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DETECTION OF SPECIAL CURVES VIA THE DOUBLE RESULTANT

ANTONI FERRAGUT1, JOHANNA D. GARCÍA-SALDAÑA2 AND ARMENGOL GASULL3

Abstract. We introduce several applications of the use of the double resultant through
some examples of computation of different nature: special level sets of rational first inte-
grals for rational discrete dynamical systems; remarkable values of rational first integrals of
polynomial vector fields; bifurcation values in phase portraits of polynomial vector fields;
and the different topologies of the offset of curves.

1. Introduction. The double resultant

In different situations such as remarkable curves of rational first integrals, bifurcation
values of phase portraits of discrete or continuous dynamical systems, or the study of
the offset of curves, there are algebraic curves which are special in the sense that have
singularities or are the boundary of different topological behaviors. In this paper we present
a systematic approach to detect the special values that provide these kind of special curves.

Let Fb(x, y) ∈ C[x, y, b] be an irreducible polynomial, with b a set of parameters. We
write Fb as a polynomial in y:

Fb(x, y) = any
n + an−1y

n−1 + an−2y
n−2 + . . .+ a1y + a0, (1)

where ai = ai(x) = ai(x, b) ∈ C[x, b]. If an 6= 0, then the discriminant of Fb with respect to
the variable y is defined in the literature as

discy(Fb) = (−1)
n(n−1)

2
1

an
Res

(
Fb,

∂Fb
∂y

, y

)
,

and this resultant can be computed as the determinant of the Sylvester matrix of dimension
2n− 1, see [8].

In this work, instead of the discriminant, we shall simply use Res
(
Fb,

∂Fb
∂y , y

)
, because the

coefficient an is important to keep information on Fb at infinity, see for instance Example 1
in next section. We will name the resultant of Fb with respect to y the polynomial in x
(and b)

∆y(Fb) = Res

(
Fb,

∂Fb
∂y

, y

)
.

In the same way we define ∆x(Fb) = Res
(
Fb,

∂Fb
∂x , x

)
, the resultant of Fb with respect to x.

We also remark that, for simplicity, along all the work when computing resultants we shall
remove scalar nonzero constants without any explicit mention.

We write ∆y,x(Fb) = ∆x(∆y(Fb)). We name this polynomial the double resultant of
Fb with respect to y, x. Analogously we can compute ∆x,y(Fb). We notice that they only
depend on the set of parameters b and that in general ∆x,y(Fb) 6= ∆y,x(Fb).

We will see that these polynomials play an important role in the characterization of
singularities of {Fb(x, y) = 0}. Our first result adapts the approach of [13, App. II] using
discriminants to our setting and it is a key point for our work.
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Theorem 1. Let F (x, y) ∈ C[x, y] be a complex polynomial and assume that F = 0 has
a singular point. If degy(F ) > 1 then ∆y,x(F ) = 0 and, similarly, if degx(F ) > 1 then
∆x,y(F ) = 0.

Note that the hypotheses on the degrees of F are necessary. Otherwise, consider for
instance F (x, y) = xy. Clearly, F = 0 has a singular point at (0, 0) and ∆y,x(F ) =
∆x,y(F ) = 1.

As a corollary of Theorem 1 we obtain the following result.

Corollary 2. Let Fb(x, y) = 0 be a family of algebraic curves (1) such that degx(Fb) > 1
and degy(Fb) > 1. Then the values of b for which Fb(x, y) = 0 has some singular point in

C2 are zeros of the polynomial

∆2(Fb) := gcd
(
∆x,y(Fb),∆y,x(Fb)

)
.

For simplicity we will also call the polynomial ∆2(Fb) the double resultant of the family
Fb(x, y). We shall use the name special values to refer the values of b such that ∆2(Fb) = 0.
We remark that the name special values or critical values is also used in the literature to
name the values where the corresponding double discriminants vanish. These values also
play a significative role in the characterization of singular curves and they are used in many
applications, see for instance [2, 17, 20].

The double resultants ∆x,y(Fb) and ∆y,x(Fb) may usually provide values that do not
correspond to special values. This is the reason for which considering their greatest common
divisor we keep only the values that vanish both.

When we try to obtain the special values for some Fb such that either degx(Fb) = 1 or
degy(Fb) = 1 we can no more use Corollary 2. In this situation, we propose to utilize the
so called Tame maps as changes of variables, see for instance [22] for a definition. These
changes increase the degree of Fb and hence the corollary can be applied. As an example
of the utility of this procedure see for instance Example 2 in Section 2 or Example 3 in
Section 3.2.

The main objective in this paper is to show that Corollary 2 and a modification of it,
that we will describe below, supply a very useful tool in several problems. Using them we
shall provide examples of computation of several objects such as special level sets of rational
first integrals of discrete dynamical systems; bifurcation values of polynomial vector fields;
remarkable values of rational first integrals of planar vector fields; and special values in the
study of the topology of offset curves. We dedicate one section to each of these applications.

