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Abstract. We give an upper bound for the number of functionally independent mero-
morphic first integrals that a discrete dynamical system generated by an analytic map f
can have in a neighborhood of one of its fixed points. This bound is obtained in terms of
the resonances among the eigenvalues of the differential of f at this point. Our approach
is inspired on similar Poincaré type results for ordinary differential equations. We also
apply our results to several examples, some of them motivated by the study of several
difference equations.

1. Introduction and statement of the main results

One of the first steps to study the dynamics of a discrete dynamical system (DDS) is to
determine the number m of functionally independent first integrals that it has. It is clear
that each new first integral reduces the region where any orbit can lie, so the bigger is m,
the simpler will be the dynamics. For instance, if this DDS is n-dimensional, this number
m is at most n, and in the case m = n the DDS is called integrable and it has extremely
simple dynamics: in most cases it is globally periodic, that is, there exists p ∈ N, such that
fp = Id, where f is the invertible map that generates it, see [4]. Similarly, DDS having
m = n−1 are such that all their orbits lie in one-dimensional manifolds, see some examples
in [5].

The aim of this paper is to give an upper bound of the number of meromorphic first
integrals that a DDS generated by an invertible analytic map can have in a neighborhood
of a fixed point. We follow the approach of Poincaré for studying the same problem for
continuous dynamical systems given by analytic ordinary differential equations. It is based
on the study of the resonances among the eigenvalues of the differential of the vector field
at one of its critical points, see for instance [9] and their references. We will use similar
tools that the ones introduced in that paper.

Consider analytic diffeomorphisms in (Cn, 0), a neighborhood of the origin,

(1) y = f(x), x ∈ (Cn, 0),

with f(0) = 0. A function R(x) = G(x)/H(x) with G and H analytic functions in (Cn, 0)
is a meromorphic first integral of the diffeomorphism (1) if

G(f(x))H(x) = G(x)H(f(x)), for all x ∈ (Cn, 0).

Notice that the above condition implies that

R(f(x)) = R(x),

for all x ∈ (Cn, 0) where both functions are well defined. Specially ifG andH are polynomial
functions, then R(x) is a rational first integral of (1). If H is a non–zero constant, then
R(x) is an analytic first integral of (1). So meromorphic first integrals include rational and
analytic first integrals as particular cases.

Denote by A = Df(0) the Jacobian matrix of f(x) at x = 0. Let µ = (µ1, . . . , µn) be
the n–tuple of eigenvalues of A. Notice that since f is a diffeomorphism at 0, we have
µ1µ2 · · ·µn 6= 0.

2010 Mathematics Subject Classification. Primary: 37C05. Secondary: 37C25; 37C80.
Key words and phrases. Discrete dynamical system, Integrability, Meromorphic first integrals.

1



2 A. FERRAGUT, A. GASULL, X. ZHANG

We say that the eigenvalues µ satisfy a resonant condition if

µk = 1, for some k ∈ Zn with ‖k‖ 6= 0,

where Z is the set of integers, and ‖k‖ = |k1|+ · · ·+ |kn|.
The aim of this paper is to prove the next result and give some applications.

Theorem 1. Assume that the analytic diffeomorphism (1) satisfies f(0) = 0 and let µ =
(µ1, . . . , µn) be the eigenvalues of Df(0). Then the number of functionally independent
generalized rational first integrals of the analytic diffeomorphism (1) in (Cn, 0) is at most
the dimension of the Z–linear space generated from {k ∈ Zn : µk = 1}.

The above theorem also extends some results proved for n = 2 in [7].

In section 2 we prove Theorem 1. Section 3 is devoted to applications of Theorem 1.

2. Proof of Theorem 1

For an analytic or a polynomial function R(x) in (Cn, 0), we denote by R0(x) its ho-
mogeneous term of the lowest degree. For a rational or a meromorphic function R(x) =
G(x)/H(x) in (Cn, 0), we denote by R0(x) the rational function G0(x)/H0(x). We expand
the analytic functions G(x) and H(x) as

G0(x) +
∞∑
i=1

Gi(x) and H0(x) +
∞∑
i=1

H i(x),

whereGi(x) andH i(x) are homogeneous polynomials of degrees degG0(x)+i and degH0(x)+
i, respectively. Then we have

R(x) =
G(x)

H(x)
=

(
G0(x)

H0(x)
+
∞∑
i=1

Gi(x)

H0(x)

)(
1 +

∞∑
i=1

H i(x)

H0(x)

)−1

=
G0(x)

H0(x)
+
∞∑
i=1

Ai(x)

Bi(x)
,(2)

where Ai(x) and Bi(x) are homogeneous polynomials. Clearly,

degG0(x)− degH0(x) < degAi(x)− degBi(x) for all i ≥ 1.

In what follows we will say that degAi(x) − degBi(x) is the degree of Ai(x)/Bi(x), and
G0(x)/H0(x) is the lowest degree term of R(x) in the expansion (2). For simplicity we
denote

d(G) = degG0(x), d(R) = d(G)− d(H) = degG0(x)− degH0(x),

and call d(R) the lowest degree of R.

The following known result, first proved by Ziglin [21] in 1983, see also [1, 9, 12, 20], will
be used in the proof of Theorem 1.

