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NON-ALGEBRAIC OSCILLATIONS FOR PREDATOR-PREY MODELS

ANTONI FERRAGUT1 AND ARMENGOL GASULL2

Abstract. We prove that the limit cycle oscillations of the celebrated Rosenzweig-MacAr-
thur differential system and other predator-prey models are non-algebraic.

1. Introduction and statement of the main results

It is easy to see that the periodic orbits of the celebrated Lotka-Volterra model

ẋ =
dx

dt
= x(α− βy), ẏ =

dx

dt
= y(−δ + γx),

where x, y ≥ 0 and all the parameters are positive, are non-algebraic curves. This holds
because it is an integrable system, and their solutions are contained into the level sets

H(x, y) = xγyαe−δx−βy = h ≥ 0,

which are clearly non-algebraic. The aim of this work is to prove that the attracting periodic
orbits (limit cycles) of the Rosenzweig-MacArthur system, as well as the periodic orbits of
other non-integrable predator-prey models, are neither given by algebraic curves. Let us
introduce with more detail the systems that we will consider.

To study the predator-prey interaction when the prey exhibits group defense, Freed-
man and Wolkowicz [8], Mischaikow and Wolkowicz [14] and Wolkowicz [19] proposed the
following model (see also Lin [13]):

ẋ = X(x, y) = xg(x,K)− yp(x), ẏ = Y (x, y) = y(−D + q(x)). (1)

Here, x and y are functions of time representing population densities of prey and predator,
respectively, and are assumed to be non-negative; K > 0 is the carrying capacity of the
prey and D > 0 is the death rate of the predator. The function g(x,K) represents the
specific growth rate of the prey in the absence of predator and is assumed to satisfy certain
conditions. A prototype is the logistic growth

g(x,K) = r
(

1− x

K

)
, (2)

with r > 0, which satisfies all those conditions. The function p(x) denotes the predator
response function and is assumed to satisfy p(0) = 0 and p(x) > 0 for x > 0. The rate of
conversion of prey to predator is described by q(x). In Gause’s model, we have

q(x)

p(x)
= γ ∈ R+. (3)
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The Rosenzweig-MacArthur differential system (see [16])

ẋ = rx
(

1− x

K

)
− mxy

a+ x
,

ẏ = y

(
−D + γ

mx

a+ x

)
,

(4)

where all the parameters are positive, is of type (1) with g as in (2) and p and q as in (3).
The same happens with the three models that we introduce next. The first one is due to
Ruan and Xiao, see [17]. It considers p(x) = x/(a + x2), a simplified Monod-Haldane or
Holling type IV function; see [18]. The system can be writen as

ẋ = rx
(

1− x

K

)
− xy

a+ x2
,

ẏ = y

(
−D + γ

x

a+ x2

)
,

(5)

where all the parameters are again positive.

The second additional family appears in [20]. In that paper the authors consider again
a Holling type IV functional response, associated with a Monod-Haldane function (see [2])
p(x) = mx/(ax2 + bx+ 1), where a,m > 0 and b > −2

√
a (so that ax2 + bx+ 1 > 0 for all

x ≥ 0). The model writes as

ẋ = rx
(

1− x

K

)
− mxy

ax2 + bx+ 1
,

ẏ = y

(
−D + γ

mx

ax2 + bx+ 1

)
,

(6)

where all the remainder parameters are also positive. The function p(x) models the situation
where the prey can better defend or disguise themselves when their population becomes
large enough, a phenomenon called group defense. See [8, 17] for more information.

The third additional family that we consider appears in [11]. The model is described by
the following differential system:

ẋ = x

(
r
(

1− x

K

)
(x+M)− my

a+ x

)
,

ẏ = y

(
−D + γ

mx

a+ x

)
,

(7)

with all the parameters except M positive and M ≥ 0. Here instead of considering g(x,K)
given by the logistic function, the authors take g(x,K) = r(x−1/K)(x+M). The existence
of this parameter M ≥ 0 introduces the so-called weak Allee effect, which is an important
and interesting phenomenon for ecologists, because this effect increases the risk of popu-
lation extinction, see [6, 7]. The case M = 0 implies the collapse of two singularities. If
M > 0, then the equation represents a compensatory growth function, see [5, 12].

