
h
tt
p
:/
/w
w
w
.g
sd
.u
a
b
.c
a
t

4-DIMENSIONAL ZERO-HOPF BIFURCATION FOR
POLYNOMIAL DIFFERENTIALS SYSTEMS WITH CUBIC

HOMOGENEOUS NONLINEARITIES VIA AVERAGING THEORY

AMINA FEDDAOUI1, JAUME LLIBRE 2 AND AMAR MAKHLOUF1

Abstract. The averaging theory of second order shows that for polynomial dif-
ferential systems in R4 with cubic homogeneous nonlinearities at least nine limit
cycles can be born in a zero-Hopf bifurcation.

1. Introduction and statement of the main result

Our goal is to study the periodic solutions which can bifurcate at a zero-Hopf
bifurcation in a polynomial differential systems in R4 with cubic homogeneous non-
linearities by using the averaging theory of the second order.

In [7] the authors studied the zero-Hopf bifurcation in dimension n > 2, by using
the first order averaging method. They proved that at least 2n−3 limit cycles can
bifurcate from one singularity with eigenvalues ±bi and n− 2 zeros.

In [5] (resp. [2]) the authors studied the zero-Hopf bifurcation in polynomial dif-
ferential systems in R3 (resp. R4) with quadratic homogeneous nonlinearities. By
applying the averaging theory of the second order to these systems, they show that
at most 3 limit cycles can bifurcate from a singular point having eigenvalues of the
form ±bi and one zero (resp. two zeros). The zero-Hopf bifurcation in polynomial
differential systems in R3 with cubic homogeneous nonlinearities has been studied
recently in [3].

In this paper we are interested on the existence of periodic solutions bifurcating
from the origin of coordinates of a polynomial differential systems in R4 with cubic
homogeneous nonlinearities having eigenvalues ±bi and two zeros, i.e for the differ-
ential systems

(1)

ẋ = (a1ε+ a2ε
2)x− (b+ b1ε+ b2ε

2)y +
2∑

j=0

εjXj(x, y, z, w),

ẏ = (b+ b1ε+ b2ε
2)x+ (a1ε+ a2ε

2)y +
2∑

j=0

εjYj(x, y, z, w),
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ż = (c1ε+ c2ε
2)z +

2∑
j=0

εjZj(x, y, z, w),

ẇ = (d1ε+ d2ε
2)w +

2∑
j=0

εjWj(x, y, z, w),

where

Xj(x, y, z, w) = aj0x
3 + aj1x

2y + aj2x
2z + aj3x

2w + aj4xy
2 + aj5xyz + aj6xyw

+aj7xz
2 + aj8xzw + aj9xw

2 + aj10y
3 + aj11y

2z + aj12y
2w + aj13

yz
2

+ aj14yzw + aj15yw
2 + aj16z

3 + aj17z
2w + aj18zw

2 + aj19w
3,

Yj(x, y, z, w), Zj(x, y, z, w) andWj(x, y, z, w) have the same expression asXj(x, y, z, w)
by replacing aji by bji, cji and dji for j = 0, 1, 2 and i = 0, 1, . . . , 19, respectively. The
coefficients aij, bij, cij, dij, a1, a2, b, b1, b2, c1, c2, d1, d2 are real parameters with b ̸= 0.
Note that system (1) for ε = 0 at the origin has eigenvalues ±bi, 0, 0. So for ε = 0
the origin is a zero-Hopf equilibrium.

Our main result is the following one.

Theorem 1. By applying averaging theory of second order system (1) can exhibit at
least 9 periodic solutions bifurcating from the origin when ε = 0, and this number of
periodic solutions is reached if and only if the following condition is satisfied (3a00 +
a04 + b01 + 3b010)b ̸= 0.

Theorem 1 is proved in section 3. In section 2 we recall the averaging theory of
first and second order as it was stated in [1]. This will be the main tool for proving
Theorem 1.