Lemma 2. Let

R1(x) =
G1(x)

H1(x)
, . . . , Rm(x) =

Gm(x)

Hm(x)
,

be functionally independent meromorphic functions in (Cn, 0). Then there exist polynomials

Pi(z1, . . . , zi) for i = 2, . . . ,m such that R1(x), R̃2(x) = P2(R1(x), R2(x)), . . . , R̃m(x) =
Pm(R1(x), . . . , Rm(x)) are functionally independent meromorphic functions, and that R0

1(x),

R̃0
2(x), . . . , R̃0

m(x) are functionally independent rational functions.

Next we give some properties that meromorphic first integrals of diffeomorphism (1) must
have. A rational monomial is by definition the ratio of two monomials, i.e. of the form
xp/xq with p,q ∈ (N0)

n, where N0 = N ∪ {0} and N is the set of positive integers. The
rational monomial xp/xq is resonant if µp−q = 1. A rational function is homogeneous if its
denominator and numerator are both homogeneous polynomials. A rational homogeneous
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function is resonant if the ratio of any two elements in the set of all its monomials in both
denominator and numerator is a resonant rational monomial.

For the diffeomorphism (1) we assume without loss of generality that A = Df(0) is in
its Jordan normal form and is a lower triangular matrix.

Lemma 3. Let R(x) = G(x)/H(x) be a meromorphic first integral of the analytic diffe-
omorphism (1). By changing R by R − a, for some suitable constant a ∈ C, if needed, it
is not restrictive to assume that R0(x) = G0(x)/H0(x) is non–constant. Moreover R0 is a
resonant rational homogeneous first integral of the linear part of f(x).

For proving this last lemma we will use the following result, for a proof see any of the
references [3, 13, 19, 20].

Lemma 4. Let Hpn be the linear space of complex coefficient homogeneous polynomials of
degree p in n variables. For any constant c ∈ C, define a linear operator on Hpn by

Lc(h)(x) = h(Ax)− c h(x), h(x) ∈ Hpn.
Then the spectrum of Lc is

{µk − c : k ∈ (N0)
n, |k| = k1 + . . .+ kn = p},

where µ are the eigenvalues of A.

Proof of Lemma 3. If R0(x) = G0(x)/H0(x) ≡ a is constant, the function R(x)−a is also a
meromorphic first integral and (R(x)−a)0 is not constant. Hence, without loss of generality,
we can assume that R is a meromorphic first integral and that R0 is not identically constant.

Let us prove that R0 is a resonant rational homogeneous first integral. As in (2) we write
R(x) as

R(x) = R0(x) +

∞∑
i=1

Ri(x),

where R0(x) is the lowest order rational homogeneous function and Ri(x) for i ∈ N are
rational homogeneous functions of order larger than R0(x). Since R(x) is a first integral of
the diffeomorphism f(x) in a neighborhood of 0 ∈ Cn, we have

R(f(x)) = R(x), x ∈ (Cn, 0).

Equating the lowest order rational homogeneous functions we get

(3) R0(Ax) = R0(x), i.e.
G0(Ax)

H0(Ax)
=
G0(x)

H0(x)
.

This implies that R0(x) is a rational homogeneous first integral of the linear part of the
analytic diffeomorphism (1).

Next we shall prove that R0(x) is resonant. From the equality (3) we can assume without
loss of generality that G0(x) and H0(x) are relative prime. Now equation (3) can be written
as

H0(x)G0(Ax) = G0(x)H0(Ax).

Since G0 and H0 are relatively prime, and C[x] is a unique factorization domain (see e.g.
[11, p. 2]), we get that G0(x) divides G0(Ax) and H0(x) divides H0(Ax). In addition,
G0(Ax) and G0(x) have the same degree, so there exists a constant c such that

G0(Ax)− cG0(x) ≡ 0, H0(Ax)− cH0(x) ≡ 0.

We remark that if G0(x) ≡ 1 or H0(x) ≡ 1, we have c = 1. Set degG0(x) = l, degH0(x) =
m and Lc the linear operator defined in Lemma 4. Recall from Lemma 4 that Lc has
respectively the spectrums on Hpn

Sp := {µp − c : p ∈ (Z+)n, |p| = p},
and on Hqn

Sq := {µq − c : q ∈ (Z+)n, |q| = q}.
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Separate Hpn = Hpn,1 + Hpn,2 in such a way that for any p(x) ∈ Hln,1 its monomial xp

satisfies µp− c = 0, and for any Q(x) ∈ Hpn,2 its monomial xp satisfies µp− c 6= 0. Separate

G0(x) in two parts G0(x) = G0
1(x) + G0

2(x) with G0
1 ∈ H

p
n,1 and G0

2 ∈ H
p
n,2. Since A is in

its Jordan normal form and is lower triangular, it follows that

LcHpn,1 ⊂ H
p
n,1, and LcHpn,2 ⊂ H

p
n,2.

Hence LcG0(x) ≡ 0 is equivalent to

LcG0
1(x) ≡ 0 and LcG0

2(x) ≡ 0.

Since Lc has the spectrum without zero element on Hpn,2 and so it is invertible on Hpn,2,
the equation LcG0

2(x) ≡ 0 has only the trivial solution, i.e. G0
2(x) ≡ 0. This proves that

G0(x) = G0
1(x), i.e. each monomial, say xp, of G0(x) satisfies µp − c = 0.

