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Abstract. In this paper we consider the complexification of the Arnold standard family of
circle maps given by F̃α,ε(u) = ueiαe(ε/2)(u−1/u), with α = α(ε) chosen so that F̃α(ε),ε
restricted to the unit circle has a prefixed rotation number θ belonging to the set of Brjuno
numbers. In this case, it is known that F̃α(ε),ε is analytically linearizable if ε is small
enough and so it has a Herman ring Ũε around the unit circle. Using Yoccoz’s estimates,
one has that the size R̃ε of Ũε (so that Ũε is conformally equivalent to {u ∈ C : 1/R̃ε <
|u| < R̃ε}) goes to infinity as ε → 0, but one may ask for its asymptotic behavior.

We prove that R̃ε = (2/ε)(R0 + O(ε log ε)), where R0 is the conformal radius of the
Siegel disk of the complex semistandard map G(z) = zeiωez, where ω = 2πθ . In the
proof we use a very explicit quasiconformal surgery construction to relate F̃α(ε),ε and G,
and hyperbolic geometry to obtain the quantitative result.

1. Introduction
The complex standard family of self maps of C∗ = C \ {0} is given by the two-parameter
family

F̃α,ε(u) = ueiαe(ε/2)(u−1/u),

where α ∈ [0, 2π) and ε ∈ [0, 1). These maps are holomorphic in C∗ and the points at 0
and infinity are essential singularities (see [Ba, Ko1, Mak, Ke, Ko2, F]). For small ε,
these functions are perturbations of the rotation of angle α with respect to the origin.
The interest in this family relies on the fact that it is the extension to the complex plane of
the well-known Arnold family of circle maps (see [Ar, dMvS]). Indeed, the unit circle C1