2. The averaging theory of first and second order

The aim of this section is to present the averaging theory of first and second order
as it was developed in [1, 4, 6]. The following result is Theorem 4.2 of [1].

Theorem 2. We consider the differential system

(2) ẋ(t) = εF1(t, x) + ε2F2(t, x) + ε3R(t, x, ε),

where F1, F2 : R × D → Rn, R : R × D × (−εf , εf ) → Rn are continuous functions,
T -periodic in the first variable, and D is an open subset of Rn. Assume that the
following hypotheses (i) and (ii) hold. Assume:

(i) F1, F2, R are locally Lipschitz with respect to x, F1(t, .) ∈ C1(D) for all t ∈ R,
and R is differentiable with respect to ε. We define the averaging functions of
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first and second order f1, f2: D −→ Rn as

(3)

f1(z) =
1

T

∫ T

0

F1(s, z)ds,

f2(z) =
1

T

∫ T

0

[
DzF1(s, z)

∫ s

0

F1(t, z)dt+ F2(s, z)

]
ds.

(ii) For V ⊂ D an open and bounded set and for each ε ∈ (−εf , εf ) \ {0}, there
exists a ∈ V such that f1(a) + εf2(a) = 0 and dB(f1 + εf2, V, a) ̸= 0.

Then for |ε| > 0 sufficiently small there exists a T -periodic solution x(t, ε) of the
system (2) such that x(0, ε) → a when ε → 0.

Where dB(f1 + εf2, V, 0) denotes the Brouwer degree of the function f1 + εf2 in
the neighborhood V of zero. It is known that if the function f1 + εf2 is C1 then it
is sufficient to check that det(D(f1 + εf2(aε))) ̸= 0 in order to have that dB(f1 +
εf2, V, 0) ̸= 0, for more details see [8].

On the other hand if one of the real parts of the eigenvalues of the Jacobian matrix
D(f1+εf2)(aε) is positive the periodic solution x(t; ε) is unstable. If all the real parts
of the eigenvalues of this matrix are negative the periodic solution is locally stable.
For a proof see Theorem 11.6 of [10].

For a general information on the averaging theory see for instance the books [9, 10].

3. Proof of Theorem 1

First we scale the variables (x, y, z, w) doing the change of variables (x, y, z, w) =
(εX, εY, εZ, εW ), second we pass to cylindrical coordinates doing (X,Y, Z,W ) =
(ρ cos θ, ρ sin θ, η, ξ), and third we take the angle θ as the new independent variable.
Thus in the variables (ρ, η, ξ) system (1) writes

(4)

dρ

dθ
= εF11(θ, ρ, η, ξ) + ε2F21(θ, ρ, η, ξ) +O(ε3),

dη

dθ
= εF12(θ, ρ, η, ξ) + ε2F22(θ, ρ, η, ξ) +O(ε3),

dξ

dθ
= εF13(θ, ρ, η, ξ) + ε2F23(θ, ρ, η, ξ) +O(ε3).
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where

F11(θ, ρ, η, ξ) =
a1ρ

b
,

F12(θ, ρ, η, ξ) =
c1η

b
,

F13(θ, ρ, η, ξ) =
d1ξ

b
,

F21(θ, ρ, η, ξ) =
1

b2
(−b1 cos(θ)

2 − b1 sin(θ)
2)(a1ρ cos(θ)

