
h
tt
p
:/
/w
w
w
.g
sd
.u
a
b
.c
a
t

The Picard–Fuchs equations for the complete hyperelliptic

integrals of even order curves, and the actions of the

generalized Neumann system

Yuri Fedorov1 and Chara Pantazi2
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Abstract

We consider a family of hyperelliptic curves of genus 2 and obtain explicitly the
system of linear ODEs for periods of Abelian integrals of first and second kind as
functions of the parameters of the curves. These equations are known as Picard–Fuchs
equations for the integrals and generalize the hypergeometric equation of the Legendre
type.

On the other hand, the periods are linear combinations of the action variables of
several algebraic completely integrable systems, in particular the Neumann system.
Thus the solutions of the obtained Picard–Fuchs equations can be used to study various
properties of the actions of this system.

1 Introduction

Given a family of elliptic curves E ⊂ P2 in the Legendre form

w2 = (1− z2)(1− k2z2),

it is well known that the complete elliptic integrals of first kind

K(k) =

∫ 1

0

dz√
(1− z2)(1− k2z2)

, K ′(k) =

∫ 1/k

1

dz√
(1− z2)(1− k2z2)

as function of the modulus k ∈ C, give 2 independent solutions of the hypergeometric
equation of Legendre type

k(1− k2)
d2y

dk2
− (1 + k2)

dy

dk
+ ky = 0, (1)

that is, K(k) = π
2F ( 1

2 ,
1
2 , 1; k2). The equation has singular points z1,2,3 = −1, 0, 1,

which means that the solutions K(k),K ′(k) are not single-valued: when k performs a
loop around zi, these functions transform to a linear combination of K(k),K ′(k). That
is, the solutions y(k) undergo a monodromy. The monodromy group is isomorphic to
the homology group H1(E ,C).
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Equivalently, (1) can be rewritten as a system of first order equations for K(k) and
the complete integral of the second kind1

Ē(k) =

∫ 1

0

z2dz√
(1− z2)(1− k2z2)

,

namely,
dK

dk
=

1

k(1− k2)
(k2K − Ē),

dĒ

dk
=

k

1− k2
(K − Ē) (2)

(see e.g., [8]).

The above description can be generalized to the case of curves of higher genus. As
an illustration, consider a family of the genus g hyperelliptic curves of odd order

Γh = {w2 = (z − a1) · · · (z − ag+1)(zg + h1z
g−1 + · · ·+ hg−1z + hg)} (3)

with the parameters h1, . . . , hg ∈ C. Here a1, . . . , ag+1 are constants. For generic
vaues of hi the curves are 2-fold covering of C = {z} ramified at z = a1, . . . , ag+1 and
ρ1, · · · , ρg, the roots of the polynomial Pg(z) = zg + h1z

g−1 + · · ·+ hg−1z + hg.
Consider the following canonical basis of g holomorphic differentials and g mero-

morphic differentials of the second kind on Γ:

ωi =
zi−1 dz

w
, ωg+i =

zg−1+i dz

w
, i = 1, . . . , g.

Let γ ∈ H1(Γ, C) be a cycle on Γ. Then the periods of the above differentials

J1 =

∮
γ

ω1, · · · J2g =

∮
γ

ω2g (4)

also become functions of the parameters h1, . . . , hg in (3) or of the roots ρ1, . . . , ρg.
Note that Ji are not single-valued functions of hi: when these parameters vary in

such a way that one of the roots, say ρ1 performs a loop around ai or ρ2, . . . , ρg, each
integral Ji becomes a linear combination of J1, . . . , J2g, i.e., undergoes a monodromy.

Following the classical theory of differential equations, the integrals Ji = Ji(h1, . . . hg)
are solutions of a systems of linear ODEs, with hi being independent variables, called
the Picard–Fuchs equations (see, e.g., [2]):

∂J

∂hk
= Mk(h) J, J = (J1, . . . , J2g)

T , k = 1, . . . , g, Mk ∈ GL(2g,C). (5)

They are natural generalizations of the Legendre equation (1) or (2)2.
Due to the monodromy property, some of the components of Mk(h) have poles when

one of the roots ρi coincides with aj or with the other roots.
Families of hyperelliptic curves Γh often appear in quadratures of integrable systems

of classical mechanics and mathematical physics, in particular the Neumann system (see
below), whereas certain linear combinations of the integrals Ji(h) give action variables
I1(h), . . . , Ig(h) of the systems. Knowledge of such functions is important in study of
periodic solutions, in quantization, in applications of the KAM theory to perturbations
of the integrable systems.

1This integral is slightly different from the canonical integral E(k), for this reason we use the notation
Ē(k).

