

On the computation of Darboux first integrals of a class of planar polynomial vector fields ${ }^{\text {vis }}$

A. Ferragut ${ }^{\text {a }}$, C. Galindo ${ }^{\text {b }}$, F. Monserrat ${ }^{\text {c }}$
${ }^{a}$ Universidad Internacional de la Rioja, Avenida de la Paz 137, 26006 Logroño, Spain
b Instituto Universitario de Matemáticas y Aplicaciones de Castellón (IMAC) and Departamento de Matemáticas, Universitat Jaume I, 12071 Castelló de la Plana, Spain
${ }^{\text {c }}$ Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, 46022 Valencia, Spain

A R T I C L E I N F O

Article history:

Received 6 November 2018
Available online 31 May 2019
Submitted by D. Repovš

Keywords:

Planar polynomial vector field
Darboux first integral
Reduction of singularities
Curve with only one place at infinity

Abstract

We study the class of planar polynomial vector fields admitting Darboux first integrals of the type $\prod_{i=1}^{r} f_{i}^{\alpha_{i}}$, where the α_{i} 's are positive real numbers and the f_{i} 's are polynomials defining curves with only one place at infinity. We show that these vector fields have an extended reduction procedure and give an algorithm which, from a part of the extended reduction of the vector field, computes a Darboux first integral for generic exponents.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Complex planar polynomial differential systems are being studied since the 19th century when Darboux [18], Poincaré [41,42], Painlevé [39] and Autonne [5] significantly contributed to this topic. Surprisingly, nowadays, the problem of characterizing integrable differential systems as above remains open. To compute a first integral is a very interesting issue because this function provides the solution curves of the system within their domain of definition, determining the phase portrait of the system.

Darboux functions are a remarkable family of multi-valued functions. They have the following shape:

$$
\begin{equation*}
H:=\prod_{i=1}^{p} f_{i}^{\lambda_{i}} \prod_{j=1}^{q} \exp \left(\frac{h_{j}}{g_{j}}\right)^{\mu_{j}} \tag{1}
\end{equation*}
$$

where f_{i}, and g_{j} and h_{j} are bivariate complex polynomials and λ_{i} and μ_{j} complex numbers.

[^0]
[^0]: 战 Partially supported by the Spanish Government: MINECO-FEDER grants MTM2015-65764-C3-2-P, MTM2016-81735-REDT, MTM2016-81932-REDT and MTM2016-77278-P, and MICINN-FEDER grant PGC2018-0966446-B-C22, as well as by Universitat Jaume I grant UJI-B2018-10.

 E-mail addresses: toni.ferragut@unir.net (A. Ferragut), galindo@uji.es (C. Galindo), framonde@mat.upv.es (F. Monserrat).

