Ergod. Th. & Dynam. Sys. (2004), 24, 735–766 (C) 2004 Cambridge University Press DOI: 10.1017/S0143385704000045

Asymptotic size of Herman rings of the complex standard family by quantitative quasiconformal surgery

NÚRIA FAGELLA[†], TERE M. SEARA[‡] and JORDI VILLANUEVA[‡]

† Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain (e-mail: fagella@maia.ub.es) ‡ Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain (e-mail: tere.m-seara@upc.es, jordi@vilma.upc.es)

(Received 23 May 2003 and accepted in revised form 13 January 2004)

Abstract. In this paper we consider the complexification of the Arnold standard family of circle maps given by $\widetilde{F}_{\alpha,\varepsilon}(u) = u e^{i\alpha} e^{(\varepsilon/2)(u-1/u)}$, with $\alpha = \alpha(\varepsilon)$ chosen so that $\widetilde{F}_{\alpha(\varepsilon),\varepsilon}$ restricted to the unit circle has a prefixed rotation number θ belonging to the set of Brjuno numbers. In this case, it is known that $\widetilde{F}_{\alpha(\varepsilon),\varepsilon}$ is analytically linearizable if ε is small enough and so it has a Herman ring $\widetilde{U}_{\varepsilon}$ around the unit circle. Using Yoccoz's estimates, one has that the size $\widetilde{R}_{\varepsilon}$ of $\widetilde{U}_{\varepsilon}$ (so that $\widetilde{U}_{\varepsilon}$ is conformally equivalent to $\{u \in \mathbb{C} : 1/\widetilde{R}_{\varepsilon} < \varepsilon\}$ $|u| < \widetilde{R}_{\varepsilon}$ }) goes to infinity as $\varepsilon \to 0$, but one may ask for its asymptotic behavior.

We prove that $\widetilde{R}_{\varepsilon} = (2/\varepsilon)(R_0 + \mathcal{O}(\varepsilon \log \varepsilon))$, where R_0 is the conformal radius of the Siegel disk of the complex semistandard map $G(z) = ze^{i\omega}e^{z}$, where $\omega = 2\pi\theta$. In the proof we use a very explicit quasiconformal surgery construction to relate $\widetilde{F}_{\alpha(\varepsilon),\varepsilon}$ and G, and hyperbolic geometry to obtain the quantitative result.

1. Introduction

The *complex standard family* of self maps of $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ is given by the two-parameter family

$$\widetilde{F}_{\alpha,\varepsilon}(u) = u e^{i\alpha} e^{(\varepsilon/2)(u-1/u)}$$

where $\alpha \in [0, 2\pi)$ and $\varepsilon \in [0, 1)$. These maps are holomorphic in \mathbb{C}^* and the points at 0 and infinity are essential singularities (see [Ba, Ko1, Mak, Ke, Ko2, F]). For small ε , these functions are perturbations of the rotation of angle α with respect to the origin. The interest in this family relies on the fact that it is the extension to the complex plane of the well-known Arnold family of circle maps (see [Ar, dMvS]). Indeed, the unit circle C₁