doi:10.3934/dcds.2017134

DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS Volume **37**, Number **6**, June **2017**

pp. 3123-3160

DYNAMIC RAYS OF BOUNDED-TYPE TRANSCENDENTAL SELF-MAPS OF THE PUNCTURED PLANE

Núria Fagella

Departament de Matemàtiques i Informàtica Universitat de Barcelona Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain

David Martí-Pete*

School of Mathematics and Statistics The Open University Walton Hall, Milton Keynes MK7 6AA, United Kingdom

(Communicated by Sylvain Crovisier)

ABSTRACT. We study the escaping set of functions in the class \mathcal{B}^* , that is, transcendental self-maps of \mathbb{C}^* for which the set of singular values is contained in a compact annulus of \mathbb{C}^* that separates zero from infinity. For functions in the class \mathcal{B}^* , escaping points lie in their Julia set. If f is a composition of finite order transcendental self-maps of \mathbb{C}^* (and hence, in the class \mathcal{B}^*), then we show that every escaping point of f can be connected to one of the essential singularities by a curve of points that escape uniformly. Moreover, for every sequence $e \in \{0, \infty\}^{\mathbb{N}_0}$, we show that the escaping set of f contains a Cantor bouquet of curves that accumulate to the set $\{0, \infty\}$ according to eunder iteration by f.

1. Introduction. Complex dynamics concerns the iteration of a holomorphic function on a Riemann surface S. Given a point $z \in S$, we consider the sequence given by its iterates $f^n(z) = (f \circ \stackrel{n}{\cdots} \circ f)(z)$ and study the possible behaviours as n tends to infinity. We partition S into the Fatou set, or stable set,

 $F(f) := \{ z \in S : (f^n)_{n \in \mathbb{N}} \text{ is a normal family in some neighbourhood of } z \}$

and the Julia set, or chaotic set, $J(f) := S \setminus F(f)$. If $f : S \subseteq \hat{\mathbb{C}} \to S$ is holomorphic and $\hat{\mathbb{C}} \setminus S$ consists of essential singularities, then conjugating by a Möbius transformation, we can reduce to the following three cases:

- $S = \hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ and f is a rational map;
- $S = \mathbb{C}$ and f is a transcendental entire function;
- $S = \mathbb{C}^* := \mathbb{C} \setminus \{0\}$ and both zero and infinity are essential singularities.

²⁰¹⁰ Mathematics Subject Classification. Primary: 37F20; Secondary: 30D05.

Key words and phrases. Complex dynamics, transcendental functions, punctured plane, escaping set, dynamic rays, bounded-type functions.

The first author was partially supported by the Polish NCN grant decision DEC-2012/06/M/ST1/00168 and by the Spanish grants MTM2011-26995-C02-02 and MTM2014-52209-C2-2-P. The second author was supported by The Open University, by a Formula Santander Scholarship and by the Spanish grant MTM2011-26995-C02-02.

^{*} Corresponding author.