2More precicely, the original Picard–Fuchs equations are second order equations obtained by eimination
of the periods of the meromorphic differentials.
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The integrals Ji are transcendental functions of hj and, as mentioned in several
publications, instead of computing them numerically, in some cases it is less expensive
to integrate numerically the above Picard–Fuchs equations, at least locally.

Following this idea, the authors of [4] derived differential equations for the periods
Ji for any genus g, taking however, as an independent variable one of the roots ρi in (3),
and not a constant of motion hk. (Thus, they obtained the Gauss–Manin equations.)

A similar approach was followed in [3, 5] to treat the actions of the Kovalevkaya top
and the Jacobi problem on geodesics on a triaxial ellipsoid.

For another basis of meromorphic differentials on Γh, a similar system of Gauss–
Manin equations was obtained in [7].

The ony disadvantage of this approach is the dependence of all the constants hk on
any root ρi, which makes it difficult to study the properties of Ji(h) as a function of
one hk, when all the other ones are fixed.

The choice of ρi instead of hk was motivated in [4] by the observation that the
Picard–Fuchs equations with the independent variables hk become highly cumbersome
even for the lowest non-trivial case g = 2.

The main purpose of our paper is to derive the PF equations for the case of the
family of even order genus 2 curves

Gh = {w2 = (z − a1)(z − a2)(z − a3)(z3 + h1z + h2)},

which appear in quadratires of an integrable generalization of the Neumann system with
a separable quartic potential.

We observe that, in contrast to the curves (3) and equations (5), in our case the
order of the PF equations is 5, since they also include an Abelian integral of 3rd kind.
To our knowledge, such case was not considered before.

The equations are written in a quite compact and symmetric form, suitable for
possible applications.

2 The classical Neumann system and its generaliza-
tion

Recall that the Neumann system descibes the motion of a point on the unit sphere
Sn−1 = {〈x, x〉 = 1}, x ∈ Rn under the action of the quadratic potential U = 〈x,Ax〉/2,
A being diagonal matrix with constant eigenvalues a1, a2, . . . , an. The Hamiltonian of
the problem has the form

H(x, y) =
1

2
(|y|2|x|2 − 〈y, x〉2) +

1

2
〈x,Ax〉,

where p ∈ TxSn−1 is the momentum (see e.g., [9, 10]).
Neumann ([?], 1856) considered this problem in the case n = 3 and solved it com-

pletely in terms of theta-functions of 2 variables.
In the general case, in the the elliptic coordinaates λ1, . . . , λn−1 on Sn−1 such that

x2i =
(ai − λ1) · · · (ai − λn−1)

(ai − a1) · · · (ai − an)
,

and corresponding conjugated momenta, the Hamiltonian takes Stäckel form, and the
system is reduced to the quadratures

λk1dλ1√
R(λ1)

+ · · ·+
λkn−1dλn−1√
R(λn−1)

=

{
0 if k = 0, 1, . . . , n− 2

dt if k = n− 1
k = 0, 1, . . . , n− 2 (6)

R(λ) = Φ(λ)Pn−1(λ), Φ(λ) = (λ− a1) · · · (λ− an),

Pn−1(λ) = λn−1 + h1λ
n−2 + · · ·+ hn−1 = (λ− ρ1) · · · (λ− ρn−1),
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where h1, . . . , hn−1 are constants of motion.
Here λkdλ/

√
R(λ) can be regarded as holomorphic differentials on the genus g =

n− 1 hyperelliptic curve Γh = {µ2 = Φ(λ)Pn−1(λ)}.
By integrating the quadratures (6) and inverting the integrals, symmetric functions

of the elliptic coordinates λj and, therefore, the Cartesian coordinates xi, can be ex-
pressed in terms of theta-functions of uk and, therefore, of the time t (see [11]). The
generic real invariant varieties are unions of n−1 dimensional tori Tn−1. Moreover, the
tori are real parts of complex Abelian varieties, which are isogeneous to the Jacobians
of the curves, and the system is algebraic integrable [9, 11].

On the other hand, as was shown in several pubications (see e.g., [6, 12]), the
Neumann system admits a hierarchy of integrable generalizations, in which the quadratic
potential is replaced by polynomial or even rational potentials, which are all separable in
the same elliptic coordinates. For all such generalizations, the dimension of the generic
invariant tori is the same, n−1. For a class of separable polynomial potentials of degree
2N , the quadratures take the form

λk1dλ1√
R(λ1)

+ · · ·+
λkn−1dλn−1√
R(λn−1)

=

{
0 if k = 0, 1, . . . , n− 2

dt if k = n− 1
k = 0, 1, . . . , n− 2 (7)

R(λ) = Φ(λ)PN+1(λ), Φ(λ) = (λ− a1) · · · (λ− an),

PN+1(λ) = λN+1 + h1λ
n−2 + · · ·+ hn−1,

and include n − 1 holomorphic differentials on the hyperelliptic curve Γh = {µ2 =
Φ(λ)PN+1(λ)}. of genus g = [(n+N)/2]. This implies that for the separable potentials
of degree 2N > 4, the genus of Γh is bigger than the dimension of the tori, and one can
show that in this case the system is no more algebraic integrable ([1]).