We describe here two main differences between our approach and previous works dealing
with similar questions, see for instance [1, 2, 3, 17, 20]. The first one is that we use resultants
instead of discriminants. As we have already mentioned, the reason is that removing the
coefficient an may lead to loose information about some changes of Fb = 0 near infinity.
The second one is that we compute both double resultants and afterwards their greatest
common divisor. This procedure allows to remove certain superfluous values of b that are
not really special values of Fb, see for instance the comments in Section 3.4.

We end this introduction with a small modification of the method suggested by Corol-
lary 2 based on the common use of double discriminants in the literature. As usual, given
a polynomial in one variable p(x) we will denote by

√
p(x) the new square free polynomial

obtained keeping the product of all its irreducible factors powered to one. We introduce
the polynomial

∆2
∗(Fb) := gcd

(
∆y

(√
∆x(Fb)

)
,∆x

(√
∆y(Fb)

))
.

Notice for instance that if ∆x(Fb) has some multiple factor then ∆y(∆x(Fb)) identically

vanishes, while ∆y(
√

∆x(Fb)) does not. This new modified approach consists in computing
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∆2
∗(Fb) instead of ∆2(Fb) to obtain the set of possible special values for Fb. Although we

have not been able to provide a full justification of why this modified approach works, in
Section 4 we give some ideas of why this argument rules and no information is lost.

2. Some examples and proof of Theorem 1

We start with an example that clearly shows the advantage, in our setting, of using
resultants instead of discriminants. Recall that in the classical definition of the discriminant,
since we are considering an 6= 0 we divide the resultant by an. But for our purposes, the
case an = 0 is also relevant, since if it vanishes the degree of Fb decreases, and then the
behavior of Fb = 0 might change.

Example 1. Let Fb(x, y) = −x2 + by2 − x + y. If b = 1 then Fb = 0 is formed by two
straight lines; if b > 0 but b 6= 1, then we have an hyperbola; if b < 0 then we have an
ellipse; and if b = 0 then we have a parabola. Hence the values b = 0, 1 are special.

The discriminants of Fb are as follows:

discx(Fb) = 1 + 4y + 4by2, discy(Fb) = 1 + 4bx+ 4bx2,

discy(discx(Fb)) = −16(b− 1), discx(discy(Fb)) = 16b(b− 1).

We can compute the greatest common divisor of the two double discriminants to obtain
16(b− 1). Note that the case b = 0 is not considered in the double discriminant, although
it is important as we have explained.

On the other hand, the double resultant is ∆2(Fb) = b(b − 1), and thus all the special
values are being considered. �

Proof of Theorem 1. Assume that n = degy(F ) > 1. Then F writes as

F (x, y) = any
n + an−1y

n−1 + an−2y
n−2 + . . .+ a1y + a0. (2)

Recall that F has a singular point if there exists (x0, y0) ∈ C2 such that F (x0, y0) =
∂F (x0, y0)/∂x = ∂F (x0, y0)/∂y = 0. Without loss of generality we assume that (x0, y0) =
(0, 0). Then since it is singular it follows that a0(0) = a′0(0) = 0 and a1(0) = 0. Therefore,
a0(x) = x2b0(x) and a1(x) = xb1(x), with both bi also polynomials.

The Sylvester matrix S := S(x) := Res
(
F, ∂F∂y , y

)
is

S =



an 0 0 0 nan 0 0 0
an−1 an 0 0 (n− 1)an−1 nan 0 0

an−2 an−1

. . . 0 (n− 2)an−2 (n− 1)an−1

. . . 0
...

. . . an

...
. . . nan

... an−1

... (n− 1)an−1

a0 a1

0 a0

... 0 a1

...

0 0
. . . 0 0

. . .

0 0 0 a0 0 0 0 a1


.

Then, for n > 1,

detS = (−1)na0 det(Sn−1) + a1 det(S2n−1), (3)

where Sj denotes the 2n− 2 matrix obtained from S by removing the last row and the j-th
column.

Note that the last row of S2n−1 only contains zeros, a0 and a1. Therefore, developing the
determinant of this matrix from this row we get that each summand has either the factor
a0 or the factor a2

1. In any case we get that det(S2n−1) = xB(x), for some polynomial B.
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Hence, by using (3), we obtain that detS = x2C(x) with C another polynomial. This
implies that ∆y(F ) has a double zero at x = 0 and hence ∆2

y,x(F ) = 0.

The second assertion follows by interchanging x and y. �

The proof of Corollary 2 is straightforward using Theorem 1. To explain how we can
proceed to improve the detection of special values with some of the degrees of degy(Fb) or
degx(Fb) is one, we consider a simple example.

Example 2. Set Fb(x, y) = x3 + b(x− y)−xy+ 1. We notice that Fb = 0 can be viewed as
the graph y = (1 + bx+ x3)/(b+ x), which has a vertical asymptote on x = −b. Moreover
for a certain real value b ≈ 0.7549 the denominator of this quotient divides the numerator
and hence the graph is a parabola. Thus this value of b is a special value. Fb has no other
special values.