Let Γ be an orbit of any of the above systems. If Γ is contained in the zero set of a
polynomial in two variables F ∈ R[x, y], that is Γ ⊂ {(x, y) ∈ R2 : F (x, y) = 0}, then it
is said that F (x, y) = 0 is an invariant algebraic curve and by abuse of language that Γ is
an invariant algebraic solution. When Γ is a limit cycle we will say that Γ is an algebraic
limit cycle of the system.

It is well-known that for some values of the parameters the limiting behaviour of the
orbits of all these predator-prey systems is a limit cycle. For instance, for the Rosenzweig-
MacArthur system it is proved that system (4) has an attracting periodic orbit if and only
if δ(a+K) + γm(a−K) < 0, see [1]. Our main result is the following theorem.
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Theorem 1. The only invariant algebraic curves of the Rosenzweig-MacArthur system (4)
and of the predator-prey models (5), (6) and (7) are the axes x = 0 and y = 0. In particular,
the limit cycles of all these models are non-algebraic.

Notice that the above result is quite natural. In fact nobody expected that the limit
oscillation appearing in realistic predator-prey models was given in an algebraic closed
form and precisely this is what we have been able to prove in this paper. Despite during
these last years there has been an increasing interest in knowing whether the limit cycles
of some remarkable planar systems are algebraic or not, see for instance [9, 15], almost no
attention has been paid to ecological models. The only result that we know in this direction
is the proof, given in the recent paper [1], that the limit cycles of a family of predator-prey
systems of the form (1), but not satisfying (2), are non-algebraic.

Theorem 1 is a straightforward consequence of a similar result for the family of polynomial
differential systems of degree 4

ẋ = X(x, y) = x(a0 + a1y + a2y
2),

ẏ = Y (x, y) = y(x+ b0 + b1y + b2y
2 + b3y

3).
(8)

Theorem 2. If a0 6= 0 and b0/a0 6∈ Q+ then the only invariant algebraic curves of sys-
tem (8) are the coordinate axes x = 0 and y = 0. In particular its limit cycles are non-
algebraic.

Our proof of Theorem 2 is based on the fact that for system (8) the axis y = 0 is
an invariant set. Then a systematic study writing all the involved functions G(x, y) as
G(x, y) =

∑
j≥0 gj(x)yj turns to be very useful, see Section 2.1. An extension of this idea,

when an analytic curve y = α(x) is invariant under the flow of the system, already appears
in [10].

Remark 1. The hypotheses a0 6= 0 and b0/a0 6∈ Q+ are essential for proving the nonex-
istence of invariant algebraic curves different from the axes. See the two examples in Sec-
tion 2.

Remark 2. Most predator-prey systems have a saddle at the origin, because no solution
with positive initial conditions tends to the extinction equilibrium. Theorem 2 includes this
case, because the saddle condition reads for system (8) as a0b0 < 0.

We end this introduction by giving a simple family of quadratic systems, extracted
from [4], that has for some values of the parameters an algebraic limit cycle. The system

ẋ = 2 + 4x− 4ax2 + 12xy,

ẏ = b− 14ax− 2axy − 8y2,
(9)

for 0 < a < 1/4 and b = 8− 3a, has an algebraic limit cycle contained in the quartic curve

1 + 4x− 4x2 + 4ax3 + 4xy + 4x2y2 = 0.

Although system (9) does not come from a predator-prey model it shows that the question
of knowing whether a polynomial system has or has not algebraic periodic orbits can be
quite delicate.

2. Preliminary results

Let us see that our four differential systems can be treated simultaneously.