The action variables of the original and generalized Neumann systems are the periods
of the Abelian integrals

Jj(h1, . . . , hn−1) =
1

2π

∮
γj

(λN+1 + h1λ
n−2 + · · ·+ hn−1) dλ√
R(λ)

, j = 1, . . . , n− 1,

γj being certain cycles on the Riemann surface Γh. Note that the functions Jj(h1, . . . , hg)
are also the frequencies of the angle variables on the tori Tn−1. Then a solution to the
Neumann system is periodic if and only if the quantities Jj are comensurable. So,
knowledge of Jj(h) is important in describing periodic solutioins of the system.

As follows from the above, the action variables are linear combinations of the periods
of the basic g holomorphic and g meromorhic differentials on Γh

Jk =

∮
γ

ωk, ωs =
λs−1dλ√
R(λ)

, ωg+s =
λg+s−1dλ√

R(λ)
, s = 1, . . . , g. (8)

For the classical Neumann system with the quadratic potential (N = 1) the above 2g
differentials satisfy the Picard–Fuch equations (5).

However, for N > 1 this is not always true.
For concreteness, below we restrict ourselves to the simplest case n = 3 and the

quartic separable potential (N = 2), which corresponds to genus 2 even order curves

w2 = (λ− a1)(λ− a2)(λ− a3)(λ3 + h1λ+ h2), or (9)

w2 = (λ− a1)(λ− a2)(λ− a3)(λ− ρ1)(λ− ρ2)(λ− ρ3),

whose compactifications in P2 have 2 infinite points, which we denote by ∞−,∞+.
The differentials (8) then are

ω1 =
dλ

w
, ω2 =

λ dλ

w
, ω3 =

λ2 dλ

w
, ω4 =

λ3 dλ

w
.
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One observes that, in contrast to ω4, the differential ω3 is meromorphic of the 3rd
kind, i.e., it has a pair of simple poles at ∞−,∞+, and that the corresponding periods
J1, . . . , J4 do not form a closed system of differential equations with respect to the
constants h1 or h2. It turns out that in this case the Picard–Fuchs equations must

incude also the period J5 of the differential of the second kind ω5 =
λ4 dλ

w
.

3 The Picard–Fuchs equations for genus 2 even order
curves

To derive the Picard–Fuch equations for the considered case, we first compute the
derivatives of the integrals J1, . . . , J5 with respect to the roots ρα in (9). Namely,
rewrite the curve in the form

y2 = R(x), R(x) = (x− e1)(x− e2)(x− e3)(x− e4)(x− e5)(x− e6).

Like in several other publications (see, e.g., [6]), we will use the folowing key relation

A
(k)
j

∂

∂ek

(
xj

y

)
=
a
(k)
j x4 + b

(k)
j x3 + c

(k)
j x2 + d

(k)
j x+ g

(k)
j

y
− d

dx

(
y

x− ek

)
, (10)

j = 0, 1, . . . , 4, k = 1, . . . , 6,

where A
(k)
j , a

(k)
j , . . . , g

(k)
j are functions of the branch points ei only. Namely, if we write

R′(ek) =
dR(x)

dx

∣∣∣∣
x=ek

= e5k + ∆
(k)
1 e4k + ∆

(k)
2 e3k + ∆

(k)
3 e2k + ∆

(k)
4 ek + ∆

(k)
5 ,

so that the coefficients ∆
(k)
i are elementary symmetric functions of {e1, . . . , e6} \ ek of

degree i. In particular,

∆
(1)
1 = −e2 − e3 − e4 − e5 − e6, ∆

(1)
5 = − e2e3e4e5e6,

then our calculations give

A
(k)
j =

R′(ek)

ejk
,

a
(k)
0 = a

(k)
1 = a

(k)
2 = a

(k)
3 = a

(k)
4 = A(k) = 2,

b
(k)
0 = b

(k)
1 = b

(k)
2 = b

(k)
3 = B(k) = −1

2

(
ek − 3∆

(k)
1

)
, b

(k)
4 = B +

R′(ek)

2e4k
, (11)

c
(k)
0 = c

(k)
1 = c

(k)
2 = C(k) = −1

2
(e2k + ek∆

(k)
1 − 2∆

(k)
2 ), c

(k)
3 = c

(k)
4 = C(k) +

R′(ek)

2e3k
,

d
(k)
0 = d

(k)
1 = D(k) = −1

2

(
e3k + e2k∆

(k)
1 + ek∆

(k)
2 −∆

(k)
3

)
, d

(k)
2 = d

(k)
3 = d

(k)
4 = D(k) +

R′(ek)

2e2k
,

g
(k)
0 = G(k) = −1

2

(
e4k + e3k∆

(k)
1 + e2k∆

(k)
2 + ek∆

(k)
3

)
, g

(k)
1 = g

(k)
2 = g

(k)
3 = g

(k)
4 = G(k) +

R′(ek)

2ek
.

