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The Proper Generalized Decomposition (PGD) is a methodology initially proposed for the
solution of partial differential equations (PDE) defined in tensor product spaces. It consists
in constructing a separated representation of the solution of a given PDE. In this paper we
consider the mathematical analysis of this framework for a larger class of problems in an
abstract setting. In particular, we introduce a generalization of Eckart and Young theorem
which allows to prove the convergence of the so-called progressive PGD for a large class of
linear problems defined in tensor product Hilbert spaces.
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1. Introduction

The Proper Generalized Decomposition (PGD) method has been recently proposed [1,15,19] for the a priori construction
of separated representations of an element u in a tensor product space V = V 1 ⊗· · ·⊗ Vd , which is the solution of a problem

A(u) = l. (1)

A rank-n approximated separated representation un of u is defined by

un =
n∑

i=1

v1
i ⊗ · · · ⊗ vd

i , (2)

with vk
i ∈ Vk for 1 � i � n and 1 � k � d. The a posteriori construction of such tensor decompositions, when the function u

is known, have been extensively studied over the past years in multilinear algebra community [6,7,13,14,4,8] (essentially for
finite-dimensional vector spaces V i ). The question of finding an optimal decomposition of a given rank r is not trivial and
has led to various definitions and associated algorithms for the separated representations.

In the context of problems of type (1), the solution is not known a priori, nor an approximation of it. An approximate
solution is even unreachable with traditional numerical techniques when dealing with high dimensions d. It is the so-called
curse of dimensionality associated with the dramatic increase of the dimension of approximation spaces when increasing d.
The PGD method aims at constructing a decomposition of type (2) without knowing a priori the solution u. The aim of
the PGD is to construct a sequence un based on the knowledge of operator A and right-hand side l. This can be achieved
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