Similarly we can prove that each monomial, say xq, of H0(x) satisfies µq − c = 0. This
implies that µp−q = 1. The above proofs show that R0(x) = G0(x)/H0(x) is a resonant
rational homogeneous first integral of the linear part of f(x). �

Having the above lemmas we can prove Theorem 1.

Proof of Theorem 1. Let

R1(x) =
G1(x)

H1(x)
, . . . , Rm(x) =

Gm(x)

Hm(x)
,

be the m functionally independent meromorphic first integrals of the diffeomorphism f .
Since the polynomial functions of Ri(x) for i = 1, . . . ,m are also meromorphic first integrals
of the diffeomorphsim f , by Lemma 2 we can assume without loss of generality that

R0
1(x) =

G0
1(x)

H0
1 (x)

, . . . , R0
m(x) =

G0
m(x)

H0
m(x)

,

are functionally independent.

Lemma 3 shows that R0
1(x), . . . , R0

m(x) are resonant rational homogeneous first integrals
of the linear part Ax of f(x). So these first integrals can be written as rational functions
in the variables given by resonant rational monomials. Write A = AS + AN with AS =
diag(µ1, . . . , µn) andAN nilpotent. Then direct calculations show that any resonant rational
monomial is a first integral of ASx. For instance, let xk be a resonant rational monomial,
then µk = 1. Hence, we have (ASx)k = µkxk = xk. This implies that R0

1(x), . . . , R0
m(x)

are also first integrals of ASx. We claim that m is less than or equal to the number of
elements in a basis of the Z–linear space generated from {k ∈ Zn : µk = 1}. We denote by
γ this last number.

Indeed, since R0
1(x), . . . , R0

m(x) are the first integrals of ASx, we only need to prove
that the number of functionally independent resonant rational homogeneous first integrals
of ASx is equal to γ. In fact, from Lemma 3 and its proof it follows that any resonant
rational homogeneous first integral consists of resonant rational monomials. This means
that the maximum number of functionally independent resonant rational homogeneous first
integrals is equal to the maximum number of functionally independent resonant rational
monomials. Whereas, by definition a resonant rational monomial, saying xk for k ∈ Zn,
satisfies µk = 1. This proves the claim.

After the claim, the proof of the theorem is completed. �

3. Applications

3.1. Some simple examples. We start studying the integrability of two simple examples
coming from second order difference equations. Recall that the study of the sequences
generated by second order difference equations xn+2 = g(xn, xn+1) can be reduced to the
study of the DDS generated by the planar map f(x, y) = (y, g(x, y)). Moreover, the first
integrals H for the DDS are usually called invariants for the difference equation. Then
H(xn, xn+1) = H(xn+1, xx+2) for all n ∈ N.
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As a first example we study the integrability of the planar map

(4) f(x, y) = (y,−bx+ c/y), b, c ∈ C, b 6= 0.

coming from the difference equation xn+2 = −bxn + c/xn+1. We prove the following propo-
sition.

Proposition 5. If the planar map (4) has a meromorphic first integral then b is a root
of the unity. In particular, if b, c ∈ R and the map has a meromorphic first integral then
b ∈ {−1, 1}.

Somehow the result for the real case is sharp because when b = 1 the function H(x, y) =
x2y2 − cxy is a first integral of (4). Moreover when b = −1 and c = 0, clearly the map is
linear and integrable. The first integral for the case b = 1 (in fact for its inverse) and also
for many other rational maps are given in [17]. For the complex case, observe that when
c = 0 and b is a root of the unity the map is linear and globally periodic, i.e. fn = Id for
some n ∈ N. For instance, by using the results of [4] it is easy to construct two functionally
independent rational first integrals for each one of them.

Proof of Proposition 5. When c = 0 the map has (0, 0) as a fixed point and the eigenvalues

of Df(0, 0) are ±
√
b. Then, by Theorem 1, to have a meromorphic first integral there must

exist (m,n) ∈ Z2 \ (0, 0) such that (
√
b)n(−

√
b)m = 1 and, as a consequence b must be a

root of the unity.

From now on we can assume that c 6= 0. Then, the fixed points of f are (z, z) where
(b + 1)z2 = c. If b = −1 we are done because b2 = 1. Otherwise, the map has two (real or
complex) fixed points. Anyhow, for c(b+ 1) 6= 0,

Df(z, z) =

(
0 1
−b −c/z2

)
=

(
0 1
−b −(b+ 1)

)
.

Hence, its eigenvalues satisfy p(µ) = µ2 +(b+1)µ+b = 0. Since b 6= 0 we can write them as
µ and b/µ. By Theorem 1, if f is meromorphically integrable, there exists (m,n) ∈ Z2\(0, 0)
such that µn(b/µ)m = 1. If m = n, then bm = 1 and we are done, again. Hence, from now

on, m− n 6= 0. Moreover, µ = bm/(m−n). Thus

p(µ) = µ2 + (b+ 1)µ+ b = b
2m
m−n + (b+ 1)b

m
m−n + b = 0.

If we introduce a such that b = am−n, the above equality writes as

a2m +
(
am−n + 1

)
am + am−n = am−n

(
am+n + am + an + 1

)
= am−n(am + 1)(an + 1) = 0.