Multipying the both sides of (10) by dx, and using again the notation

ω1 =
dx

y
, ω2 =

xdx

y
, ω3 =

x2dx

y
, ω4 =

x3dx

y
, ω5 =

x4dx

y
,
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one gets

∂

∂ek
ωi =

ejk
R′(ek)

(
g
(k)
j ω1 + d

(k)
j ω2 + c

(k)
j ω3 + b

(k)
j ω4 + a

(k)
j ω5 + dFk

)
, (12)

Fk =
y

x− ek
, j = i− 1, i = 1, . . . , 5.

Since
∂

∂ek

(∮
γ

ωi

)
=

∮
γ

∂

∂ek
ωi,

and since dFk is a differential of a meromorphic function of Γh, from (12) we obtain the
following sysyem for the vector of periods J = (J1, . . . , J5)t:

2
∂J

∂ek
=MkJ, k = 1, . . . , 6, (13)

Mk =
1

R′(ek)


1
ek
e2k
e3k
e4k

 (G(k)D(k) C(k)B(k)A(k) ) +


0 0 0 0 0
1 0 0 0 0
ek 1 0 0 0
e2k ek 1 0 0
e3k e2k ek 1 0

 , (14)

with G(k), D(k), C(k), B(k), A(k) defined in (11).
The structure of the matrices Mk is similar to that of the Picard–Fuchs equations

obtained in [4, 7], however, not the same: the system (13) has an odd order.
Now, taking into account (9), we identify the roots ρ1, ρ2, ρ3 with e1, e2, e3, and the

parameters a1, a2, a3 with e4, e5, e6, then

h1 = −e1 − e2 − e3 = 0,
h2 = e1e2 + e1e3 + e2e3,
h3 = −e1e2e3.

(15)

In view of the following relation between the partial derivatives

∂Ji
∂e1

∂Ji
∂e2

∂Ji
∂e3


=


1 e2 + e3 −e2e3

1 e1 + e3 −e1e3

1 e2 + e1, −e1e2





∂Ji
∂h1

∂Ji
∂h2

∂Ji
∂h3


, i = 1, . . . , 5

we have

∂Ji
∂h1

∂Ji
∂h2

∂Ji
∂h3


=

1

∆


−e21(e2 − e3) e22(e1 − e3) −e23(e1 − e2)

e1(e2 − e3) e2(e3 − e1) e3(e1 − e2)

e2 − e3 e3 − e1 e1 − e2





∂Ji
∂e1

∂Ji
∂e2

∂Ji
∂e3


, (16)

∆ = (e1 − e2)(e3 − e1)(e3 − e2).

Now combining the above relations with the equations (13), and taking into account
(11), (15), we arrive at
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Theorem 1. The vector of periods J = (J1, . . . , J5)t of the differentials of the even
order curve (9) satisfies the equations

2
∂J

∂h2
= U2J, 2

∂J

∂h3
= U3J, (17)

U2 =

3∑
α=1

1

Φ(ρα)

ρα
(ρα − ρβ)2(ρα − ργ)2

Sα +


0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
h1 1 0 0 0
h2 h1 1 0 0

 ,

U3 =

3∑
α=1

1

Φ(ρα)

1

(ρα − ρβ)2(ρα − ργ)2
Sα +


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
h1 1 0 0 0

 ,

Φ(ρα) = (ρα − a1)(ρα − a2)(ρα − a3), (α, β, γ) = (1, 2, 3),

Sα =


1
ρα
ρ2α
ρ3α
ρ4α

 (G(α)D(α) C(α)B(α)A(α) ).

The proof is direct and uses the identities

ρk1(ρ2−ρ3)+ρk2(ρ3−ρ1)+ρk3(ρ1−ρ2) =


0 s = 1

−(ρ1 − ρ2)(ρ3 − ρ1)(ρ3 − ρ2) s = 2

(ρ1 − ρ2)(ρ3 − ρ1)(ρ3 − ρ2)h1 s = 3

(ρ1 − ρ2)(ρ3 − ρ1)(ρ3 − ρ2)(h21 − h2) s = 4.
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