Let us proceed with our method. We compute first the resultants of Fb both respect to
x and y:

∆x(Fb) = −4b3 − 27 + 6b(2b+ 9)y − 3b(9b+ 4)y2 + 4y3, ∆y(Fb) = 1.

We can also compute the double resultant

∆x,y(Fb) = (b− 1)3(b+ 1)3(b3 + b2 − 1).

This double resultant provides three real special values. On the other side, the resultant of
Fb with respect to y is 1 and no information can be obtained from it. Hence, Corollary 2
gives no information and Theorem 1 reduces the set of special values to three. Hence using
our approach we have found two values of b which are not special. �

As we will see, this solution can be sharpened using Tame changes of variables. The
Tame change is a kind of Jacobian change of variables, that is a polynomial change of
variables X with an inverse that is also polynomial. It is such that det(DX) = 1 and has
the form:

(u, v) = X(x, y) =

(
x+ p(y)

y

)
,

where p ∈ C[y]. Clearly det(DX) = 1.

For our purposes we shall take deg p > 1. We consider the alternative function

F̄b(x, y) = Fb(x+ p(y), y).

We have:

(a) ∆x(F̄b) = ∆x(Fb). This happens because the values of y for which Fb and F̄b change
are the same. After this consideration we notice that ∆x,y(Fb) = ∆x,y(F̄b).

(b) ∆y(F̄b) 6= 1 = ∆y(Fb). This is because degy F̄b > 1 = degy Fb, since deg p > 1. Then

∆y,x(F̄b) provides some values of the parameter b that were not provided before.

Thus on one side the double resultant ∆2(F̄b) has no more roots than ∆x,y(Fb), and on
the other side ∆2(F̄b) 6= 1, since ∆y,x(F̄b) 6= 1. Then we can compute the double resultant
∆2(F̄b) after the Tame change of variable.

Example 2 (revisited). Consider again the polynomial Fb(x, y) = x3 + b(x− y)−xy+ 1.
We apply to Fb the change x 7→ x+y2: we define F̄b(x, y) = Fb(x+y2, y). Now we compute
the resultants of F̄b with respect to both x and y: ∆y(F̄b) is a polynomial of degree 6 in x
and ∆x(F̄b) = ∆x(Fb).

Now ∆x,y(F̄b) = ∆y,x(Fb) and ∆y,x(F̄b) = (b3 + b2 − 1)P10(b)2P11(b)3, where Pi are
polynomials of degree i that do not vanish at b = ±1. The greatest common divisor of both
resultants is ∆2(F̄b) = b3 + b2 − 1. Hence we obtain only one real (special) value, as it was
stated. �
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3. Applications

This section contains several applications of our approach for detecting special values of
families of rational curves in different contexts. There are four subsections, the first devoted
to discrete dynamical systems, next two to planar integrable vector fields and the last one
to the offsets of curves.

3.1. Rationally integrable discrete dynamical systems. Our first example deals with
the well-known Lyness difference equation xn+2 = (a + xn+1)/xn, see for instance [5, 15]
and the references therein. It is clear that it can be studied through the iterates of its
corresponding discrete dynamical system, which is given by the map

G(x, y) =
(
y,
a+ y

x

)
.

It is also well-known that the function

V (x, y) =
(1 + x)(1 + y)(a+ x+ y)

xy
,

is a first integral for the map, i.e. V (G(x, y)) = V (x, y) for all (x, y) for which the involved
functions are well defined. Notice that for some few values of h the invariant energy levels
Va,h = {(x, y) : V (x, y) = h} are not elliptic curves. We will see how to determine these
values with our approach.

Among other things this property is important for instance to study the existence of
periodic points with rational coordinates, see for instance [15]. Recall that for the values
a, h ∈ Q such that Va,h is an elliptic curve, the celebrated Mazur’s Torsion Theorem asserts
that only periodic points of periods 1, 2, . . . , 9, 10 and 12 are possible. When a and h are
such that Va,h is not an elliptic curve other periods could appear. In fact, in these cases, the
genus of the sets is zero and rational parameterizations can be used to study the periodic
points.

Consider the sets Va,h, with h ∈ R∪{∞}. Let us determine with our approach the values
of h for which they are not formed by elliptic curves. For convenience we write V (x, y) = h
as Fλ,µ(x, y) = 0,

Fλ,µ(x, y) = λ(1 + x)(1 + y)(a+ x+ y) + µxy,

where h = −µ/λ, with λ, µ ∈ R. Straightforward computations give

∆x(Fλ,µ) = λ(1 + y)
(
(−1 + a)2λ2 + 2λ(−aλ+ a2λ+ µ+ aµ)y

+ (−2λ2 + 2aλ2 + a2λ2 + 4λµ+ 2aλµ+ µ2)y2 + 2λ(aλ+ µ)y3 + λ2y4
)
,

∆y(Fλ,µ) = λ(1 + x)
(
(−1 + a)2λ2 + 2λ(−aλ+ a2λ+ µ+ aµ)x

+ (−2λ2 + 2aλ2 + a2λ2 + 4λµ+ 2aλµ+ µ2)x2 + 2λ(aλ+ µ)x3 + λ2x4
)
.