2 + a1ρ sin(θ)
2) +

1

b
((a016η

3 +

a017η
2ξ + a018ηξ

2 + a019ξ
3) cos(θ) + (a2ρ+ a07η

2ρ+ a08ηξρ+ a09ξ
2ρ

) cos(θ)2 + (a02ηρ
2 + a03ξρ

2) cos(θ)3 + a00ρ
3 cos(θ)4 + (b016η

3 + b017

η2ξ + b018ηξ
2 + b019ξ

3) sin(θ) + ((a013 + b07)η
2ρ+ (a014 + b08)ηξρ+ (

a015 + b09)ξ
2ρ) cos(θ) sin(θ) + ((a05 + b02)ηρ

2 + (a06 + b03)ξρ
2) cos(θ)2

sin(θ) + (a01 + b00)ρ
3 cos(θ)3 sin(θ) + (a2ρ+ b013η

2ρ+ b014ηξρ+ b015

ξ2ρ) sin(θ)2 + ((a011 + b05)ηρ
2 + (a012 + b06)ξρ

2) cos(θ) sin(θ)2 + (a04

+b01)ρ
3 cos(θ)2 sin(θ)2 + (b011ηρ

2 + b012ξρ
2) sin(θ)3 + (a010 + b04)ρ

3

cos(θ) sin(θ)3 + b010ρ
3 sin(θ)4),

F22(θ, ρ, η, ξ) =
1

b2
(bc2η + bc016η

3 + bc017η
2ξ + bc018ηξ

2 + bc019ξ
3 + b(c07η

2ρ+ c08ηξρ

+c09ξ
2ρ) cos(θ) + (−b1c1η + bc02ηρ

2 + bc03ξρ
2) cos(θ)2 + b(c013η

2ρ+

c014ηξρ+ c015ξ
2ρ) sin(θ) + bc00ρ

3 cos(θ)3 + bc01ρ
3 cos(θ)2 sin(θ) + b(

c05ηρ
2 + c06ξρ

2) sin(θ) cos(θ) + (−b1c1η + bc011ηρ
2 + bc012ξρ

2) sin(θ)2

+bc04ρ
3 cos(θ) sin(θ)2 + bc010ρ

3 sin(θ)3),

F23(θ, ρ, η, ξ) =
1

b2
(bd2η + bd016η

3 + bd017η
2ξ + bd018ηξ

2 + bd019ξ
3 + b(d07η

2ρ+ d08ηξρ

+d09ξ
2ρ) cos(θ) + (−b1d1η + bd02ηρ

2 + bd03ξρ
2) cos(θ)2 + b(d013η

2ρ+

d014ηξρ+ d015ξ
2ρ) sin(θ) + bd00ρ

3 cos(θ)3 + bd01ρ
3 cos(θ)2 sin(θ) + b(

d05ηρ
2 + d06ξρ

2) sin(θ) cos(θ) + (−b1d1η + bd011ηρ
2 + bd012ξρ

2) sin(θ)2

+bd04ρ
3 cos(θ) sin(θ)2 + bd010ρ

3 sin(θ)3).

System (4) is written into the normal form (2) for applying the averaging theory
taking

x = z = (ρ, η, ξ),

t = θ,

F1(t, x) = (F11(θ, ρ, η, ξ), F12(θ, ρ, η, ξ), F13(θ, ρ, η, ξ)),

F2(t, x) = (F21(θ, ρ, η, ξ), F22(θ, ρ, η, ξ), F23(θ, ρ, η, ξ)),

T = 2π.

.
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From (3) we have that the first averaging function f1 = (f11, f12, f13) is

f1i(ρ, η, ξ) =
1

2π

∫ 2π

0

F1i(θ, ρ, η, ξ)dθ.

Doing these computations we get that

f11(ρ, η, ξ) =
a1ρ

b
, f12(ρ, η, ξ) =

c1η

b
, f13(ρ, η, ξ) =

d1ξ

b
.

Since we look for solutions (ρ∗, η∗, ξ∗) of f1(ρ, η, ξ) = 0 with ρ∗ > 0, if a1 ̸= 0 the
first averaging function does not provide any information on the periodic solutions
of the differential system (3). In order that the second averaging function can give
information on the periodic solutions of the differential system (3) the first averaging
function must be identically zero. So we take a1 = c1 = d1 = 0, and compute the
second averaging function.