Hence a must be a root of the unity, and as a consequence b = am−n also must, as we
wanted to prove. �

As a second example, next lemma studies conditions for a planar map to have two
functionally independent meromorphic first integrals.

Lemma 6. Let f be a real analytic planar map with a fixed point x ∈ R2 such that the
characteristic polynomial of Df(x) is p(µ) = µ2 + bµ + c ∈ R[µ]. Assume that f has
two functionally independent meromorphic first integrals. Then, the eigenvalues of Df(x)
are roots of the unity. In particular, if b2 − 4c < 0 then c = 1 and otherwise (b, c) ∈
{(±2, 1), (0,−1)}.

Proof. Let u, v ∈ C be the two eigenvalues of Df(x). By Theorem 1, there exist (n,m) and
(n′,m′) in Z2 such that

unvm = 1, un
′
vm
′

= 1, and mn′ −m′n 6= 0.

Hence unm
′−n′m = 1 and vmn

′−m′n = 1. Therefore, u and v are roots of the unity. When u
and v are complex we are done, because v = ū and c = uū = |u|2 = 1. When u, v ∈ R then
u and v are either 1 or −1 and the lemma follows. �
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We apply the above lemma to study the map

(5) f(x, y) = (y, xpyq), p, q ∈ Z, p 6= 0,

that describes the difference equation xn+2 = xpnx
q
n+1. It has the fixed point (1, 1) for all

values of p and q, and provides a good test for our result because it can also be studied
by another approach. It can be linearized on {(x, y) ∈ R2 : x > 0, y > 0}, because with
the new variables (u, v) = (lnx, ln y) the DDS generated by f is conjugated to the DDS
generated by g(u, v) = (v, pu+ qv).

As we have already commented, we will center our attention in finding the values of p and
q such that the DDS generated by f can have two functionally independent first integrals.
Notice that f(1, 1) = (1, 1) and

Df(1, 1) =

(
0 1

pxp−1yq qxpyq−1

)
(x,y)=(1,1)

=

(
0 1
p q

)
.

Hence the eigenvalues µ of Df(1, 1) satisfy µ2 − qµ − p = 0. We can use Lemma 6: since
(p, q) ∈ Z2, the only cases for which the map (5) can have two functionally independent
first integrals are (p, q) ∈ {(−1,−2), (−1, 2), (1, 0)} when q2 + 4p ≥ 0, and p = −1 when
q2 + 4p < 0. Moreover, in this last case all roots of P (µ) = µ2− qµ+ 1 must be roots of the
unity. This only happens when q ∈ {−1, 0, 1}, because these values are the only ones for
which P is a quadratic cyclotomic polynomial. Recall that the p-th cyclotomic polynomial
Φp is the monic polynomial with integer coefficients, and irreducible in Q(x), such that its

roots are the primitive p-roots of the unity, that is e2nπi/p, for p and n relatively prime.
Recall also that only the 3rd, 4th and 6th roots of the unity have quadratic cyclotomic
polynomials. Hence, from our tools, we have seen that there are six maps of the form (5)
that are candidates to have two functionally independent first integrals:

f1(x, y) =
(
y,

1

xy2

)
, f2(x, y) =

(
y,
y2

x

)
, f3(x, y) =

(
y, x
)
,

f4(x, y) =
(
y,

1

xy

)
, f5(x, y) =

(
y,

1

x

)
, f6(x, y) =

(
y,
y

x

)
.

From these candidates it is not difficult to see, by using the tools of [4], that fj(x, y)
j = 3, 4, 5, 6 have the desired property. For instance, two functionally independent first
integrals for f6 are

H1(x, y) = x+
1

x
+ y +

1

y
+
x

y
+
y

x
, H2(x, y) = xy +

1

xy
+
x2

y
+

y

x2
+

x

y2
+
y2

x
.

In fact, these four maps are globally periodic, with periods 2, 3, 4 and 6, respectively.

3.2. Planar rational maps with rational coefficients. We consider now rational maps

(6) f(x, y) = (R1(x, y), R2(x, y)) =

(
P1(x, y)

Q1(x, y)
,
P2(x, y)

Q2(x, y)

)
,

with coefficients in Q, that is, with Pi, Qi ∈ Q[x, y] for i = 1, 2.

We introduce some notation. As usual, when two integer numbers p and n are coprime we
will write (p, n) = 1. Moreover we will denote the degree of the p-th cyclotomic polynomial
Φp by φ(p). In fact, φ(p) is the number of integers between 1 and p that are relatively
prime to p.

Given two polynomials P,Q ∈ C[x], as usual, we denote by Resx(P (x), Q(x)) ∈ C the
resultant of P and Q with respect to x. Recall that P and Q share some complex root if
and only if Resx(P (x), Q(x)) = 0, see [16].

We will also need the following result, which is essentially contained in ([2, 18]).

Proposition 7. For each p ∈ N there is a polynomial Mm ∈ Q[x] of minimal degree
m = φ(p)/2 such that Mm(cos(2nπ/p)) = 0 for all (p, n) = 1. Moreover,

(7) Resx
(
Φp(x), x2 − 2xv + 1

)
= M2

m(v).
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In particular, m = 1 if and only if p ∈ {1, 2, 3, 4, 6}; m = 2 if and only if p ∈ {5, 8, 10, 12};
m = 3 if and only if p ∈ {7, 9, 14, 18}; and m = (p− 1)/2 when p > 2 is prime.