Lemma 3. There exist linear changes of coordinates and corresponding scalings of the time,
well defined on the first quadrant, such that the differential systems (4), (5), (7) and (6)
are transformed into subcases of the polynomial system (8) with a0b0 < 0.
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Proof. The proof follows easily after changing time, swapping the variables and scaling. For
instance for the Rosenzweig-MacArthur system, taking

x̄ = y, ȳ = x,
ds

dt
=

1

a+ x
,

system (4) becomes system (8) with a0 = −aD < 0 and b0 = ar > 0. �

In case that the planar differential system (ẋ, ẏ) = (X,Y ) is polynomial, the fact that
the system has an invariant algebraic curve can be detected algebraically. Let X and Y
be coprime polynomials of maximum degree d ∈ N. Then an irreducible algebraic curve
f(x, y) = 0 of degree m ∈ N is invariant under the flow of this system if there exists a
polynomial k(x, y) of degree at most d− 1, called the cofactor, such that

X
∂f

∂x
+ Y

∂f

∂y
= kf. (10)

Remark 3. Notice that if a rational planar differential system (ẋ, ẏ) = (X1/Z, Y1/Z), with
X1, Y1, Z ∈ R[x, y] has an invariant algebraic curve, then the same holds for the polynomial
planar planar differential system (ẋ, ẏ) = (X1, Y1).

Next lemma will play a key role in the proof of our results.

Lemma 4. For x ≥ 0, consider the function

G(x) = Cxn−Bex Γ(B, x) +Dexxn−B, (11)

where

Γ(B, x) =

∫ ∞
x

e−ttB−1 dt

is the gamma function, n ∈ N and B,C,D > 0. Then G is a polynomial if and only if
D = 0 and either C = 0 or B ∈ {1, . . . , n}.

Proof. We know (see [3], formula 6.5.32) the following asymptotic expansion at x =∞:

ex Γ(B, x) ∼ xB−1
∑
i≥0

∏i
j=1(B − j)

xi
.

Hence at infinity

G(x) ∼ Cxn−1
∑
i≥0

∏i
j=1(B − j)

xi
+Dexxn−B.

Therefore, for G to be a polynomial, we must take D = 0 in order to cancel the exponential
term. Now if C = 0 we are finished. If C 6= 0 then G(x) is a series in x. We have to
take B ∈ N to make it finite. Moreover as there is a factor xB−1 in the denominator after
doing the sum and a factor xn−1 in the numerator, we must take B ≤ n. Then the lemma
follows. �

Theorem 2 assumes that a0 6= 0 and that b0/a0 6∈ Q+. Next two examples show that
these two hypotheses are inavoidable for proving Theorem 2.

Example 1. The curve x− φ(y) = 0 is invariant under the flow of the differential system
ẋ = kxyφ′(y), ẏ = xy+ (k− 1)yφ(y), with k ∈ R. If φ(y) is a polynomial of degree at most
2 then this system is of the form (8) with a0 = 0. �

Example 2. The curve x − φ(y) = 0, with φ(0) = 0, is invariant under the flow of
the differential system ẋ = kxφ′(y), ẏ = xy + (k − y)φ(y), with k ∈ R. If φ(y) is a
polynomial of degree at most 3 such that φ′(0) 6= 0, then this system is of the form (8) with
b0/a0 = 1 ∈ Q+. �
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2.1. A method for proving the non-existence of invariant algebraic curves. Let
f = 0 be an invariant algebraic curve of the polynomial differential system (ẋ, ẏ) =
(X,Y ) and assume that y = 0 is another invariant algebraic curve, i.e. y|Y . Set d =
max{degP,degQ} ∈ N. Let k be the cofactor of f and suppose that y - f . Since y = 0 is
invariant under the flow of system (1), it is natural to write

X(x, y) =

d∑
i=0

Xi(x)yi, Y (x, y) =

d∑
i=0

Yi(x)yi, k(x, y) =

d−1∑
i=0

ki(x)yi

and f(x, y) =
∑m

i=0 fi(x)yi, with Xi, Yi, ki and fi polynomials of degree at most d− i, d− i,
d− 1− i and m− i, respectively. Then equation (10) can be written as

m+d−1∑
j=0

(
j∑
i=0

[
Xj−i(x)f ′i(x) + (iYj−i+1(x)− kj−i(x))fi(x)

])
yj = 0.