Then from (3) we have that f2 = (f21, f22, f23) = (f21(ρ, η, ξ), f22(ρ, η, ξ), f23(ρ, η, ξ)
is given by

f21 =
ρ

8b
(4(a07 + b013)η

2 + 4(a08 + b014)ηξ + (3a00 + a04 + b01 + 3b010)ρ
2 +

4(a09 + b015)ξ
2 + 8a2),

f22 =
1

2b
(2c016η

3 + 2c2η + 2ξ(c017η
2 + c018ηξ + c019ξ

2) + (c02 + c011)ηρ
2 +(5)

(c03 + c012)ρ
2ξ),

f23 =
1

2b
(2d016η

3 + 2d2η + 2ξ(d017η
2 + d018ηξ + d019ξ

2) + (d02 + d011)ηρ
2 +

(d03 + d012)ρ
2ξ).

We isolate ρ2 from the equationf21(ρ, η, ξ) = 0, and we substitute it in f2i(ρ, η, ξ) =
0 for i = 2, 3. Then we get two polynomials (g22, g23) = (g22(η, ξ), g23(η, ξ)) given by

g22 =
1

(3a00 + a04 + b01 + 3b010)b
(C1η + C2ξ + C3ηξ

2 + C4η
2ξ + C5η

3 + C6ξ
3) = 0,

g23 =
1

(3a00 + a04 + b01 + 3b010)b
(D1η +D2ξ +D3ηξ

2 +D4η
2ξ +D5η

3 +D6ξ
3) = 0,

where

C1 = −4a2c02 − 4a2c011 + 3a00c2 + a04c2 + b01c2 + 3b010c2,

C2 = −4a2(c03 + c012),

C3 = −2(a08c03 + a08c012 + a09c02 + a09c011 + b014c03 + b014c012 + b015c02 + b015c011)+

3a00c018 + a04c018 + b01c018 + 3b010c018,

C4 = −2(a07c03 + a07c012 + a08c02 + a08c011 + b013c03 + b013c012 + b014c02 + b014c011)+

3a00c017 + a04c017 + b01c017 + 3b010c017,

C5 = −2(c02 + c011)(a07 + b013) + 3a00c016 + a04c016 + b01c016 + 3b010c016,
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C6 = 3a00c019+a04c019−2a09c03−2a09c012+b01c019+3b010c019−2b015c03−2b015c012,

D1 = −4a2(d02 + d011) + 3a00d2 + a04d2 + b01d2 + 3b010d2,

D2 = −4a2(d03 + d012),

D3 = −2(a08d03+a08d012+a09d02+a09d011+ b014d03+ b014d012+ b015d02+ b015d011)+

3a00d018 + a04d018 + b01d018 + 3b010d018,

D4 = −2(a07d03+a07d012+a08d02+a08d011+ b013d03+ b013d012+ b014d02+ b014d011)+

3a00d017 + a04d017 + b01d017 + 3b010d017,

D5 = −2(d02 + d011)(a07 + b013) + 3a00d016 + a04d016 + b01d016 + 3b010d016,

D6 = 3a00d019+a04d019−2a09d03−2a09d012+b01d019+3b010d019−2b015d03−2b015d012.

We suppose that 3a00 + a04 + b01 + 3b010 ̸= 0.

Looking only at the coefficients of system (1) which appear in Cj and Dj we see
that C1, C2, C3, C4, C5, C6, D1, D2, D3, D4, D5, D6 are all independent because the
rank of the Jacobian matrix of the functions C1 , C2, C3, C4, C5, C6, D1, D2, D3,
D4, D5, D6 with respect to the variables a00, a04, a07, a08, a09, a2, b01, b010, b013, b014,
b015, c02, c03, c011, c012, c016, c017, c018, c019, c2, d02, d03, d011, d012, d016, d017, d018, d019,
d2 is 12, as it can be easily checked using maple or mathematica.

