A and hence F (f) consists of the immediate basin of attraction of a
point in C∗ \ V and

J(f) = C∗ \
⋃

n∈N
f−n(C∗ \ V).

�

If f is a transcendental self-map of C∗, then the escaping set I(f) consists of
all points that accumulate to {0,∞}. Essential itineraries describe the way points
escape and were introduced in [Mar14]. Let us recall the definition here.
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Definition 5.3 (Essential itinerary). Let f be a transcendental self-map of C∗.
We define the essential itinerary of a point z ∈ I(f) to be the symbol sequence
e = (en) ∈ {0,∞}N such that

en :=

{
0, if |fn(z)| 6 1,

∞, if |fn(z)| > 1,

for all n ∈ N.

For each e ∈ {0,∞}N, we denote by I0,0e (f) the set of escaping points whose
essential itinerary is exactly e,

I0,0e := {z ∈ I(f) : ∀n > 0, |fn(z)| > 1⇔ en =∞},
and, for `, k ∈ N, we define

I`,ke := {z ∈ I(f) : ∀n > 0, |fn+`(z)| > 1⇔ en+k =∞} = f−`
(
I0,0
σk(e)

(f)
)
,

where σ denotes the Bernoulli shift map. Finally, we denote by Ie(f) the set of
escaping points whose essential itinerary is eventually a shift of e,

Ie(f) := {z ∈ I(f) : ∃`, k ∈ N, ∀n > 0, |fn+`(z)| > 1⇔ en+k =∞},
or, equivalently,

Ie(f) :=
⋃

`∈N

⋃

k∈N
I`,ke (f) =

⋃

`∈N

⋃

k∈N
f−`
(
I0,0
σk(e)

(f)
)
.

We say that two essential itineraries e1, e2 ∈ {0,∞}N are equivalent if σm(e1) =
σn(e2) for some m,n ∈ N. If e1 and e2 are not equivalent, then Ie1(f)∩ Ie2(f) = ∅.

We now introduce the escaping set for maps in the class B∗log, which is a subset
of the Julia set of F .

Definition 5.4 (Escaping set of F ). Let F : T → H be a map in the class B∗log.
We define the escaping set of F to be

I(F ) := {z ∈ J(F ) : lim
n→∞

|Re F n(z)| = +∞} = J(F ) ∩ exp−1 I(f).

In terms of F , a point z ∈ I(F ) has essential itinerary e = (en) ∈ {0,∞}N if
Re F n(z) 6 0 if and only if en = 0 for all n ∈ N.

Observe that exp I(F ) ⊆ I(f) and, in fact, every point in I(f) eventually enters
exp I(F ). As with J(F ), if f is a transcendental self-map of C∗ and f̃ is a lift of f ,
then I(F ) ⊆ I(f̃) but in general these sets are different as f̃ may have points that
escape in the imaginary direction and correspond to bounded orbits of f .

For every function F ∈ B∗log, we denote by A (respectively A0
0,A∞0 ,A0

∞,A∞∞) the
symbolic alphabet consisting of all tracts in T (respectively T 0

0 , T ∞0 , T 0
∞, T ∞∞ , see

Definition 3.3). We associate a symbol sequence (Tn) ∈ AN to each point z ∈ J(F )
that describes to which tract the iterate F n(z) belongs for all n ∈ N.

Definition 5.5 (External address of F ). Let F ∈ B∗log and let z ∈ J(F ). We define
the external address of z, addrF (z), to be the symbol sequence s = (Tn) ∈ AN such
that F n(z) ∈ Tn for all n ∈ N.



DYNAMIC RAYS OF BOUNDED-TYPE FUNCTIONS IN C∗ 23

Remark 5.6. The Bernoulli shift map σ : AN → AN mapping the external address
(Tn) to (Tn+1) is a subshift of finite type on the set

AN = (A∞0 ×AN) t (A∞∞ ×AN) t (A0
0 ×AN) t (A0

∞ ×AN),

where, if e0, e1 ∈ {0,∞}, the set Ae1e0 ×AN consists of the sequences in AN whose
first symbol is in Ae1e0 . Observe that the transition graph of σ is

DYNAMIC RAYS OF BOUNDED-TYPE FUNCTIONS IN C⇤ 23

where, if e0, e1 2 {0,1}, the set Ae1
e0
⇥ AN consists of the sequences in AN whose

first symbol is in Ae1
e0

. Observe that the transition graph of � is

A1
0 ⇥ AN //

&&NNNNNNNNNN A1
1 ⇥ AN

✏✏

bb

"" A0
0 ⇥ AN

OO

A0
1 ⇥ ANoo

ffNNNNNNNNNN

and, in particular, not all sequences in AN are external addresses of points in J(F ).

We now introduce the notion of admissible external address. Only admissible
external addresses can be the external address of a point in J(F ).

Definition 5.7 (Admissible external address). We say that an external address
s 2 AN is admissible if s belongs to the set

⌃e :=
Y

n2N

Aen+1
en

= {(Tn) : Tn 2 Aen+1
en

for all n 2 N},

for some e = (en) 2 {0,1}N. In this case, we say that the external address s has
essential itinerary e. We denote by ⌃ the set of all admissible external addresses.
If e 2 {0,1}N and K > 0, we define the following sets

Je(F ) := {z 2 J(F ) : addr(z) 2 ⌃e},

JK
e (F ) := Je(F ) \ JK(F ) and Ie(F ) := Je(F ) \ I(F ).

Note that, if we define

A0 := A0
0 t A1

0 and A1 := A0
1 t A1

1.

then an external address s = (Tn) 2 ⌃ has essential itinerary e = (en) provided
that Tn 2 A0 if and only if en = 0. In terms of essential itineraries, the corre-
sponding transition graph is the complete graph on two vertices,

## A0 ⇥ T N // A1 ⇥ T Noo bb .

If F 2 B⇤n
log, then z 2 I(F ) has essential itinerary e if and only if addr(z) has

essential itinerary e. However, if F is not normalised, these two sequences may be
different for a certain number of iterates (see Lemma 7.6).

There is a natural way to order the tracts with respect to the vertical position
that they are attached to infinity. Using this, we can endow the set of sequences Ae

with the lexicographic order.

Definition 5.8 (Lexicographic order). Let F : T ! H be in the class B⇤
log. If

T, T 0 2 T1, then we say that T < T 0 if T 0 is in the upper connected component of
the intersection of a right half-plane and the complement of T . If T, T 0 2 T0, then
we say that T < T 0 if T 0 is in the lower connected component of the intersection
of a left half-plane and the complement of T . Finally, if s, s0 2 Ae for some
e 2 {0,1}N, then we say that s < s0 if there is k 2 N such that Tn = T 0

n for all
n < k and Tk < T 0

k.
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and, in particular, not all sequences in AN are external addresses of points in J(F ).

