Cofactors and equilibria for polynomial vector fields

Antoni Ferragut*

Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Avenida Diagonal 647, 08028 Barcelona, Catalonia, Spain

Jaume Llibre

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona, Catalonia, Spain (jllibre@mat.uab.cat)

(MS received 18 February 2013; accepted 28 May 2013)

We present a relationship between the existence of equilibrium points of differential systems and the cofactors of the invariant algebraic curves and the exponential factors of the system.

1. Introduction and statement of the main results

A complex planar polynomial differential system of degree d is a differential system of the form

$$\dot{x} = P(x, y), \qquad \dot{y} = Q(x, y), \tag{1.1}$$

where $P, Q \in \mathbb{C}[x, y]$ are coprime and d is the maximum of the degrees of the polynomials P and Q. As usual, $\mathbb{C}[x, y]$ denotes the ring of all polynomials in the variables x and y with coefficients in the set of complex numbers \mathbb{C} . The vector field associated with (1.1) is

$$\mathcal{X}(x,y) = P(x,y)\frac{\partial}{\partial x} + Q(x,y)\frac{\partial}{\partial y}$$

Of course, we say that \mathcal{X} is a *polynomial vector field of degree d*. In what follows we make no distinction between the polynomial differential system (1.1) and its vector field \mathcal{X} .

Let U be an open and dense subset of \mathbb{C}^2 . A first integral of X in U is a locally non-constant analytic function $H: U \to \mathbb{C}$, possibly multi-valued, that is constant on all the solutions of X contained in U, i.e. $\mathcal{X}H = 0$ in the points of U. In this case we also say that X is integrable on U.

*Present address: Institut de Matemàtiques i Aplicacions de Castelló and Departament de Matemàtiques, Universitat Jaume I, Edifici TI (ESTEC), Av. de Vicent Sos Baynat, s/n, Campus del Riu Sec, 12071 Castelló de la Plana, Spain (ferragut@uji.es).

© 2014 The Royal Society of Edinburgh