Therefore

∆2(Fλ,µ) = λ16µ7
(
λ(a− 1) + µ

)2(
(−2 + a)3λ2 − (1− 10a− 2a2)λµ+ aµ2

)
.

Hence the special values λ, µ are

λ = 0, µ = 0, µ = (1− a)λ, µ =
1− 10a− 2a2 ± (1 + 4a)3/2

2a
λ.

The last three special values correspond to the values

h = 0, h = a− 1, h =
2a2 + 10a− 1± (1 + 4a)3/2

2a
,
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for which Va,h is not an elliptic curve. More concretely, it is formed by three straight
lines; a straight line and a parabola; and a rational cubic with one real isolated singularity,
respectively. These results coincide with the ones presented in [15].

3.2. Bifurcation diagrams of rationally integrable differential systems. We con-
sider in this section polynomial differential systems having a rational (including polynomial)
first integralH = f/g. It is clear that different coefficients of the system (and hence different
coefficients of H) may provide different behaviors in the phase portrait. So it is important
to know the relations among these coefficients to understand the bifurcation diagram of the
systems. This can be done using Corollary 2. The level sets of H, λf + µg = 0, provide
the (algebraic) solutions of the system; we set Fλ,µ(x, y) = λf + µg. Then ∆2(Fλ,µ) is a
polynomial in λ, µ and in the coefficients of H. Afterwards we can apply the resultant with
respect to λ or µ to this polynomial and look for the zeroes of the new polynomial to obtain
relations among the coefficients of H. These relations provide the curves in the coefficients
space that may separate different phase portraits, that is curves in the bifurcation diagram
of the differential system.

In the sequel we provide three examples of application. More examples of families where
our approach can be used can be found for instance in [14, 16, 18, 19].

Example 3. The phase portraits of the quadratic Hamiltonian differential systems are
classified in [4]. Several normal forms for quadratic Hamiltonian systems are provided,
and some conditions are found for each one of them in order to distinguish different phase
portraits. Here we show one of the results about these normal forms.

Proposition 3. Consider the quadratic Hamiltonian system ẋ = bx+cy, ẏ = −ax−by−x2,
with the Hamiltonian H = ax2/2 + bxy + x3/3 + cy2/2. The following cases distinguish
among different phase portraits:

(i) c = 0, b = 0, a = 0.
(ii) c = 0, b = 0, a 6= 0.
(iii) c = 0, b 6= 0.
(iv) c 6= 0, b2 − ac = 0.
(v) c 6= 0, b2 − ac 6= 0.

So for each value of h, the level set H = h may have one of the five different behaviors
arising from the proposition. The paper considers the finite and infinite singular points
that the system may have varying its parameters. Here we arrive to the same result using
Corollary 2.

Set Fh = F1,h = H − h = ax2/2 + bxy + x3/3 + cy2/2− h. Then,

∆x(Fh) =6h(−a3 + 6h) + 36abhy + (−3a2b2 + 3a3c− 36ch)y2 + 2b(8b2 − 9ac)y3 + 9c2y4,

∆y(Fh) =− 6c2h+ 3c(−b2 + ac)x2 + 2c2x3.

We notice that if c = 0 then ∆y(Fh) = 0 and the degree of ∆x(Fh) decreases; we shall need
to consider this case later on. The double resultants are

∆x,y(Fh) =c2h(a3(3ac− 4b2)− 96b2h)3((b2 − ac)3 + 6c3h),

∆y,x(Fh) =c7h((b2 − ac)3 + 6c3h).

Hence
∆2(Fh) = c2h((b2 − ac)3 + 6c3h).

If c = 0 then degy(Fh) = 1, hence we apply a Tame change of variables x 7→ x + y2 to
Fh to increase this degree. Now we proceed in the same way as above and we obtain
∆2(Fh) = b9h. If c = b = 0 then ẋ = 0. Indeed we have Fh = (a/2 + x/3)x2 − h and,
since Fh does not depend on y, we compute only the resultant of Fh with respect to x:
∆x(Fh) = (a3 − 6h)h.
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Next we compute the resultant of ∆2(Fh) with respect to h in order to obtain the relations
among the parameters for which the behaviors change. If b = c = 0, then the resultant of
∆x(Fh) with respect to h is a6. Indeed, if a = 0 then h = 0 is a double zero of ∆x(Fh) and
if a 6= 0 then we have two different zeroes of ∆x(Fh) for h. We achieve cases (i) and (ii) of
the proposition.

If c = 0 and b 6= 0 then ∆2(Fh) is linear in h, so we do not need to compute the resultant.
This is case (iii). If c 6= 0 then ∆2(Fh) is quadratic in h, as we showed above. Its resultant
with respect to h is c9(b2 − ac)6. Indeed if b2 − ac = 0 then h = 0 is a double zero and if
b2 − ac 6= 0 then ∆2(Fh) has two different zeroes. We obtain cases (iv) and (v).