We now introduce the notion of admissible external address. Only admissible
external addresses can be the external address of a point in J(F ).

Definition 5.7 (Admissible external address). We say that an external address
s ∈ AN is admissible if s belongs to the set

Σe :=
∏

n∈N
Aen+1
en = {(Tn) : Tn ∈ Aen+1

en for all n ∈ N},

for some e = (en) ∈ {0,∞}N. In this case, we say that the external address s has
essential itinerary e. We denote by Σ the set of all admissible external addresses.

Note that, if we define

A0 := A0
0 t A∞0 and A∞ := A0

∞ t A∞∞.
then an external address s = (Tn) ∈ Σ has essential itinerary e = (en) provided
that Tn ∈ A0 if and only if en = 0. In terms of essential itineraries, the corre-
sponding transition graph is the complete graph on two vertices,

!! A0 × T N // A∞ × T Noo bb .

If F ∈ B∗nlog, then z ∈ I(F ) has essential itinerary e if and only if addr(z) has
essential itinerary e. However, if F is not normalised, these two sequences may be
different for a certain number of iterates (see Lemma 7.6).

For every admissible external address, we introduce the set of points that have
that external address. Note that sometimes we use the term external address to
denote a general sequence in Σ, without being necessarily the external address of
any point z ∈ J(F ). Therefore, some of the following sets may be empty.

Definition 5.8 (Subsets of J(F )). Let F be a function in the class B∗log. If s ∈ Σ
and K > 0, we define the sets

Js(F ) := {z ∈ J(F ) : addrF (z) = s},
JKs (F ) := Js(F ) ∩ JK(F ) and Is(F ) := Js(F ) ∩ I(F ). If e ∈ {0,∞}N and K > 0,
we define the sets

Je(F ) := {z ∈ J(F ) : addrF (z) ∈ Σe} =
⋃

s∈Σe

Js(F ),
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JKe (F ) := Je(F ) ∩ JK(F ) and Ie(F ) := Je(F ) ∩ I(F ). If F is normalised, then
Ie(F ) = J(F ) ∩ exp−1 I0,0e (f).

There is a natural way to order the tracts with respect to the vertical position
that they are attached to infinity. Using this, we can endow the set of sequences Σe

with the lexicographic order.

Definition 5.9 (Lexicographic order). Let F : T → H be in the class B∗log. If T, T ′
are components of T∞, then we say that T < T ′ if T ′ is in the upper connected
component of the intersection of a right half-plane and the complement of T . If
T, T ′ are components of T0, then we say that T < T ′ if T ′ is in the lower connected
component of the intersection of a left half-plane and the complement of T . Finally,
if s, s′ ∈ Σe for some e ∈ {0,∞}N, then we say that s < s′ if there is k ∈ N such
that Tn = T ′n for all n < k and Tk < T ′k.

The set Σe endowed with the lexicographic order is a totally ordered space.
Note that, since the map F preserves the orientation, if T1 < T2 in T∞ and T is a
component of T0, then with the lexicographic ordering we have F−1T (T1) < F−1T (T2).

Sometimes it will be useful to consider a partition of the tracts into fundamental
domains. The following terminology was introduced in [Rem08].

Definition 5.10 (Fundamental domain). Let f ∈ B∗ and let F : T → H be a
logarithmic transform of f that is in the class B∗log. Let δ ⊆ C∗ \ V be the curve
joining zero to infinity from Theorem 3.5.

(i) The preimages exp−1 δ define infinitely many fundamental strips Sn, n ∈ Z.
Every tract of F is contained in a fundamental strip.

(ii) For each tract Tn of F , the restriction F|Tn : Tn → H is a one-to-one covering
of either H0 or H∞. Hence, the set F−1|Tn

(
H \ exp−1 δ

)
has infinitely many

components Fn,i ⊆ Tn, i ∈ Z, that we call fundamental domains of F .
(iii) Similarly, the preimages f−1(δ) divide each tract Vn of f into infinitely

many sets Dn,i = expFm,i ⊆ Vn, i ∈ Z, for some m ∈ Z, that we call
fundamental domains of f .

f

δ

S(f)

δ

W∞

W0

Dn,i

Vn

Figure 5. Fundamental domains of a function f in the class B∗.



DYNAMIC RAYS OF BOUNDED-TYPE FUNCTIONS IN C∗ 25

Note that sometimes we will refer to a sequence of fundamental domains us-
ing only one subindex when we do not need to specify whether two fundamental
domains are a subset of the same tract or not.

Since the orbit of every point in J(F ) avoids exp−1(δ), we can define external
addresses in terms of fundamental domains rather than tracts. This is the approach
followed, for example, in [BF15]. However, since each fundamental domain covers a
fundamental strip, the fundamental domain Fn is determined by tract Tn where you
are and the fundamental strip containing the next tract Tn+1. Thus, considering
external addresses of fundamental domains does not add more information to the
symbolic dynamics of F .

We can also consider external addresses for functions f ∈ B∗ rather than for
their logarithmic transforms. In this case, specifying the sequence of tracts in V
does not capture the whole combinatorics of f ; we define the external addresses
of f in terms of fundamental domains. Let Af denote the symbolic alphabet
consisting of the fundamental domains of f .

Definition 5.11 (External address of f). Let f ∈ B∗ and let F ∈ B∗log be a periodic
logarithmic transform of f . If z = expw, where w ∈ J(F ), we define the external
address (under f) of z, addrf (z), to be the symbol sequence s = (Dn) ∈ AN

f such
that fn(z) ∈ Dn for all n ∈ N.

The next lemma describes the correspondence between external addresses of f
and external addresses of a logarithmic transform F of f (see [BF15, Lemma 2.9]).

Lemma 5.12. Let f ∈ B∗ and let F ∈ B∗log be a logarithmic transform of f .
If z = expw, then the external address addrf (z) = (Dn) is uniquely determined
by the external address addrF (w) = (Tn). Conversely, if addrf (z) = (Dn), then
addrF (w) = (Tn) is unique up to replacing T0 by a 2kπi-translate of T0 for some
k ∈ Z.

Proof. Let (Tn) be a sequence of tracts of F , then the sequence of fundamental
domains (Dn) ⊆ V is given by Dn = expFn which, in turn, is determined by Tn
and Tn+1.