We only make some comments about (7). Notice that if x = cos(2nπ/p) + i sin(2nπ/p)
then Φp(x) = 0. Moreover, if we define v = cos(2nπ/p) it holds that v = (x+ x̄)/2 = (x+
1/x)/2, or equivalently (x2−2xv+1)/x = 0. Hence the polynomial Resx

(
Φp(x), x2−2xv+1

)
has v as one of its roots. Moreover, if we start with x̄ instead of x we obtain again the
same value v as a root of this last polynomial, making that all its roots are double.

Notice that, as a consequence of the above result, the only rational values of cos(2π/p)
are

(8) cos(2π) = 1, cos(2π/2) = −1, cos(2π/3) = −1/2, cos(2π/4) = 0, cos(2π/6) = 1/2,

and the only values where cos(2π/p) is in Q[
√
q] for q ∈ Q, but

√
q 6∈ Q are

(9) cos(2π/5) = (
√

5− 1)/4, cos(2π/10) = (
√

5 + 1)/4, cos(2π/12) =
√

3/2.

For instance, the minimal polynomial for p = 5 is M2(x) = 4x2 + 2x − 1; the cases where
Mm is cubic are, 8x3 +4x2−4x−1 when p = 7; 8x3−6x+1 when p = 9; 8x3−4x2−4x+1
when p = 14; and 8x3 − 6x− 1 when p = 18.

Next result provides some computable conditions to know whether a planar rational map
with rational coefficients has a meromorphic first integral. In particular, notice that for
many 1-parametric families of maps it allows to prove that this first integral can only exist
for finitely many values of the parameter, see for instance Lemma 11.

Theorem 8. Consider the rational map (6) with rational coefficients. Assume that f has a
real fixed point (x̂, ŷ) ∈ R2 and that Df(x̂, ŷ) has complex conjugated eigenvalues µ, µ̄ with
modulus different from 1. If the map (6) has a meromorphic first integral, then µ/µ̄ is a
root of the unity and there exists a computable polynomial Uk ∈ Q[x], of degree k ∈ N, such
that Uk

(
Re(µ/µ̄)

)
= 0. Moreover, some of the values

(10) Resx
(
Uk(x), Vp(x)

)
, with p such that deg(Vp(x)) ≤ k,

must vanish, where Vp is the minimal polynomial of Re(µ/µ̄) = cos(2nπ/p), with (p, n) = 1,
see Proposition 7.

Proof. We introduce the polynomials S1, S2, T1, T2, D1, D2 associated to f,

S1(x, y) = P1(x, y)− xQ1(x, y), S2(x, y) = P2(x, y)− yQ2(x, y),

T (x, y) =
T1(x, y)

T2(x, y)
=
∂R1(x, y)

∂x
+
∂R2(x, y)

∂y
,

D(x, y) =
D1(x, y)

D2(x, y)
=
∂R1(x, y)

∂x

∂R2(x, y)

∂x
− ∂R1(x, y)

∂y

∂R2(x, y)

∂x
.

Notice that if (x̂, ŷ) is a fixed point of f then it is a solution of the system {S1(x, y) =
0, S2(x, y) = 0}, and moreover Q1(x̂, ŷ)Q2(x̂, ŷ) 6= 0. Observe also that the eigenvalues
µ = µ(x̂, ŷ) of Df(x̂, ŷ) satisfy

(11) P (µ) = µ2 − T (x̂, ŷ)µ+D(x̂, ŷ) = µ2 − Tµ+D = 0,

where, when there is no confusion, we omit the dependence of T,D and µ on the fixed
point.

With this notation, the condition of having complex eigenvalues µ and µ̄ with modulus
different from one reads simply as T 2 − 4D < 0 and D 6= 1, because they satisfy (11),
µµ̄ = D, and hence |µ|2 = D2.

By Theorem 1, if f has a meromorphic first integral, then there exists (0, 0) 6= (p, q) ∈ Z2,
such that µpµ̄q = 1. Taking norms, this means that |µ|p+q = 1. Since by hypothesis |µ| 6= 1,
we must have q = −p. Hence, |µ/µ̄| = 1 and µ/µ̄ is a p-root of the unity. Therefore
Re(µ/µ̄) = cos(2nπ/p) for some n ∈ {0, 1, . . . , p− 1} with n and p coprime.
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Let us write

µ =
T

2
+ i

√
4D − T 2

4
= α+ iβ, µ̄ =

T

2
− i

√
4D − T 2

4
= α− iβ.

Then
µ

µ̄
=
α+ iβ

α− iβ
=
α2 − β2

α2 + β2
+ i

2αβ

α2 + β2

and, as a consequence,

Re

(
α2 − β2

α2 + β2

)
=
T 2

2D
− 1 = cos (2nπ/p) .

If we name v = cos (2nπ/p) , then the following system of three equations is satisfied:

(12)

{
S1(x, y) = 0, S2(x, y) = 0,

W (x, y, v) = T 2
1 (x, y)D2(x, y)− 2(1 + v)T 2

2 (x, y)D1(x, y) = 0.

