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We present a relationship between the existence of equilibrium points of differential
systems and the cofactors of the invariant algebraic curves and the exponential
factors of the system.

1. Introduction and statement of the main results

A complex planar polynomial differential system of degree d is a differential system
of the form

ẋ = P (x, y), ẏ = Q(x, y), (1.1)

where P, Q ∈ C[x, y] are coprime and d is the maximum of the degrees of the
polynomials P and Q. As usual, C[x, y] denotes the ring of all polynomials in the
variables x and y with coefficients in the set of complex numbers C. The vector
field associated with (1.1) is

X (x, y) = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y
.

Of course, we say that X is a polynomial vector field of degree d. In what follows we
make no distinction between the polynomial differential system (1.1) and its vector
field X .

Let U be an open and dense subset of C
2. A first integral of X in U is a locally

non-constant analytic function H : U → C, possibly multi-valued, that is constant
on all the solutions of X contained in U , i.e. XH = 0 in the points of U . In this
case we also say that X is integrable on U .
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