On the other hand, if (Dn) is a sequence of fundamental domains of f , then
the tract T0 ⊇ F0, where expF0 = D0, is given by the choice of the logarithmic
transform F , which is unique up to addition of integer multiples of 2πi, and the rest
of tracts in the sequence (Tn) satisfy that Tn is the only tract in the fundamental
strip F (Fn−1) containing a component of exp−1(Dn). �

We say that a sequence of fundamental domains (Dn) is admissible if it corre-
sponds to an admissible external address s ∈ Σ. In this paper we use external
addresses in terms of tracts mostly and restrict the use of fundamental domains
to the moments when we need them, in order to keep the notation simpler.

6. Unbounded continua in Js(F )

A priori, the set Js(F ) may be empty for some external addresses in s ∈ Σ.
Rippon and Stallard showed that, for a general transcendental entire function f ,
the components of the fast escaping set A(f) ⊆ I(f), which was previously intro-
duced by Bergweiler and Hinkkanen [BH99], are all unbounded [RS05b]. Using
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similar ideas, Rempe showed that if f ∈ B (and the same argument follows for
class Blog), then every tract T contains an unbounded closed connected set A con-
sisting of points that escape within T [Rem08, Theorem 2.4]. Sometimes we refer
to an unbounded closed connected set X ⊆ C as an unbounded continuum; note,
however, that such set is not a continuum in C as it is not compact, but X ∪{∞}
is a continuum in Ĉ (see Lemma 6.2).

Although [Rem08, Theorem 2.4] only concerns points that escape within a tract,
if s ∈ AN is a periodic external address, then it follows that Js(F ) contains an
unbounded continuum of escaping points. Indeed, if s = T0T1 . . . Tp−1 has period
p ∈ N and Tk, 0 6 k < p, are tracts of F , then there is a tract T of F p contained
in T0 such that F k(T ) ⊆ Tk, 1 6 k < p, and the result follows from applying
[Rem08, Theorem 2.4] to F p in T .

It was remarked in [BJR12, p. 2107] that if s ∈ AN contains only finitely many
symbols, then [Rem08, Theorem 2.4] can be adapted to show that Js(F ) 6= ∅ and
hence Js(F ) contains an unbounded continuum; see [BF15, Proposition 2.11] for
a detailed proof of this result.

In [Rem07], Rempe showed that this set can be chosen to be forward invariant.
Later on, [BRS08, Theorem 1.1] generalised the result of Rempe for transcendental
meromorphic functions in C with tracts (not necessarily in the class B).

For transcendental self-maps of C∗, we can define the fast escaping set A(f)
using the iterates of the maximum and minimum modulus functions [Mar14, Defi-
nition 1.2], and the components of A(f) are unbounded in C∗. We remind that
a set X ⊆ C∗ is unbounded if its closure X̂ in Ĉ contains zero or infinity. The
following lemma is a combination of [Mar14, Theorem 1.1 and Theorem 1.5] and
follows from the constructions in their proofs. Remind that I ′e(f) ⊆ Ie(f) is the
set of escaping points whose essential itinerary is exactly e.

Lemma 6.1. Let f be a transcendental self-map of C∗. For each e = (en) ∈ {0,∞}N,
there exists an unbounded closed connected set Ae ⊆ I ′e(f) which consists of fast
escaping points and whose closure Âe in Ĉ contains e0.

Lemma 6.1 implies that the set Je(F ) contains at least one unbounded com-
ponent. The goal of this section is to show that, under certain hypothesis, the
set Js(F ) contains an unbounded continuum. We begin by stating the Boundary
bumping theorem [Nad92, Theorem 5.6] (see also [RRRS11, Theorem A.4]) which
implies that if X ⊆ Ĉ is a compact connected set containing zero or infinity and
E = X ∩ C∗, then every component of E is unbounded in C∗.
Lemma 6.2 (Boundary bumping theorem). Let X be a nonempty compact con-
nected metric space and let E ( X be nonempty. If C is a connected component
of E, then ∂C ∩ ∂E 6= ∅ (where boundaries are taken relative to X).

First we show that if JKs (F ) 6= ∅ for sufficiently large K > 0, then the set
Js(F ) contains an unbounded continuum. The following lemma is the analogue of
[RRRS11, Lemma 3.3] for the class Blog. We include the proof for completeness.

Proposition 6.3. Let F ∈ B∗log, there exists K1(F ) > 0 such that if K > K1(F ),
for every s ∈ Σ, if z0 ∈ JKs (F ), then there exists an unbounded closed connected
set A ⊆ Js(F ) with dist (z0, A) 6 2π.



DYNAMIC RAYS OF BOUNDED-TYPE FUNCTIONS IN C∗ 27

Proof. Wemay assume without loss of generality that F is normalised withH= H±R
for some R > 0. Let K1(F ) > 0 be large enough that if K > K1(F ), then all
bounded components ofH ∩ T are in the vertical band VK := {z ∈ C : |Re z| < K}.
Note that the set VK can only intersect a finite number of tracts in each funda-
mental strip.

Let Y ⊆ C be an unbounded continuum such that Y \B(F k(z0), 2π) has exactly
one unbounded component. In that case we denote this component by Xk(Y ). Let
s = (Tn). For all k > 1, we have that ∅ 6= Xk(Tk) ⊆ H and hence F−1|Tk−1

maps
Xk(Tk) intoTk−1. By the expansivity property (3.1), since dist

(
F k(z0), Xk(Tk)

)
= 2π,

we have that dist
(
F k−1(z0), F

−1
Tk−1

(
Xk(Tk)

))
6 π and Xk−1

(
F−1Tk−1

(
Xk(Tk)

))
6= ∅.

Thus we can define the sets

Ak := X0

(
F−1T0

(
· · ·
(
Xk−1

(
F−1Tk−1

(
Xk(Tk)

)))
· · ·
))

for k > 1,

and we put A0 := X0(T0). Observe that here we are using the fact that s ∈ Σ
because F−1Tk

is only defined in one of the two components of H.
Let Âk denote the closure of Ak in Ĉ which is a continuum. By construction,

Âk+1 ⊆ Âk and dist(z0, Ak) 6 π, thus

A′ :=
⋂

k>0

Âk

is a continuum in Ĉ and A′ \ {0,∞} has a component A with dist(z0, A) 6 2π.
Finally, by Lemma 6.2, the set A is unbounded in C∗ . �

Next we show that, as in the entire case, if an external address s ∈ Σ has finitely
many symbols, then the set Js(F ) contains an unbounded continuum. Note that
in contrast to the previous proposition, now we need to show that Js(F ) 6= ∅. We
use the following lemma which is the analogue of [BF15, Proposition 2.6] for the
class B∗.
Lemma 6.4. Let F ∈ B∗log have good geometry and let F be a finite union of
fundamental domains of F . Then for any K > 0 sufficiently large,

F−1
(
{z ∈ C : |Re z| = K}

)
∩ F ⊆ {z ∈ C : |Re z| < K}.