As usual, taking successive resultants, as follows

T1(y) = Resx
(
S1(x, y), S2(x, y)

)
, T2(y, v) = Resx

(
S1(x, y),W (x, y, v)

)
,

Uk(v) = Resy
(
T1(y), T2(y, v)

)
,

where k is de degree of Uk, we know that Uk(v) = 0 and Uk ∈ Q[x], as we wanted to prove,
see again [16]. Hence, by Proposition 7, v has to be a root of some Vp, with deg(Vp(x)) ≤ k.
By the properties of the resultant the last statement of the theorem follows. �

Remark 9. Notice that the conditions in Theorem 8 depend on the value k given in its
statement and obtained solving system (12). According to the fixed point (x̂, ŷ) taken into
account, some smaller k can be considered. To do this, let us treat this system in another
way. We consider first the following two polynomials with rational coefficients,

T1(y) = Resx
(
S1(x, y), S2(x, y)

)
, T3(x) = Resy

(
S1(x, y), S2(x, y)

)
.

Let V1 and V3 be the irreducible factors in Q[x] of T1 and T3, respectively, such that T1(ŷ) = 0
and T3(x̂) = 0. Then we can follow the same procedure that for system (12), but starting
with the system

(13) V1(y) = 0, V3(x) = 0, W (x, y, v) = 0.

We arrive at a new Uk′ ∈ Q[x], of degree k′ ≤ k and such that Uk′(v) = 0. Then the set of
conditions (10) has to be satisfied only until k′, taking Uk′ instead of Uk.

Corollary 10. Consider the rational map (6) with rational coefficients. Assume that f has
a fixed point (x̂, ŷ) ∈ Q2 and Df(x̂, ŷ) has complex conjugated eigenvalues, µ, µ̄, solution of

µ2 − T (x̂, ŷ)µ+D(x̂, ŷ) = 0,

and with modulus different of 1. If the map (6) has a meromorphic first integral, then

T 2(x̂, ŷ)

D(x̂, ŷ)
∈ {0, 1, 2, 3, 4} .

Proof. By using Theorem 8, Remark 9 and that (x̂, ŷ) ∈ Q2, we know that system (13)
writes as

V1(y) = y − ŷ, V3(x) = x− x̂, W (x, y, v) = 0.

Hence,

v =
T 2(x̂, ŷ)

2D(x̂, ŷ)
− 1 ∈ Q

and k = 1 in Theorem 8. Therefore, the only possible values of v = cos(2nπ/p) are the
ones that are rational. From (8) we get that

T 2(x̂, ŷ)

2D(x̂, ŷ)
− 1 ∈

{
−1,−1

2
, 0,

1

2
, 1

}
and the corollary follows. �
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In the next lemma we apply the above corollary to a simple example.

Lemma 11. The rational map

f(x, y) =

(
xy,

(a+ (2− a)x)y

1 + xy

)
,

with a ∈ Q, a > 9/8, can have meromorhic first integrals only when a ∈ {3/2, 2, 9/4, 9/2}.

Proof. It has a fixed point at (1, 1); the characteristic polynomial of Df(1, 1) is p(µ) =
µ2−3/2µ+a/2 and their eigenvalues (3± i

√
8a− 9)/4 are complex. Moreover, when a 6= 2

they have modulus different from 1. Notice that T 2(x̂, ŷ)/D(x̂, ŷ) = 9/(2a). Hence, by
Corollary 10, when a 6= 2, the conditions for existence of meromorphic first integral are

9

2a
∈ {0, 1, 2, 3, 4},

giving the result of the statement. �

Although we have not found any meromorphic first integral for the four possible cases
given in the statement it is worth to mention that when a = 1 then f has the meromorphic
(polynomial) first integral H(x, y) = y(1 + x), see also [14]. In fact, let us see which
conditions for existence of meromorphic first integral are consequence of Theorem 1 when
a < 9/8. In this case, let r ∈ R be the non-negative solution of r2 = 9 − 8a. Then the
eigenvalues at (x̂, ŷ) are µ1 = (3 − r)/4 and µ2 = (3 + r)/4. Hence, the condition for the
existence of a meromorphic first integral is that µn1µ

m
2 = 1, for some non-zero (n,m) ∈ Z2.

Equivalently, the only cases that might have a meromorphic first integral are either r = 1
or

log
(3− r

4

)/
log
(3 + r

4

)
∈ Q.

Notice that r = 1 precisely corresponds to the integrable case given above a = 1.

Next result is similar to Corollary 10. The only difference is that each one of the coor-
dinates of the fixed point is a zero of a quadratic polynomial with integer coefficients. Its
proof is essentially the same, but instead of using (8) we will use (9) and, consequently,
that the only values of cos(2nπ/p), that are solutions of a quadratic polynomial in Q[x],
irreducible in Q[x], are

−1±
√

5

4
,±
√

2

2
,
1±
√

5

4
,±
√

3

2
.

We skip the details of the proof.

Corollary 12. Consider the rational map (6) with rational coefficients. Assume that f has
a fixed point (x̂, ŷ) with both coordinates in Q[

√
s] \ Q, s ∈ Q, and Df(x̂, ŷ) has complex

conjugated eigenvalues µ, µ̄ solution of

µ2 − T (x̂, ŷ)µ+D(x̂, ŷ) = 0,

and with modulus different from 1. If the map (6) has a meromorphic first integral, then

T 2(x̂, ŷ)

D(x̂, ŷ)
∈

{
3±
√

5

2
, 2±

√
2,

5±
√

5

2
, 2±

√
3

}
.

