NEW CENTRAL CONFIGURATIONS OF THE $(n+1)$-BODY PROBLEM

ANTONIO CARLOS FERNANDES ${ }^{A}$, BRAULIO AUGUSTO GARCIA ${ }^{A}$, JAUME LLIBRE ${ }^{B}$ AND LUIS FERNANDO MELLO ${ }^{A}$

Abstract

In this article we study central configurations of the $(n+1)$-body problem. For the planar $(n+1)$-body problem we study central configurations performed by $n \geq 2$ bodies with equal masses at the vertices of a regular n-gon and one body with null mass. We also study spatial central configurations considering n bodies with equal masses at the vertices of a regular polyhedron and one body with null mass.

1. Introduction and statement of The main Results

The N-body problem consists in study the motion of N pointlike masses in \mathbb{R}^{2} or \mathbb{R}^{3}, interacting among themselves through no other forces than their mutual gravitational attraction according to Newton's gravitational law.

The equations of motion of the N-body problem are

$$
m_{i} \ddot{r}_{i}=-\sum_{\substack{j=1 \\ j \neq i}}^{N} \frac{m_{j} m_{i}}{r_{i j}^{3}}\left(r_{i}-r_{j}\right)
$$

for $i=1, \ldots, N$. Here we have chosen the units of length in order that the gravitational constant be equal to one, $r_{k} \in \mathbb{R}^{2}$ or \mathbb{R}^{3} is the position vector of the punctual mass m_{k} in an inertial system, and $r_{j k}=\left|r_{j}-r_{k}\right|$ is the Euclidean distance between m_{j} and m_{k}.

Since the general solution of the N-body problem cannot be given, great importance has been attached from the very beginning to the search for particular solutions where the N mass points fulfilled certain initial conditions. Thus a homographic solution of the N-body problem is a solution such that the configuration formed by the N-bodies at the instant t remains similar to itself as t varies.
Two configurations are similar if we can pass from one to the other doing a dilation and/or a rotation.

The first three homographic solutions where found in 1767 by Euler [8] in the 3-body problem. For these three solutions the configuration of the 3 bodies is collinear.

In 1772 Lagrange [14] found two additional homographic solutions in the 3-body problem. Now the configuration formed by the 3 bodies is an equilateral triangle.

[^0]Key words and phrases. Central configuration, $(n+1)$-body problem, celestial mechanics.
L.F. Mello is the corresponding author.

[^0]: 2010 Mathematics Subject Classification. Primary 70F10, 70F15, 37N05.