In the following proposition we adapt the proof of [BF15, Proposition 2.11] to
our setting. This is based on the ideas of [Rem08, Theorem 2.4] and will be used
later to prove Theorem 1.6.

Proposition 6.5. Let F ∈ B∗log. There exists K2(f) > 0 such that if K > K2(F )

and s ∈ Σ contains finitely many different symbols, then JKs (F ) contains a con-
tinuum whose points have unbounded real part.

Proof. Suppose that s = (Tn) contains N different symbols for tracts T s1 , . . . , T sN
from T and choose, for each 1 6 j 6 N , N fundamental domains F s

j,k ⊆ T sj so that
F (F s

j,k) ⊇ T sk . Let F denote the finite collection of fundamental domains {F s
j,k},

and assume K2 = K2(F ) > 0 is sufficiently large that Lemma 6.4 holds for F and
K > K2(F ). Then define (Fn) to be the sequence of fundamental domains from F
satisfying that Fn ⊆ Tn and Tn+1 lies in F (Fn).
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Let X0 be the unbounded component of F0 ∩H±K and, for each n > 0, let Xn be
the unique unbounded component of

F−1|F0

(
· · ·
(
F−1|Fn−2

(
F−1|Fn−1

(Fn) ∩H±K
)
∩H±K

)
· · ·
)
∩H±K

where F−1|Fn
is the branch of F−1 that maps the fundamental strip F (Fn) ⊆ H in

which Fn+1 lies to the fundamental domain Fn ⊆ Tn. Note that since F is entire,
F−1|Fn

maps unbounded sets to unbounded sets.
Lemma 6.4 tells us that F−1(∂H±K)∩F ⊆ C\H±K and therefore for each Fn ∈ F ,

necessarily Fn ∩ ∂H±K 6= ∅. Furthermore, if Y is an unbounded continuum with
Y ∩ ∂H±K 6= ∅, then by Lemma 6.4 f−1|Fn

(Y )∩ ∂H±K 6= ∅. Thus, since Fn ∩ ∂H±K 6= ∅,
we have that Xn ∩ ∂H±K 6= ∅ for all n ∈ N.

As before, let X̂n be the closures of Xn in Ĉ and define

X ′ :=
⋂

k∈N
X̂n

which is an unbounded continuum. Since all X̂n intersect ∂H, X ′ \ {0,∞} has a
component X that intersects ∂H±K and is unbounded by Lemma 6.2. �

In particular, Proposition 6.5 includes all the periodic external addresses in Σ.
Observe that considering external addresses that consist of fundamental domains
instead of tracts we would obtain the result that for all such sequences containing
only finitely many different fundamental domains of f there is an unbounded
continuum consisting of escaping points with that extended external address.

7. Dynamic rays

In Theorem 1.1 we showed that bounded-type functions have no escaping Fatou
components. Instead, escaping points often lie in curves tending to the essential
singularities –called dynamic rays or, sometimes, hairs– such that in every un-
bounded proper subset –called ray tail– points escape uniformly. We say that a
dynamic ray is broken if one of its forward iterates contains a critical point; this
concept was introduced in [BF15, Definition 2.2].

Definition 7.1 (Dynamic ray). Let f be a transcendental self-map of C∗. A ray
tail of f is an injective curve

γ : [0,+∞)→ I(f)

such that fn(γ(t)) → {0,∞} as t → +∞ for all n > 0 and fn(γ(t)) → {0,∞}
uniformly in t as n→∞. A dynamic ray of f is a maximal injective curve

γ : (0,+∞)→ I(f)

such that γ|[t,+∞) is a ray tail for every t > 0. Similarly, we can define ray tails for
any logarithmic transform F of f (only defined on the set T ), and dynamic rays
for any lift f̃ of f . We shall abuse the notation and use γ for both the ray as a set
and its parametrization.

We say that a dynamic ray γ is broken if fn(γ) contains a critical point for
n ∈ N. A non-broken ray γ is said to land if γ \ γ consists of a single point or, in
other words, if γ(t) has a limit as t→ 0.
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Example 7.2. We give a couple of straightforward examples of dynamic rays in C∗.
(i) The positive real line is a fixed dynamic ray for f(z) = exp(z + 1/z), and

points escape to ∞ under iteration. This is an example of a broken ray
because the function f has a critical point at z = 1.

(ii) If we now consider the function g(z) = exp(−z+1/z), the positive real line
is again forward invariant but z = 1 is a repelling fixed point of g. In this
case, the intervals (0, 1) and (1,+∞) form a cycle of 2-periodic non-broken
dynamic rays.

Observe that dynamic rays are allowed to land at an essential singularity; that
is, the limit of γ(t) as t → 0 and t → +∞ may coincide. The dynamic ray from
the following example is non-broken and goes from zero to infinity.

Example 7.3. The positive real line is a fixed and non-broken dynamic ray for
the function f(z) = z exp

(
z2 + exp(−1/z2)

)
(see Figure 6).
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Figure 6. In the left, we have the phase space of the function
f(z) = z exp(z2 + exp(−1/z2)) from Example 7.3. In the right, the
graph of the restriction of this function to the positive real line.

Since the exponential function is a local homeomorphism, we have the following
correspondence between dynamic rays of transcendental self-maps of C∗ and those
of their lifts.

Lemma 7.4. Let f be a transcendental self-map of C∗ and let f̃ be a lift of f .
Then γ is a dynamic ray of f if and only if any connected component γ̃ of
exp−1 γ is a dynamic ray of f̃ . Furthermore, γ lands or is broken if and only if
γ̃ lands or is broken, respectively.

It is a well-known result for entire functions that if the postsingular set is
bounded then all periodic dynamic rays land. This was first proved for the expo-
nential family [SZ03b,Rem06]. Rempe proved a more general version of the result
for Riemann surfaces that applies to maps in the classes B and B∗ [Rem08, Theo-
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rem B.1]; see also [Den14, Theorem 1.1] for an alternative proof of this result for
the class B. The same techniques imply the following result in our setting.

Proposition 7.5. Let f ∈ B∗ with postsingular set P (f) bounded away from zero
and infinity. Then all periodic dynamic rays of f land, and the landing points are
either repelling or parabolic periodic points of f .