Similar results to Corollaries 10 and 12 could be stated assuming that the rational map
f given in (6) has a fixed point (x̂, ŷ) with both coordinates being a zero of a polynomial of
higher degree and the same conditions for the eigenvalues of Df(x̂, ŷ) hold. As an example
we apply our techniques to prove the non-meromorphic integrability of a concrete rational
map. Consider

(14) f(x, y) =

(
x+ y2 − xy, x

2 + xy + 1

x2 − 3y + 1

)
,

and its fixed point (x̂, ŷ) = (s, s), where s ≈ 4.836 is the real root of P (x) = x3−5x2+x−1.
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It is easy to see that we are under the hypotheses of Theorem 8, because T 2(s, s) −
4D(s, s) < 0 and D(s, s) 6= 1. For the sake of shortness, we omit the explicit expressions of
T (x, y) and D(x, y). Moreover, in the notation of this theorem,

S1(x, y) = y(y − x), S2(x, y) = −x2y + x2 + xy + 3y2 − y + 1

and W (x, y, v) is a polynomial of degree 10 that we do not explicit either. Then,

T1(y) = Resx
(
S1(x, y), S2(x, y)

)
= −y2P (y),

T3(x) = Resy
(
S1(x, y), S2(x, y)

)
= −(x2 + 1)P (x).

Therefore, in the notation of Remark 9, V1(y) = P (y) and V3(x) = P (x). Finally,

Resx
(

Resy(W (x, y, v), V1(y)), V3(x)
)

= U3(v)Z6(v),

where U3, Z6 ∈ Q(x), U3(x) = 5833x3+16607x2+15650x+4874 and U3(Re(µ/µ̄)) = 0, with
µ and µ̄ the eigenvalues of Df(s, s). Since U3 has degree 3, to prove that system (14) has no
meromorphic first integral it suffices to prove that all the resultants Resx(U3(x), Q(x)), Q ∈
Q, do not vanish, where

Q = {x, x− 1, x+ 1, 2x+ 1, 2x− 1, 2x2 − 1, 4x2 − 3, 4x2 + 2x− 1, 4x2 − 2x− 1,

8x3 + 4x2 − 4x− 1, 8x3 − 6x+ 1, 8x3 − 4x2 − 4x+ 1, 8x3 − 6x− 1}.
The above set of polynomials corresponds to the only irreducible ones of degree at most
3 that have a root cos(2nπ/p) for some n, p ∈ Z, see the comments after Proposition 7.
These thirteen resultants are all different from zero, and the result follows.

3.3. Higher dimensional examples. As in the two dimensional case, the study of the
sequences generated by n-th order difference equations

xk+n = g(xk, xk+1, . . . , xk+n−2, xk+n−1)

can be reduced to the study of the DDS generated by the map

f(x1, x2, . . . , xn) = (x2, x3, . . . , xn−1, g(x1, x2, . . . , xn)),

from Cn into itself. Some of the maps that we will consider here have this shape.

We start studying the case of general analytic maps having the maximum possible number
of functionally independent meromorphic first integrals: n.

Proposition 13. Let f be an analytic map from Cn into itself, with isolated fixed points,
and with n functionally independent meromorphic first integrals. If q is a fixed point of
f, then all the eigenvalues µ, of Df(q) are p-roots of the unity. Moreover, there is a
constructive procedure, described in the proof, to find a polynomial Pk ∈ C[x] of degree k
such that, for all µ, Pk(µ) = 0.

Additionally, if f is a rational map and all the numerators and denominators of its
components are polynomials in Q[x1, . . . , xn], then Pk ∈ Q[x] and the eigenvalues of Df(q)
are p-roots of the unity with p ≤ M , where M is the maximum m ∈ N such that the
degree of the cyclotomic polynomial Φm is k. Furthermore, Resx(Φj(x), Pk(x)) = 0 for
some cyclotomic polynomial Φj with deg(Φj) ≤ k.

Proof. By Theorem 1, the dimension of the Z–linear space generated from {k ∈ Zn : µk =
1} is n. Let ki, i = 1, 2, . . . , n be a basis of this space. Then, det(K) 6= 0, where K is the n×n
matrix K = (ki,j) and, moreover it can be seen that µ

|det(K)|
` = 1, for all ` = 1, 2, . . . , n,

proving that p = |det(K)| ∈ N.
Set x = (x1, x2, . . . , xn). Then, the eigenvalues of Df at a fixed point are the soluti-

ons x, µ of the system of n + 1 equations, f(x) = x, P (x, µ) = 0, where P (x, µ) is the
characteristic polynomial of Df(x) at an arbitrary point x, not necessarily fixed.

Instead of considering them, we take their numerators as a polynomial system of n + 1
equations and n+ 1 unknowns,

(15) g(x) = Num(f(x)− x) = 0, R(x, µ) = Num(P (x, µ)) = 0,
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where Num denotes the numerator of a quotient of polynomials. Doing successive resultants
following [16], as in the proof of Theorem 8, and because f has no continuum of fixed points,
we arrive at a non-zero polynomial Pk ∈ C[x], such that Pk(µ) = 0 for all eigenvalues µ of
Df(x) at any x, fixed point of f, as we wanted to prove. Moreover, if f is rational, with
numerator and denominator in Q[x], then Pk ∈ Q[x].