In short, since all coefficients of the polynomials g22(η, ξ) = 0 and g23(η, ξ) = 0
are independent they can be chosen arbitrary. By Bezout Theorem, we know that
at most system g22(η, ξ) = 0, g23(η, ξ) = 0 has 9 solutions. We give an example of
polynomial differential system with nine limit cycles

(6)

ẋ = 3w2x+ xz2 + a013yz
2 + a016z

3 +
xε2

2
− y,

ẏ = 4w2y + (−4)x2y + 2yz2 +
yε2

2
+ x,

ż = −4w3 + wy2 +
21w2z

4
− 3x2z

2
− 3wz2

2
+ 2z3 + zε2,

ẇ = −7w2z + x2z + y2z − 3wz2

4
− 15z3

4
− zε2

4
.

From system (5) we have for system (6) that

f21(ρ, η, ξ) =
1

2
ρ(1 + 3η2 + 7ξ2 − ρ2),

f22(ρ, η, ξ) =
1

4
(8η3 − 6η2ξ + η(4 + 21ξ2 − 3ρ2) + 2ξ(−8ξ2 + ρ2)),(7)

f23(ρ, η, ξ) = −1

4
η(1 + 15η2 + 3ηξ + 28ξ2 − 4ρ2).
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Solving system (7) there are nine solutions zi = (ρ∗i , η
∗∗
i , ξ∗i ) with ρ∗i > 0 for i =

1, . . . , 9 given by

z1 = (2,−1, 0),

z2 = (2
√
2, 0,−1),

z3 = (1, 0, 0),

z4 = (2
√
2, 0, 1),

z5 = (2, 1, 0),

z6 =

(√
1

2
(55− 13

√
7),−

√
3−

√
7,

1

2

(
−4

√
3−

√
7 + (3−

√
7)

3
2

))
,

z7 =

(√
1

2
(55− 13

√
7),
√

3−
√
7,

1

2

(
4

√
3−

√
7− (3−

√
7)

3
2

))
,

z8 =

(√
1

2
(55 + 13

√
7),−

√
3 +

√
7,

1

2

(
−4

√
3 +

√
7 + (3 +

√
7)

3
2

))
,

z9 =

(√
1

2
(55 + 13

√
7),
√

3 +
√
7,

1

2

(
4

√
3 +

√
7− (3 +

√
7)

3
2

))
.

Since the determinant

(8) det

(
∂(f21, f22, f23)

∂(ρ, η, ξ)

∣∣∣∣
(ρ,η,ξ)=(ρ∗,η∗,ξ∗)

)

for these nine solutions zi = (ρ∗i , η
∗
i , ξ

∗
i ) are −9

2
, −6,

3

8
, −6, −9

2
, −9

8
(−189 + 67

√
7),

−9

8
, (−189 + 67

√
7),

9

8
(189 + 67

√
7),

9

8
(189 + 67

√
7) respectively, we obtain, us-

ing the averaging theory of second order (see Theorem 2), 9 periodic solutions
(ρi(θ, ε), ηi(θ, ε), ξi(θ, ε)) of system (4) such that (ρi(0, ε), ηi(0, ε), ξi(0, ε)) = zi. In
fact, these periodic soutions are limit cycles because the solutions zi are isolated
solutions of system (7) because the determinants (8) are non-zero.

Going back through the changes of variables these 9 limit cycles provide 9 limit
cycles (xi(t, ε), yi(t, ε), zi(t, ε), wi(t, ε) of the differential system (1) such that

(xi(0, ε), yi(0, ε), zi(0, ε), wi(0, ε) = ε(ρ∗i cos(bt), ρ
∗
i sin(bt), η

∗
i , ξ

∗
i ) +O(ε2).

Since these initial conditions then to the origin of R4 when ε → 0, the corresponding
9 limit cycles tend to the zero-Hopf singular point localized at the origin of R4. In
short, the differential system (1) can exhibit a zero-Hopf bifurcation at the origin of
system (6) with at least 9 limit cycles. This completes the proof of Theorem 1.
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