All the cases of Proposition 3 (and no others) are found with our method. In short,
applying our approach we know the bifurcation diagram of the studied system, providing
an alternative proof to that of [4]. �

Example 4. The cubic differential systems of Lotka-Volterra type having a rational first
integral of degree 2 can be written as

ẋ = x(a+ bx+ dx2 − ey2), ẏ = y(−a− cy + dx2 − ey2).

The associated rational first integral is

H =
a+ bx+ cy + dx2 + ey2

xy
.

In [6], a classification into 16 normal forms is done in order to obtain the 28 topologically
non-equivalent phase portrait that these systems have. In all of these normal forms, we
have d, e ∈ {−1, 0, 1} and a, b, c ≥ 0. For each system, some relations among the coefficients
are given. These conditions are related to distinguish whether a, d, e, b2 − 4ad, c2 − 4ae
and b2e− c2d are either positive, or negative, or zero.

We can obtain all these cases with our method. Let Fλ,µ = λ(a+bx+cy+dx2+ey2)+µxy.
We compute its resultants:

∆x(Fλ,µ) =dλ
(
(b2 − 4ad)λ2 − 2λ(2cdλ+ bµ)y − (4deλ2 − µ2)y2

)
,

∆y(Fλ,µ) =eλ
(
(c2 − 4ae)λ2 − 2λ(2beλ+ cµ)x− (4deλ2 − µ2)x2

)
.

The double resultants are

∆x,y(Fλ,µ) =d4λ5
(
4deλ2 − µ2

)(
(c2d+ b2e− 4ade)λ2 + bcλµ+ aµ2

)
,

∆y,x(Fλ,µ) =e4λ5
(
4deλ2 − µ2

)(
(c2d+ b2e− 4ade)λ2 + bcλµ+ aµ2

)
.

Hence

∆2(Fλ,µ) = λ5
(
4deλ2 − µ2

)(
(c2d+ b2e− 4ade)λ2 + bcλµ+ aµ2

)
.

We note that if a = 0 then the exponent of λ in ∆2(Fλ,µ) increases, and if de = 0 then
µ is a double factor. So we first distinguish whether ade 6= 0 or not. We notice that we
shall apply Tame changes of variables to Fλ,µ in some cases for which the degree of x or y
is equal to one.

If ade 6= 0, then the resultant of ∆2(Fλ,µ) with respect to µ is ade(b2−4ad)(c2−4ae)(b2e−
c2d)4. This case covers completely the families 1 , 2 , 3 and 4 of [6] and their phase portraits
by distinguishing whether each factor is zero or not.

If a 6= 0 but de = 0, then (applying linear changes of variables and time if needed) we
can set a = 1, e = 0 and d2 = 1. We have

∆2(Fλ,µ) = λ5µ2(c2dλ2 + bcλµ+ µ2).

The resultant of ∆2(Fλ,µ) with respect to µ is c6(b2 − 4d). Since b, c ≥ 0 and d2 = 1, the
special values are c = 0 and b = 2, the latter only in the case d = 1. These special values
cover the phase portraits of all families 5 to 10 of [6].
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If a = 0 and de 6= 0, then we can set e = −1. We have

∆2(Fλ,µ) = λ6((b2 − c2d)λ− bcµ)(4dλ2 + µ2).

The resultant of ∆2(Fλ,µ) with respect to µ tells us that the special values are b = 0, c = 0
and b2 + c2d = 0; the latter reads b− c = 0 and runs only for d = −1. The phase portraits
of families 11 , . . . , 14 of [6] cover these situations.

If a = de = 0 then we can set c, d = 1 and e = 0. We get

∆2(Fλ,µ) = λ6µ2(bλ+ µ).

We obtain only the special value b = 0. We arrive to the families 15 and 16 of [6] depending
on whether b 6= 0 or b = 0. �

Example 5. A family of cubic Hamiltonian centers is studied in [12]. The 11 non-
topologically equivalent phase portraits are classified. The Hamiltonian function is

H(x, y) =
1

2

(
(x+ ax2 + bxy + cy2)2 + y2

)
,

with a2 + b2 + c2 6= 0. We can apply the modification of Corollary 2 to obtain the different
sets of values of a, b, c that provide the 11 different phase portraits. Let Fh = (x + ax2 +
bxy + cy2)2 + y2 − h. First we compute the resultants of Fh:

∆x(Fh) =a6(h− y2)2(16a2h− 1− 4by

− 2(8a2 + 3b2 − 4ac)y2 − 4b(b2 − 4ac)y3 − (b2 − 4ac)2y4),

∆y(Fh) =c4P8(x),

where P8 is a polynomial of degree 8 in x that depends on a, b, c, h. The double resultants
are

∆y(
√

∆x(Fh)) =a72(b2 − 4ac)4h(1− 2(b2 + 4ac)h+ (b2 − 4ac)2h2)4P3(h),

∆y,x(Fh) =a4b4c62(b2 − 4ac)4h2(1 + 4c2h)2P3(h)P6(h)3,

where P3(h) = −a2− b2 + 2ac− c2 + (16a4 + 20a2b2 + 3b4− 32a3c− 2ab2c+ 8a2c2 + 2b2c2 +
8ac3)h+ (−b2 + 4ac)2(8a2− 3b2− 8ac− c2)h2 + (b2− 4ac)4h3 and P6(h) is a polynomial of
degree 6 in h. Hence

∆2
∗(Fh) = a4(b2 − 4ac)4hP3(h).