Next we show that, since points in ray tails escape uniformly, each dynamic ray
is contained in a set Ie(f) for some essential itinerary e ∈ {0,∞}N.
Lemma 7.6. Let f be a transcendental self-map of C∗ and let γ be a dynamic ray
of f . Then, for every ray tail γ′ ⊆ γ, there is ` ∈ N such that all the points in
f `(γ′) have the same essential itinerary. Hence, there exists an essential itinerary
e ∈ {0,∞}N such that γ ⊆ Ie(f).

Proof. By definition, ray tails escape uniformly and hence, if γ′ is a ray tail, there
is ` ∈ N such that fn(γ′) ∩ S1 = ∅ for all n > `. Then, all points in f `(γ′) have
the same essential itinerary; that is, γ′ ⊆ I`,0e (f) for some e ∈ {0,∞}N.

Now suppose that γ is a dynamic ray with z1 ∈ γ ∩ Ie1(f) and z2 ∈ γ ∩ Ie1(f).
Then there is a ray tail γ′ ⊇ {z1, z2} and ` ∈ N such that all points in f `(γ′) have
the same essential itinerary. Thus, e1 ∼= e2 and γ ⊆ Ie1(f) = Ie2(f). �

Actually, since all the images of a dynamic ray are unbounded in C∗, dynamic
rays are asymptotically contained into tracts which are preimages of the neigh-
bourhood W of the set {0,∞}. Furthermore, each dynamic ray is asymptotically
contained in exactly one of the fundamental domains of the function F .

In the following proposition we show that, in order to prove Theorem 1.4, we
only require that every escaping point has an iterate that is on a ray tail (see
[RRRS11, Proposition 2.3]).

Proposition 7.7. Let f be a transcendental self-map of C∗ and let z ∈ I(f).
Suppose that some iterate fk(z) is on a ray tail γk of f . Then either z is on a ray
tail, or there is some n 6 k such that fn(z) belongs to a ray tail that contains an
asymptotic value of f .

Proof. Suppose that γk : [0,∞) → C∗ is a parametrization of such a ray tail
and γk(0) = fk(z). Let γk−1 : [0, T ) → C∗ be a maximal lift of γk such that
γk−1(0) = fk−1(0) and f(γk−1(t)) = γk(t). If T = ∞, then γk−1(t) must tend to
zero or infinity as t→ +∞, otherwise we would have

f(z0) = f
(
lim
t→∞

γk−1(t)
)
= lim

t→∞
f (γk−1(t)) = lim

t→∞
γk(t) ∈ {0,∞}

which is a contradiction. Thus, f (k−1)(z) is on a ray tail. Now consider the case
that T <∞ and let

w := lim
t→T

γk−1(t) ∈ Ĉ.

Again, it cannot happen that f(w) ∈ {0,∞} because γk(T ) would be an asymp-
totic value, so f(w) = γk(t0) for some t0 ∈ [0,∞). In this case, γk−1 could be
extended, contradicting its maximality. Note that if w was a critical point we
would need to choose a branch of the inverse. Thus, w ∈ {0,∞} and γk(T ) is an
asymptotic value of f (possibly zero or infinity). Then either we have found a ray
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tail γk−1 ⊆ f−1(γk) ⊆ I(f) connecting f (k−1)(z) to one of the essential singularities
or γk contains an asymptotic value. The result follows from applying the above
reasoning inductively. �

Note that Proposition 7.7 can also be proved by applying its version for entire
functions to a lift f̃ of f and then use the correspondence from Lemma 7.4.

We conclude this section by stating a result about escaping points that follows
from the expansivity property (3.1) in Lemma 3.6 (see [RRRS11, Lemma 3.2] for
the analogue result on entire functions).

Lemma 7.8. Let F : T → H be in the class B∗nlog with H = H±R for some R > 0.
If z, w ∈ Js(F ) for some external address s and z 6= w then

lim
k→+∞

max{|Re F k(z)|, |Re F k(w)|} = +∞.

Observe that this does not imply that neither the point z nor w escape because
both points may have an unbounded orbit but with a subsequence where their
iterates are bounded. In the next section we will introduce a condition for F (see
Definition 8.1) which implies that, in the situation of Lemma 7.8, both points z
and w escape, and hence all points in Js(F ) except possibly one must escape.

Lemma3.9, Lemma7.8 andProposition 6.3 correspond respectively to Lemma3.1,
Lemma 3.2 and Theorem 3.3 in [RRRS11, Section 3] and constitute the main tools
to prove Theorem 1.4 in the next section.

8. Proof of Theorem 1.4

In this section we adapt the results in [RRRS11, Sections 4 and 5] to our setting.
Since the proof Theorem 1.4 follows closely that of [RRRS11, Theorem 1.2], we
only sketch it and emphasize the differences between them.

The head-start condition is designed so that every escaping point is mapped
eventually to a ray tail and hence we are able to apply Proposition 7.7 and conclude
that either the point itself is in a ray tail or some iterate is in a ray tail that contains
a singular value.

Definition 8.1 (Head-start condition). Let F : T → H be a function in the
class B∗log. We first define the head-start condition for tracts, then for external
addresses and finally for logarithmic transforms.

• Let T, T ′ be two tracts in T and let ϕ : R+ → R+ be a (not necessarily
strictly) monotonically increasing continuous function with ϕ(x) > x for
all x ∈ R+. We say that the pair (T, T ′) satisfies the head-start condition
for ϕ if, for all z, w ∈ T with F (z), F (w) ∈ T ′,

|Re w| > ϕ(|Re z|)⇒ |Re F (w)| > ϕ(|Re F (z)|).

• We say that an external address s ∈ Σ satisfies the head-start condition for
ϕ if all consecutive pairs of tracts (Tk, Tk+1) satisfy the head-start condition
for ϕ, and if for all distinct z, w ∈ Js(F ), there is M ∈ N such that
|Re FM(z)| > ϕ(|Re FM(w)|) or |Re FM(w)| > ϕ(|Re FM(z)|).
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• We say that F satisfies a head-start condition if every external address of
F satisfies the head-start condition for some ϕ. If the same function ϕ can
be chosen for all external addresses, we say that F satisfies the uniform
head-start condition for ϕ.

Notice that in the second part we require that the head-start condition cannot be
a void condition for any itinerary. Furthermore, if |Re FM(z)| > ϕ(|Re FM(w)|)
and the head-start condition is satisfied for that pair of tracts then for all n > M ,
|Re F n(z)| > ϕ(|Re FM(w)|).