Finally, it is known that given a primitive p-th root of the unity, µ, the minimal degree
of a polynomial S ∈ Q[x] such that S(µ) = 0 is φ(p) = deg(Φp(x)). Hence, p ≤ M, as we
wanted to prove. Moreover Pk must share some root with one of the polynomials Φj with
φ(j) ≤ k, and as a consequence, for this value of j, Resx(Φj(x), Pk(x)) = 0. �

As an example of application we prove the following lemma.

Lemma 14. Consider the map

(16) f(x, y, z) =

(
y, z,

a+ y + z

x

)
, a ∈ Q.

If it has 3 functionally independent meromorphic first integrals, then a ∈ {−1, 1}.

Proof. We will apply Proposition 13. We start constructing a reduced, but equivalent,
version of system (15). Notice that the fixed points of f are (x, x, x) such that a+ 2x = x2

and

Df(x, x, x) =

 0 1 0
0 0 1

−a+y+z
x2

1
x

1
x


(x,y,z)=(x,x,x)

=

 0 1 0
0 0 1
−1 1

x
1
x

 .

Hence, the characteristic polynomial at any fixed point is (µ + 1)(µ2 − (1 + 1/x)µ + 1).
Therefore, since µ = −1 is a root of the unity, system (15) with 4 unknowns can be simply
reduced to a system of 2 equations and 2 unknowns, x and µ, and a parameter a:

−x2 + 2x+ a = 0, (µ2 − µ+ 1)x− µ = 0.

Hence

P4(µ) = Resx(−x2+2x+a, (µ2−µ+1)x−µ) = aµ4−2(a−1)µ3+3(a−1)µ2−2(a−1)µ+a = 0.

Therefore, we only have to consider the values of p for which the cyclotomic polynomial Φp

has degree at most 4. They are p ∈ P = {1, 2, 3, 4, 5, 6, 8, 10, 12}. By doing all the resultants
Resx(P4,Φp(x)), with p ∈ P, we can discard all the values a ∈ Q but a = −1, 7/9, 5/4, 3, 1,
that correspond to p = 1, 2, 3, 4, 8, respectively. For instance, we get that Resx(P4,Φ3(x)) =
(4a − 5)2 and Resx(P4,Φ8(x)) = (a − 1)2, but Resx(P4,Φ10(x)) = (a2 − a − 1)2. Finally,
the values a ∈ {7/9, 5/4, 3} are also discarded because, for them, some of the roots of P4

are not roots of the unity. For instance, P4(µ)|a=3 = (µ2 + µ+ 1)(5µ2 − 7µ+ 5)/4. On the
other hand,

P4(µ)|a=−1 = −(µ− 1)4 and P4(µ)|a=1 = µ4 + 1,

and all the roots of both polynomials are roots of the unity. �

It is worth to comment that for a = 1 it is well known that the map (16) has effectively 3
functionally independent rational first integrals. Two of them exist for any a ∈ C. They
are

H1(x, y, z) =
(x+ 1)(y + 1)(z + 1)(a+ x+ y + z)

xyz
,

H2(x, y, z) =
(1 + x+ y)(1 + y + z)(a+ x+ y + z + xz)

xyz
,

see for instance [6] and its references, and a third one can be seen in [4] and it is found by
using the tools introduced in that paper. It exists because this map, for a = 1, corresponds
to the celebrated 3rd order Todd’s difference equation xn+3 = (1 + xn+2 + xn)/xn which
is globally 8-periodic, that is xn+8 = xn for all n, whenever xk is well defined. We believe
that when a = −1 the map has only the above 2 functionally independent meromorphic
first integrals, but from our approach we cannot discard the existence of a third one. In
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fact, it is known, even for a ∈ C, that the only globally periodic map corresponds to a = 1,
see [8, 10].

There is also a simple case for which the non-existence of meromorphic first integral can
be easily established.

Corollary 15. Let f be an analytic diffeomorphism with a fixed point q ∈ Cn and assume
that the eigenvalues of Df(q) are n different prime numbers. Then f has no meromorphic
first integral.

Proof. By Theorem 1 we have to calculate the dimension of the Z–linear space generated
from {k ∈ Zn : µk = 1} where here µ = (p1, p2, . . . , pn) and the pj are the n different prime

numbers. Hence, from the condition pk11 p
k2
2 · · · pknn = 1 we get k1 = k2 = · · · = kn = 0 and

this dimension is 0. As a consequence, the map has no meromorphic first integral. �

There are many other rational maps in dimension n > 2 that admit meromorphic (indeed
rational) first integrals. As a final example we show one of them, obtained from the paper
[15], dedicated to study systems of difference equations with invariants.

The map

f(x, y, z, t) =

(
z, t,

az + bt+ c

x
,
az + bt+ c

y

)
has the first integral

H(x, y, z, t) =
(xy + ay + bx) (zt+ at+ bz) (ax+ az + bt+ by + c)

xyzt
.

By using our result we could embed the above map into a large family, with more parame-
ters, and find necessary conditions among them for the cases with one or more meromorphic
first integrals.
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[6] A. Cima, A. Gasull, V. Mañosa, Some properties of the k-dimensional Lyness’ map, J. Phys. A 41

(2008) 1–18.
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