Now the resultant of ∆2
∗(Fh) with respect to h is

a29b2(b2 − 4ac)36((a− c)2 + b2)2(27ab2 − 4(c− 2a)3)3.

By distinguishing whether this polynomial vanishes or not we obtain the different phase
portraits of the system. �

3.3. Remarkable values of rational first integrals. The remarkable values and remark-
able curves of rational first integrals of planar differential systems were first introduced by
Poincaré in [21], and afterwards studied by several authors, see [7, 9, 10]. It has been shown
in the literature that the remarkable curves play an important role in the phase portrait
as they are strongly related to its separatrices. It is proved in [7] that there are a finite
number of them. In [7, 10] they are related with the inverse integrating factor.

Consider the complex planar polynomial differential system of degree d ∈ N
ẋ = P (x, y), ẏ = Q(x, y), (4)

where P,Q ∈ C[x, y] are coprime and d = max{degP,degQ}. Suppose that system (4)
has a minimal rational first integral H = f/g. According to Poincaré [21], the remarkable
values are defined as level sets (λ : µ) ∈ CP1 of H for which the polynomial Fλ,µ(x, y) =
λf +µg factorizes into polynomials of degree lower than degH = max{deg f,deg g}. These
polynomials provide the remarkable curves associated to (λ, µ).
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If in this factorization some factor has exponent greater than one, then the corresponding
remarkable curve and remarkable value are said to be critical. The critical remarkable values
were used in [11] to obtain some properties of differential systems having a rational first
integral.

The set of values (λ : µ) that vanish ∆2(Fλ,µ) contains the remarkable values of H,
because their zeroes are the values for which the topology of the level set of H changes. We
provide some examples to illustrate this fact.

Example 6. Consider the polynomial differential system

ẋ = −7x3 − y3 + 4xy3, ẏ = −2y(3x2 − 2y3).

This system has the rational first integral

H =
−x6 − 2x3y3 + x4y3 − y6 + 4xy6

y7
,

hence its level sets are given by the zero set of

Fλ,µ(x, y) = λ(−x6 − 2x3y3 + x4y3 − y6 + 4xy6) + µy7.

The resultants of Fλ,µ are

∆x(Fλ,µ) =λ6(3λ− µ)(9λ2 + 3λµ+ µ2)y33
(
729λ2 − 1458λµy + 729µ2y2

− 3672λ2y3 + 216λµy4 + 16λ2y6
)
,

∆y(Fλ,µ) =λ6µ(3λ− µ)(9λ2 + 3λµ+ µ2)x33
(
46656λ3 − 734832λ3x

+ 4293324λ3x2 − 7(1548531λ3 − 117649µ3)x3

+ 9050832λ3x4 + 2739744λ3x5 + 241920λ3x6 + 6912λ3x7
)
.

Moreover,

∆x(
√

∆y(Fλ,µ)) =λ114µ30(3λ− µ)17(9λ2 + 3λµ+ µ2)17,

∆y(
√

∆x(Fλ,µ)) =λ98(3λ− µ)15(9λ2 + 3λµ+ µ2)15.

Therefore

∆2
∗(Fλ,µ) = λ98(3λ− µ)15(9λ2 + 3λµ+ µ2)15.

The zeroes of ∆2
∗(Fλ,µ) are

λ = 0, λ =
µ

3
, λ = −1 +

√
3i

6
µ, λ = −1−

√
3i

6
µ,

which are exactly the (critical) remarkable values of H. �

Example 7. The rational function

H =
(x− 2y)3

(x2 − 1)y

is a first integral of the cubic polynomial differential system

ẋ = (x2 − 1)(x+ 4y), ẏ = y(−3 + x2 + 4xy). (5)

The only remarkable values of H are λ = 0 and µ = 0. This can be proved by solving the
equation

Fλ,µ = λ(x− 2y)3 + µ(x2 − 1)y = P1(x, y)P2(x, y),

where Pi are polynomials of degree i, i = 1, 2.
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Let us see how to obtain the same result using our approach. The resultants of Fλ,µ are

∆x(Fλ,µ) =λµ2y2(27λ2 − 4(54λ2 − 18λµ+ µ2)y2 + 16λ(27λ− 2µ)y4),

∆y(Fλ,µ) =λ2µ2(x2 − 1)2(2µ+ (27λ− 2µ)x2).