The head-start condition allows us to order the points in Js(F ) by the growth
of the absolute value of their real parts.

Definition 8.2 (Speed ordering). Let s ∈ Σ be an external address satisfying the
head-start condition for a function ϕ. For z, w ∈ Js(F ), we say that z � w if there
exists K ∈ N such that |Re FK(z)| > ϕ(|Re FK(w)|). We extend this order to
the closure Ĵs(F ) in Ĉ by the convention that 0,∞ � z for all z ∈ Js(F ).

Note that although a dynamic ray may contain both zero and infinity in its
closure in Ĉ, ray tails are a subset of T and hence contain either zero or infinity.

The head-start condition implies that the speed ordering is a total order on the
set Ĵs(F ): if there wereM1,M2 ∈ N such that |Re FM1(z)| > ϕ(|Re FM1(w)|) and
|Re FM2(w)| > ϕ(|Re FM2(z)|) then we would get a contradiction because once
we are in one of these situations and the head-start condition is satisfied then it
is preserved by iteration, that is, for example, if |Re FM1(z)| > ϕ(|Re FM1(w)|),
then |Re F n(z)| > ϕ(|Re F n(w)|) for all n > M1. Therefore z � w if and only if
there exists n0 ∈ N such that |Re F n(z)| > |Re F n(w)| for all n > n0, and hence
the speed ordering does not depend on the choice of the function ϕ.

Lemma 8.3. Let s ∈ Σe, e ∈ {0,∞}N, be an external address that satisfies the
head-start condition for a function ϕ. Then the order topology induced by the speed
ordering � on Ĵs(F ) coincides with the topology as a subset of Ĉ and, in particular,
every connected component of Ĵs(F ) is an arc.

Moreover, there exists K ′ > 0 independent of s such that JK′s (F ) is either empty
or contained in the unique unbounded component of Js(F ), which is an arc to the
essential singularity e0 all of whose points escape except possibly its finite endpoint.

Proof. The first part follows from the fact that the map id : Ĵs(F )→ (Ĵs(F ),≺) is
an homeomorphism (see [RRRS11, Theorem 4.4]). Indeed, for all a ∈ Ĵs(F ), the
sets

(a,+∞)≺ := {z ∈ Ĵs(F ) : a ≺ z}, (−∞, a)≺ := {z ∈ Ĵs(F ) : z ≺ a},
are open sets in Ĵs(F ) with the subspace topology of Ĉ: let k ∈ N be minimal with
the property that |Re F k(a)| > ϕ(|Re F k(z)|) then, by continuity, this inequality
holds in a neighbourhood of z. Since Ĵs(F ) and the order topology is Hausdorff, the
map id−1 is continuous as well. The theorem follows from the order characterisation
of the arc (see [RRRS11, Theorem A5]).

For the second part, if K is the constant from Lemma 7.8(ii) and JKs (F ) 6= ∅,
then JKs (F ) has an unbounded component A which is an arc to ∞. Since e0 is
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the largest element of Ĵs(F ) in the speed ordering, the set Ĵs(F ) has only one
unbounded component. Using the head-start condition, it can be shown that if
z, w ∈ Js(F ) and w � z then w ∈ Is(F ) (see [RRRS11, Corollary 4.5]). Finally,
the fact that JK′s (F ) ⊆ A for some K ′ > K follows from the expansivity of F (see
[RRRS11, Proposition 4.6]). �

Like in the entire case, the following theorem can be deduced from Lemma 8.3
(see [RRRS11, Theorem 4.2]).

Theorem 8.4. Let F ∈ B∗log satisfy a head-start condition. Then, for every esca-
ping point z, there exists k ∈ N such that F k(z) is on a ray tail γ. This ray
tail is the unique arc in J(F ) connecting F k(z) to either zero or infinity (up to
reparametrization).

Observe that Theorem 8.4 together with Proposition 7.7 imply that if f is a
transcendental self-map of C∗ and z ∈ I(f), then either z is on a ray tail, or there
is some n 6 k such that fn(z) belongs to a ray tail that contains an asymptotic
value of f .

Previously we have seen that if f has finite order then any logarithmic trans-
forms F of f has good geometry in the sense of Definition 3.13. To complete the
proof of Theorem 1.4 we show that functions of good geometry satisfy a head-start
condition.

Theorem 8.5. Let F ∈ B∗nlog be a function with good geometry. Then F satisfies
a linear head-start condition.

Proof. Let s ∈ Σ be an external address and suppose that F has bounded slope
with constants (α, β). Then the orbits of any two points z, w ∈ Js(F ) eventually
separate far enough one from the other. More precisely, if K > 1, there exist a
constant δ = δ(α, β,K) > 0 such that if |z − w| > δ, then

|Re F n(z)| > K|Re F n(w)|+ |z−w| or |Re F n(w)| > K|Re F n(z)|+ |z−w|,
for all n > 1 (see [RRRS11, Lemma 5.2]). Hence the external address s satisfies
the second part of the head-start condition with the linear function ϕ(x) = Kx+δ.

It remains to check that if s = (Tn), for all k ∈ N and for all z, w ∈ Tk such that
F (z), F (w) ∈ Tk+1,

|Re w| > K|Re z|+ δ ⇒ |Re F (w)| > K|Re F (z)|+ δ.

We skip the technical computations from this proof which are identical to the ones
for the entire case, and just observe that this follows from the fact that the tracts
of F have uniformly bounded wiggling with constants K and µ for some µ > 0 if
and only if the conditions

|Re w| > K|Re z|+M ′

| Im F (z)− Im F (w)| 6 αmax{|Re F (z)|, |Re F (w)|}+ β

imply that |Re F (w)| > K|Re F (z)| +M ′ whenever z, w ∈ T , for some M ′ > 0,
and hence F satisfies the uniform linear head-start condition with constants K
and M for some M > 0 (see [RRRS11, Proposition 5.4]). �
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Finally we prove Theorem 1.4 concerning the existence of dynamic rays for
compositions of finite order transcendental self-maps of C∗.

Proof of Theorem 1.4. Let f1, . . . , fn be finite order transcendental self-maps of C∗
for some n > 1. By Theorem 1.3, the functions fi are in class B∗. Composing
the functions fi with affine changes of variable, we can assume that each fi has a
normalised logarithmic transform Fi : Ti → H±Ri

∈ B∗nlog for some Ri > 0.
By Proposition 4.7, each Fi has good geometry and hence, by Theorem 8.5,

they satisfy linear head-start conditions. Just as for functions in Blog, linear head-
start conditions are preserved by composition in B∗log (see [RRRS11, Lemma 5.7]).
If F1 has bounded slope and all Fi satisfy uniform linear head-start conditions,
then the function F := Fn ◦ · · · ◦ F1 ∈ B∗log, which is a logarithmic transform of
f = fn ◦ · · · ◦ f1 ∈ B∗, has bounded slope and satisfies a uniform linear head-start
condition when restricted to a suitable set of tracts.