From the above relation the functions fj(x) can be obtained recurrently by solving the
corresponding linear differential equation in fj(x) obtained vanishing the coefficient in yj ;
that is, solving, for each j, the equation

j∑
i=0

[
Xj−i(x)f ′i(x) + (iYj−i+1(x)− kj−i(x))fi(x)

]
= 0. (12)

The method consists in forcing these fj to be polynomial. Then several successive condi-
tions on the coefficients of k, X and Y appear during the process. As we already mentioned,
this method was extended in [10] to systems having an invariant analytic curve y = α(x).

3. Proof of Theorems 1 and 2

It is clear that Theorem 1 is a straightforward consequence of Remark 3, Lemma 3 and
Theorem 2. So we will proceed with the proof of Theorem 2.

Since a0 6= 0, by scaling the variable time if necessary, we can assume without loss of
generality that a0 = −1. Then b0/a0 6∈ Q+ writes as b0 6∈ Q−.

Let k =
∑3

i+j=0 ki,jx
iyj be the cofactor of an invariant algebraic curve f = 0 of degree

m ∈ N of system (8). According to Section 2.1, we write

X(x, y) =

4∑
i=0

Xi(x)yi, Y (x, y) =

4∑
i=0

Yi(x)yi, k(x, y) =

3∑
i=0

ki(x)yi,

with

X0 = −x, X1 = a1x, X2 = a2x, X3 = X4 = 0;

Y0 = 0, Y1 = b0 + x, Y2 = b1, Y3 = b2, Y4 = b3;

k0 = k0,0 + k1,0x+ k2,0x
2 + k3,0x

3, k1 = k0,1 + k1,1x+ k2,1x
2,

k2 = k0,2 + k1,2x, k3 = k0,3;

and f =
∑m

i=0 fi(x)yi. Equation (12) with j = 0 is

(k0,0 + k1,0x+ k2,0x
2 + k3,0x

3)f0(x) + xf ′0(x) = 0.

Since y - f , f0 6≡ 0. Imposing that f0 has to be a polynomial and checking the degrees of
all the summands of the above equation we must take k1,0 = k2,0 = k3,0 = 0. Solving the
differential equation we get

|f0(x)| = |x|−k0,0 ,
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where we have fixed the integration constant to 1. From now on we will only study the
region x ≥ 0. Then we have f0(x) = x−k0,0 . As f0(x) is to be a polynomial, we must take
−k0,0 = n ∈ N ∪ {0}. Therefore f0(x) = xn.

Equation (12) with j = 1 is

xn(a1n− k0,1 − k1,1x− k2,1x2) + (b0 + n+ x)f1(x)− xf ′1(x) = 0.

We write their solutions as f1(x) = xnf̄1(x). Then we have

a1n− k0,1 − k1,1x− k2,1x2 + (b0 + x)f̄1(x)− xf̄ ′1(x) = 0.

Applying the method of variation of the constants we write f̄1(x) = W (x)exxb0 , where
W (x) is a solution of

a1n− k0,1 − k1,1x− k2,1x2 − exxb0+1W ′(x) = 0.

Then

W (x) =

∫
e−xx−b0−1(a1n− k0,1 − k1,1x− k2,1x2) dx.

We note that this integral can be separated into a sum of three integrals, all of which are
gamma functions. The property

Γ(s, x) = (s− 1)Γ(s− 1, x) + xs−1e−x

of the gamma function allows to write W (x) as

W (x) =Γ(−b0, x)(−a1n+ k0,1 − b0k1,1 + b0(b0 − 1)k2,1)

+ e−xx−b0(k1,1 + k2,1 − b0k2,1 + k2,1x) + C1,

where C1 is a constant. Therefore

f1(x) = W (x)exxb0+n =exxb0+nΓ(−b0, x)(−a1n+ k0,1 − cb0k1,1 + b0(b0 − 1)k2,1)

+ xn(k1,1 + k2,1 − b0k2,1 + k2,1x) + C1e
xxb0+n.

Since −b0 6∈ N, from Lemma 4 we have C1 = 0 and −a1n+k0,1− b0k1,1 + b0(b0−1)k2,1 = 0.
Thus we can obtain an expression for k0,1.