Hence

∆y(
√

∆x(Fλ,µ)) =λ17µ20(µ− 12λ)6(27λ− 2µ)2,

∆x(
√

∆y(Fλ,µ)) =λ18µ15(27λ− 2µ)2.

Thus ∆2
∗(Fλ,µ) = λ17µ15(27λ− 2µ)2. The remarkable values λ = 0 and µ = 0 are zeroes of

this double resultant. There is the extra special value µ/λ = 27/2, which is not a remarkable
value. It can be seen that this level set provides an isolated singular point, which is a center
at infinity for system (5). If µ/λ > 27/2 then the level sets are periodic orbits surrounding
the center. If µ/λ < 27/2 then the level sets are not real curves. The value 27/2 is not a
remarkable value of the first integral, but there is a change in the topology of the curves,
so it must appear in ∆2

∗(Fλ,µ).

This example also shows that the remarkable values are special values of the double
resultant; but also that there may exist special values of the double resultant which are not
remarkable values of H. �

3.4. The different topologies of offset curves. In this section, we show an application
of the double resultant to detect changes on the topological behavior of offset curves of
rationally parametrized curves. The notion of offset is directly related to the concept of
envelope. More precisely, the offset curve, at distance d, to an irreducible curve C over C
is “essentially” the envelope of the system of circles centered at the points of C with fixed
radius d. A more formal description of offset varieties can be found in [2].

The study of offsets is an active research area. Indeed, as a consequence of this research,
many interesting questions related to algebraic geometry, such as the study of the unira-
tionality of the components of the offset, or the construction of rational parametrizations
of the components of an offset, have been treated.

Consider a rationally parametrized curve C : (x(t), y(t)). Since (−y′(t),x′(t))√
x′(t)2+y′(t)2

is its unit

normal vector, the offset curve of C at distance d is

(u(t), v(t)) = (x(t), y(t)) + d
(−y′(t), x′(t))√
x′(t)2 + y′(t)2

.

The implicit expression of the offset is typically defined as Fd(u, v) = Res(P,Q, t), where

P = Num
(
(u− x(t))

√
x′(t)2 + y′(t)2 + dy′(t)

)
,

Q = Num
(
(v − y(t))

√
x′(t)2 + y′(t)2 − dx′(t)

)
,

where Num( ) applied to a rational expression denotes its numerator and it is assumed that

the parametrization is such that
√
x′(t)2 + y′(t)2 is again a rational function.

This further property on the parametrization is not always easy to be found but there are
some techniques that allow to achieve it, see for example [3]. We introduce here a simple
way to characterize the offset that does not need this change of parametrization. Indeed,
we define

R = Num
(
s2 − x′(t)2 − y′(t)2

)
,

P̂ = Num
(
(u− x(t))s+ dy′(t)

)
,

Q̂ = Num
(
(v − y(t))s− dx′(t)

)
.
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Afterwards we compute E1 = Res(P̂ , Q̂, s) and E2 = Res(P̂ , R, s). These computations
remove the square root from our expressions. Finally we define the offset as

Fd(u, v) = Res′
( E1

gcd(E1, E2)
,

E2

gcd(E1, E2)
, t
)
,

where we compute the gcd respect to the variable t and Res′( ) denotes first the usual
resultant and afterwards the elimination of the trivial factor unvm, n,m ∈ N, in case that
it appears. Then we can use our approach to find the special values of Fd. We see some
examples next.

Example 8. Consider the parametrized curve (t4, t5). To compute its offset we first com-
pute the expressions

P̂ = 5dt4 − St4 + su, Q̂ = −4dt3 − St5 + sv, R = s2 − 16t6 − 25t8.

Next we have

E1 = Res(P̂ , Q̂, s) =dt3(4t4 + 5t6 − 4u− 5tv),

E2 = Res(P̂ , R, s) =t6(25d2t2 − 16t8 − 25t10 + 32t4u+ 50t6u− 16u2 − 25t2u2).

Then, gcd(E1, E2) = t3 and in this case

Fd = Res′
(E1

t3
,
E2

t3

)
=

1

u5
Res

(E1

t3
,
E2

t3

)
.

The expression of Fd(u, v) has degree 12 in u and 10 in v. Its total degree is 12. There are
25 values of d that vanish ∆2

∗(Fd). Only three of them are real: 0 and ±2/(25
√

5). Since
d ≥ 0, in order to study the different topologies of this offset we only need to distinguish
the cases 0 < d < 2/(25

√
5), d = 2/(25

√
5) and d > 2/(25

√
5). �

In [2] the double discriminant is used to study the topology of the offset curves, see
also [1]. Our approach using the double resultant ∆2

∗(Fd) is more precise in the sense that
it discards some superfluous cases, because of the computation of both double resultants.
We next show an example.