Finally, we can apply Theorem 8.4 and Proposition 7.7 to conclude that every
point z ∈ I(f) is on a ray tail that joins z to either zero or infinity. �

Remark 8.6. The proof of Theorem 1.4 relies on normalised logarithmic transforms.
However, it is possible to carry on the same ideas using only disjoint-type func-
tions, so that the resulting function F is also of disjoint type (see [RRRS11, The-
orem 5.10] and [Bar07, Theorem C]).

9. Periodic rays and Cantor bouquets

In Section 6 we observed that the set Js(F ) may be empty for some s ∈ Σ. For
transcendental entire functions in the exponential family, fλ(z) = λez, λ 6= 0, there
is a characterization of which external addresses give rise to hairs, and this led to
the notion of exponentially bounded (or admissible) external addresses in that con-
text (see [SZ03a]). In particular, every periodic external address is exponentially
bounded. Observe that the term admissible has a different meaning in this context.

Barański, Jarque and Rempe [BJR12] studied the set of dynamic rays for the
functions considered in [RRRS11] and [Bar07] and showed that they have un-
countably many rays organised in a Cantor bouquet (see Definition 9.1). In this
section we adapt their techniques to study the set of dynamic rays constructed in
Section 8.

We begin by proving Theorem 1.6, which states that if f ∈ B∗ satisfies the
hypothesis of Theorem 1.4 and (Dn) is an admissible external address of f which
contains finitely many symbols, then f has a unique (nonempty) dynamic ray with
that external address. Furthermore, if the postsingular set P (f) is bounded, then
the dynamic ray lands.

Proof of Theorem 1.6. By Proposition 6.5, there exists an unbounded continuum
A ⊆ V of escaping points with external address (Dn). Let F be a periodic logarith-
mic transform of f , and let s = (Tn) be the external address that corresponds to
the sequence of fundamental domains (Dn) of f by Lemma 5.12. By Theorem 1.4,
the set Js(F ) is a dynamic ray γ̃, and the projection γ = exp γ̃ is a dynamic ray
of f with external address (Dn). Finally, by Lemma 7.5, since P (f) is bounded,
all periodic rays land. �
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This implies, for example, that each fundamental domainD of f contains exactly
one fixed ray because the constant external address (Dn) withDn = D for all n ∈ N
is unique.

In Lemma 6.1, which summarizes some results from [Mar14], we saw that if f
is a transcendental self-map of C∗ and e ∈ {0,∞}N, then the set I ′e(f) contains an
unbounded closed connected subset Ae. Furthermore, if f ∈ B∗ and satisfies the
hypothesis of Theorem 1.4, then Theorem 1.6 implies that the set I ′e(f) contains a
ray tail; note that a dynamic ray may intersect the unit circle and hence contain
points that are not in I ′e(f). Therefore, in this case, since the set {0,∞}N has
uncountably many non-equivalent sequences e and two such sequences give disjoint
sets Ie(f), the escaping set I(f) contains uncountably many rays.

As explained in the introduction, a stronger result is true, namely Theorem 1.7,
which states that for every essential itinerary e ∈ {0,∞}N, the set I ′e(f) contains
a Cantor bouquet and, in particular, uncountably many hairs. With the goal in
mind of proving this theorem, we start by giving a precise definition of a Cantor
bouquet (see [AO93, Definition 1.2]).

Definition 9.1 (Cantor bouquet). A set B ⊆ [0,+∞)×(R\Q) is called a straight
brush if the following properties are satisfied:

(a) The set B is a closed subset of R2.
(b) For every (x, y) ∈ B, there exists ty > 0 such that {x : (x, y) ∈ B} =

[ty,+∞).
(c) The set {y : (x, y) ∈ B for some x} is dense in R \ Q. Moreover, for

every (x, y) ∈ B, there exist two sequences of hairs attached respectively
at βn, γn ∈ R \Q such that βn < y < γn for all n ∈ N, and βn, γn → y and
tβn , tγn → ty as n→∞.

The set [ty,+∞)×{y} is called the hair attached at y and the point (ty, y) is called
its endpoint. A Cantor bouquet is a set X ⊆ C that is ambiently homeomorphic
to a straight brush.

First we are going to show that, for each essential itinerary e ∈ {0,∞}N, the set
J(F ) contains an absorbing set Xe consisting of hairs so that every point in the
set Ie(F ) enters Xe after finitely many iterations (see [RRRS11, Theorem 4.7]).
Recall that, for e ∈ {0,∞}N, we defined the set

Je(F ) := {z ∈ J(F ) : addrF (z) ∈ Σe} =
⋃

s∈Σe

Js(F ).

It will be helpful to use the following notation: for each e ∈ {0,∞}N, we define
the set of sequences

Σ+
e :=

⋃

n∈N
σn
(
Σe

)

and the set

J+
e (F ) := {z ∈ J(F ) : addrF (z) ∈ Σ+

e } =
⋃

n∈N
Jσn(e)(F )

which is forward invariant.
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Proposition 9.2. Suppose that F ∈ B∗log satisfies a head-start condition. Then,
for every e ∈ {0,∞}N, there exists a closed subset Xe ⊆ J+

e (F ) with the following
properties:

(a) F (Xe) ⊆ Xe.
(b) The connected components of Xe are closed arcs to infinity all of whose

points except possibly of its endpoint escape.
(c) Every point in Ie(F ) enters the set Xe after finitely many iterations.

If F is of disjoint type, then we may choose Xe = J+
e (F ) and if F is 2πi-periodic,

then X ′e can also be chosen to be 2πi-periodic.

Proof. Let X ′e be the union of all unbounded components of the set Je(F ), and
define the set

Xe :=
⋃

n∈N
X ′σn(e).

Since unbounded components of J(F ) map to unbounded components of J(F ) by
F , we have F (X ′e) ⊆ X ′σ(e) and hence Xe is forward invariant.

By Lemma 6.2, the closure X̂e in Ĉ is the connected component of J+
e (F ) ∪ {∞}

that contains infinity and hence the set Xe is closed. By Lemma 8.3, the set Xe

consists of arcs to infinity all of whose points except possibly of its endpoint escape.
Let K ′ > 0 be the constant from Lemma 8.3, independent of s ∈ Σ, so that

JK
′

s (F ) is either empty or contained in the unbounded component of Js(F ) which
is contained in Xe if s ∈ Σ+

e . Then (c) follows from the fact that points in Ie(F )
enter a set JK′σn(e)(F ) ⊆ Xe, n ∈ N, after finitely many iterations.