From equation (12) with j = 2 we proceed in a similar way and we have

f2(x) =
[
a2n− k0,2 + b1k1,1 + b0k1,2 − (−b1 + a1b0 + 2b0b1)k2,1

]
xn(2x)2b0e2xΓ(−2b0, 2x)

+ e2xxn+2b0C2 + f̄2(x)xn,

where C2 is a constant and f̄2(x) is a polynomial of degree 2. Since −2b0 6∈ N, by Lemma
4 we must take C2 = 0 and k0,2 = a2n+ b1k1,1 + b0k1,2 − (−b1 + a1b0 + 2b0b1)k2,1 to get a
polynomial.

From equation (12) with j = 3 we get

f3(x) =
[
k0,3 − b2k1,1 −b1k1,2 + (a2b0 + a1b1 + b21 − b2 + 2b0b2)k2,1

]
xn(3x)3b0e3xΓ(−3b0, 3x)

+ e3xxn+3b0C3 + f̄3(x)xn,

where C3 is a constant and f̄3(x) is a polynomial of degree 3. As −3b0 6∈ N, again from
Lemma 4 we must take C3 = 0 and

k0,3 − b2k1,1 − b1k1,2 + (a2b0 + a1b1 + b21 − b2 + 2b0b2)k2,1 = 0 (13)

to get a polynomial.

We distinguish two cases depending on b3. If b3 = 0 then the cofactor k of f = 0 is
n(−1 + a1y + a2y

2), which is n times the cofactor of x = 0. This happens because since
b3 = 0 the degree of system (8) is 3 and therefore the monomials of degree 3 in k must
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vanish. Hence the equality (13) reads as b2k1,1 = 0. If b2 = 0 then equation (12) for j > 3
writes as

−
kj1,1(b0 + x)

(j − 1)!
xn + (jb0 + n+ jx)fj(x)− xf ′j(x) = 0. (14)

This equation has the solution

fj(x) = Cje
jxxn+jb0 +

kj1,1
j!
xn,

where Cj is a constant that must be taken as zero. Hence fj(x) = kj1,1x
n/j! for j > 3.

Therefore we have f(x, y) = xnek1,1y, which means that k1,1 = 0 and hence that f is a
power of x. Therefore the only invariant algebraic curve of system (8) different from y = 0
is x = 0 and the theorem follows in the case b2 = b3 = 0. In the other case, which is b3 = 0
and b2 6= 0, then k1,1 = 0 and thus equation (12) for j > 3 writes as

(jb0 + n+ jx)fj(x)− xf ′j(x) = 0,

which is equation (14) with k1,1 = 0. Hence fj(x) ≡ 0 for j > 3. Then we have again
that f(x, y) = xn. Therefore the only invariant algebraic curve of system (8) different from
y = 0 is x = 0 and the theorem follows also in this case.

From now on we assume that b3 6= 0. Hence from (13) we can obtain an expression for
k0,3. We proceed for j > 3 in a similar way as above: on each step the function Γ(−jb0, jx)
appears in the expression of fj(x). As −jb0 6∈ N because −b0 6∈ Q+, by Lemma 4 the
integration constant of fj must be taken as zero and the coefficient of Γ(−jb0, jx) must
vanish. Hence we have a condition for each case. The conditions for j = 4 and j = 5 are,
respectively,

k1,1 = −b2
b3
k1,2 +

a2b1 + a1b2 + 2b1b2 − b3 + 2b0b3
b3

k2,1

and

k1,2 =
a2b2 + b22 + a1b3 + 2b1b3

b3
k2,1.

For j = 6 the condition reads (a2 + 2b2)k2,1 = 0. The case a2 + 2b2 = 0 for j = 6 leads to
k2,1 = 0 for j = 7. We note that for j > 6 (for j > 7 in the case a2 + 2b2 = 0) equation
(12) is

(jb0 + n+ jx)fj(x)− xf ′j(x) = 0,

which has the only polynomial solution fj(x) ≡ 0, as we showed above. We obtain f(x, y) =
xn and k = n(−1 + a1y + a2y

2). Then again the only invariant algebraic curve different
from y = 0 is x = 0 and therefore the theorem follows also in the case b3 6= 0.
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