Example 9. Consider the parametric curve

u =
57t− 59td+ 45d2 − 8t3 − 93td2 + 92t2d2

−18t+ 31t2 − 26td− 62t3 + t2d2 − 47d4

v =
−1 + 94t2 + 83d2 − 86td2 + 23d3 − 84t3d

−18t+ 31t2 − 26td− 62t3 + t2d2 − 47d4

provided in [1, Family 12]. The algorithms used there give either 23 or 30 real special values,
depending on the algorithm. From our approach we only obtain 6 values: d ≈ −0.15384,
d ≈ −0.12926, d ≈ 0.14419, d ≈ 0.59722, d ≈ 1104.27468 and d ≈ −1104.26873. Hence
most of them are superfluous. We do not include the computations for the sake of simplicity.

�

4. Some remarks about the modified method

A first point to reflect is what do the resultants of Fb compute. When applying the
resultant to Fb with respect to y, linear factors of the form x − xi(b) of ∆y(Fb) appear

because of values (xi, yi) for which Fb(xi, yi) = ∂Fb
∂y (xi, yi) = 0; that is, points on which the

gradient of Fb is horizontal. The multiplicity of such factors is related to the number of
values yi for which this happens, counting also the corresponding multiplicities.

The second resultant ∆y,x(Fb) vanishes if and only if either ∆y(Fb) has some multiple
factor or its degree decreases. The first situation happens if either there are (more than
one) points (xi, yi) for which the gradient of Fb is horizontal, or there is a singular point
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on x = xi. We notice that with the double resultant ∆y,x(Fb) we cannot know about a
situation where two points on x = xi collide for a special value b∗, because ∆y,x(Fb) = 0
for all b, but after a rotation the double straight line becomes two different straight lines
that collide for b∗, and in particular ∆y,x(Fb∗) = 0.

Recall also that when applying the discriminant or the resultant to a polynomial F , it
may happen that F has a multiple factor. In this case, both F and its derivative have this
factor in common, so the discriminant and the resultant must be zero. These facts may
cause problems when computing iterated discriminant or resultants, since if at some step
the described situation appears then no information will be obtained.

The way to proceed in the papers using iterated discriminants is to remove this multi-
plicity and to compute in the second step the discriminant of the “squared-free” polynomial√

discy(Fb) that is no more identically zero.

Our proposal of computing ∆2
∗(Fb) instead of ∆2(Fb) goes precisely in the same direction

described above. Next we want to give an approach of why we believe that this argument
works and no special values are omitted. We recall that we are assuming that the polynomial
Fb is irreducible. Hence a multiple factor cannot appear when computing the first resultant.
So we deal with ∆y(Fb) (the study for ∆x(Fb) follows in the same way).

Since ∆y(Fb) is a polynomial in x, we can write

∆y(Fb) = δy(b)

N∏
i=1

(x− xi(b))αi ,

where N ∈ N, δy, xi ∈ C[b] and αi ∈ N, for all i ∈ {1, . . . , N}. Suppose that there
exists 1 ≤ i ≤ N such that αi > 1. We distinguish some cases. Suppose first that
(x− xi(b))αi |∆y(Fb) for a finite number of values of b. Take one of them, say b∗. There are
some extra possibilities:

(1) If for some values yji (b
∗) we have Fb∗(xi(b

∗), yji (b
∗)) = ∂Fb∗

∂y (xi(b
∗), yji (b

∗)) = 0,

j ∈ {1, . . . ,M}, M ∈ N \ {1}, then we can rotate Fb. So this case can be avoided.

(2) If for only one value yi(b
∗) we have Fb∗(xi(b

∗), yi(b
∗)) = ∂Fb∗

∂y (xi(b
∗), yi(b

∗)) = 0,

then this value remains for any rotation applied to Fb, in particular a π/2 rotation.

Hence ∂Fb∗
∂x (xi, yi) = 0 and therefore (xi, yi) is a singular point of Fb∗ . Thus by

Theorem 1 we have ∆2(Fb∗) = 0.

In the former case, and following the arguments above, the multiplicity αi comes from
the collision of αi > 1 straight lines at the value b∗. Of course this behavior is detected by
the resultant of ∆y(Fb) and thus the value b∗ appears in the factorization of ∆y,x(Fb).

Next we consider the case that (x− xi)αi |∆y(Fb) for all b. Following the previous argu-
ments it is clear that Fb has a singular point at x = xi, and this happens for all b. Hence
∆y,x(Fb) = 0 by Theorem 1.

After these arguments we can assume that special values are associated to changes in
the multiplicity of the straight lines of ∆y(Fb). Therefore we may consider

√
∆y(Fb) to

compute the double resultant, and from this square-free polynomial we still obtain all the
special values of Fb.
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[6] L. Cairó and J. Llibre, Phase portraits of cubic polynomial vector fields of Lotka-Volterra type having
a rational first integral of degree 2, J. Phys. A: Math. Theor. 40 (2007), 6329-6348.
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II, Rendiconti del Circolo Matematico di Palermo 5 (1891), 161–191; 11 (1897), 193–239.
[22] A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Basel ; Boston : Birkhaüser
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