The Set of Periods for a Class of Crazy Maps

Antonio Falcó*

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain

Submitted by U. Kirchgraber

Received November 13, 1996

The crazy maps are a class of continuous maps from $\Sigma_N \times \mathbb{S}^1$, where Σ_N is the product space of the bi-infinite sequences on N symbols and \mathbb{S}^1 is the unit circle, into itself. Moreover, each of these maps has N orientation-preserving circle homeomorphisms associated with it. In this paper we study the set of periods in the case N=2 and where the associated maps are rotations. © 1998 Academic Press

1. INTRODUCTION

In 1974 Afraimovich and Shilnikov [1] described the semi-hyperbolic invariant set generated by a bifurcation of several homoclinic surfaces of a saddle-node cycle. The invariant set in the last bifurcation is homeomorphic to the product space $\Sigma_N \times \mathbb{S}^1$, where $\Sigma_N = \{0, 1, ..., N-1\}^{\mathbb{Z}}$ is the space of all bi-infinite sequences

$$\underline{a} = \{ \dots a_{-n} \dots a_{-1} \cdot a_0 a_1 \dots a_n \dots \}$$

of symbols 0, 1, ..., N-1 (we note that in this paper we shall use the same notation as in [2]). The dynamics on the invariant set above after some rescaling, gives rise to *crazy dynamics*. It is described as follows.

Let $\underline{a} = \{ \dots a_{-1}.a_0a_1 \dots \} \in \Sigma_N$. Then $\sigma : \Sigma_N \to \Sigma_N$, the shift map, is given by

$$\sigma(\underline{a}) = \{ \dots a_{-1}a_0.a_1a_2 \dots \}.$$

*Current address: Fundación Universitaria San Pablo CEU, Carrer Comissari 1, 03202, Elche, Spain.

546

0022-247X/98 \$25.00

Copyright © 1998 by Academic Press All rights of reproduction in any form reserved.