Finally, if F is of disjoint type, then

Je(F ) ∪ {∞} =
⋃

s∈Σe

⋂

n∈N

(
F−1|T0

(
· · ·F−1|Tn−2

(
F−1|Tn−1

(Hen)
)
· · ·
)
∪ {∞}

)

which is a union of nested intersections of unbounded continua, hence every com-
ponent of Je(F ) is an unbounded continuum and we can choose Xe = Je(F ). If F
is a 2πi-periodic function, then the set X ′e is also 2πi-periodic. �

Following [BJR12], the strategy to prove Theorem 1.7 will be, for each essential
itinerary e ∈ {0,∞}N, to compactify the space of admissible external addresses Σe

by adding a circle of addresses at infinity to show the set X ′e (and hence Xe)
contains a Cantor bouquet.

Lemma 9.3. For every e ∈ {0,∞}N, there exists a totally ordered set S̃e ⊇ Σe,
where the order on S̃e agrees with the lexicographic order on Σe, and such that

(a) with the order topology, the set S̃e is homeomorphic to R ∪ {−∞,+∞};
(b) the set Σe is dense in S̃e.

This is done by defining intermediate entries of each set T e1e0 , e0, e1 ∈ {0,∞},
symbols which correspond to entries in between pairs of adjacent tracts as well
as to limits of sequences of tracts. We then add intermediate external addresses
to the set Σe, that is, finite sequences of the form s = T0T1 . . . Tn−1Sn, where
Tj ∈ T ej+1

ej , 0 6 j < n, and Sn is an intermediate entry of the set T en+1
en . We refer

to [BJR12, Section 5] for the details.
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We can define a topology on the set H̃e := He0 ∪S̃e that agrees with the induced
topology on H and such that H̃e is homeomorphic to the closed unit disc. Then,
in this topology, the closure X̃e of the set Xe from Proposition 9.2 is a comb, a
compactification of a straight brush, with the arc S̃e as base.
Definition 9.4 (Comb). A comb is a continuum X containing an arc B called the
base of the comb such that

(a) the closure of every component of X \B is an arc with exactly one endpoint
in the base B;

(b) the intersection of the closures of any two hairs is empty;
(c) the set X \B is dense in X.

The fact that a Cantor bouquet consists of uncountably many hairs comes from
the fact that a perfect set is uncountable. We introduce now the concept of (one-
sided) hairy arc, a comb where every hair is accumulated by other hairs.

Definition 9.5 (Hairy arc). A hairy arc is a comb with base B and an order ≺
on B such that if b ∈ B and x belongs to the hair attached at b, then there exist
sequences (x+n ) and (x−n ), attached respectively at points b+n , b−n ∈ B, such that
b−n ≺ b ≺ b+n and x−n , x+n → x as n→∞. A one-sided hairy arc is a hairy arc with
all its hairs attached to the same side of the base.

Given a straight brush, it is easy to see that we can add a base to obtain a hairy
arc. Aarts and Oversteegen showed that one-sided hairy arcs (and, in particular,
straight brushes) are ambiently homeomorphic, and hence the converse of the
previous statement is also true [AO93, Theorem 4.1].

Lemma 9.6. Let X be a one-sided hairy arc with base B. Then X \B is ambiently
homeomorphic to a straight brush.

In order to show that Xe contains a Cantor bouquet, we prove that every hair
in X ′e is accumulated by hairs of the same set from both sides. To do so, we adapt
the proof of [BJR12, Proposition 7.3].

Proposition 9.7. Let F : T → H be a 2πi-periodic function in the class B∗log,
and let e ∈ {0,∞}N and τ > 0. Then there exists τ ′ > τ such that for every
z0 ∈ Jτ ′e (F ), there exist sequences z−n , z+n ∈ Jτe (F ) with addr(z−n ) < addr(z0) <
addr(z+n ) for all n ∈ N and z−n , z+n → z0 as n→∞.

Proof. Let R0 be the constant from Lemma 3.6 so that H±R ⊆ H and |F ′(z)| > 2
for |Re z| > R0. Let n > 1, and let ϕn : Hen → He0 be the branch of F−n that
maps F n(z0) to z0. Set τ ′ := max{R, τ}+ π and define

z±n := ϕn
(
F n(z0)± 2πi

)
∈ Jτe (F ).

Then addr(z−n ) < addr(z0) < addr(z+n ) for all n. Finally, since F is expanding
with respect to the Euclidean metric on H±R, the maps ϕn are contractions and
z±n → z0 as n→∞. �

Note that given any logarithmic transform F of a function f ∈ B∗ we can modify
it to obtain a periodic logarithmic transform F̂ of f by adding a suitable multiple
of 2πi to F on each of its tracts.
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Finally we sketch the proof of Theorem 1.7. The main idea is to use the exis-
tence of a potential function ρ that ‘straightens’ the brush X ′e (see [BJR12, Propo-
sition 7.1]).

Proof of Theorem 1.7. Let F ∈ B∗log be 2πi-periodic and satisfy a uniform head-
start condition and let X ′e denote the union of the unbounded components of Je(F )
as in Proposition 9.2. For each e ∈ {0,∞}N, consider the set

Ze := {z ∈ X ′e : ρ
(
F j(z)

)
> K for all j > 0} ∪ S̃e,

where ρ is a 2πi-periodic continuous function that is strictly increasing on the hairs
and such that ρ(zn)→∞ if and only if |Re zn| → +∞. Then, there exists R > 0
sufficiently large so that

JRe (F ) ⊆ Ze ⊆ X̃e

and hence Ze is a comb. Then Lemma 9.7 together with the fact that F satisfies
a uniform head-start condition imply that Ze is a hairy arc and, by Lemma 9.6,
Ze \ S̃e is ambiently homeomorphic to a straight brush. We can choose the set Xe

from Proposition 9.2 to be 2πi-periodic and so both Je(F ) and exp(Je(F )) contain
an absorbing Cantor bouquet. Note that all the points in exp(Je(F )) belong to
I0,0e (f) except, possibly, the finite endpoints of the hairs.

Finally, if F is of disjoint type, then the closure of Je(F ) in H̃e is a one-sided
hairy arc, and hence both Je(F ) and exp(Je(F )) are Cantor bouquets. �
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