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ON THE POLYNOMIAL SOLUTIONS OF THE POLYNOMIAL

DIFFERENTIAL EQUATIONS y y′ = a0(x) + a1(x) y + a2(x) y2 + . . . + an(x) yn

ANTONI FERRAGUT1 AND JAUME LLIBRE2

Abstract. In this paper we deal with differential equations of the form yy′ = P (x, y)
where y′ = dy/dx and P (x, y) is a polynomial in the variables x and y of degree n
in the variable y. We provide the maximum number of polynomial solutions of this
class of differential equations, and for some particular classes we study properties of their
polynomial solutions.

1. Introduction and statement of the main results

The study of given solutions (as polynomial or rational solutions) of differential equations
is of main interest for understanding the set of solutions of a differential equation. Rainville
[14] in 1936 characterized all the Riccati differential equations of the form y′ = a0(x) +
a1(x)y + y2, where a0 and a1 are polynomials in x, having polynomial solutions. He also
gave an algebraic method for studying these polynomial solutions.

In 1954 Campbell and Golomb [6] gave an algorithm for computing all the polynomial
solutions of the differential equation a(x)y′ = a0(x) + a1(x)y + a2(x)y2, where a, a0, a1, a2
are polynomials in x. In 2006 Behloul and Cheng [2] provided another algorithm for finding
all the rational solutions of the equation a(x)y′ =

∑n
i=0 ai(x)yi, where a, ai are polynomials

in x.

The differential equations y′ = a0(x)+a1(x)y+a2(x)y2+a3(x)y3 are the Abel differential
equations, which have been studied widely, either computing their periodic orbits (see for
instance [8, 11]), or studying their centers (see [3, 4, 5]). More recently in [9] the authors
studied the polynomial solutions of the differential equation y′ =

∑n
i=0 ai(x)yi.

Also polynomial solutions of non-autonomous differential equations, or polynomial solu-
tions of matrix differential equations have been studied, see for instance the articles [15] or
[1] respectively, and the references quoted therein.

The Riccati-Abel equation (a(x) + y(x))y′(x) = a0(x) + a1(x) y + a2(x) y2 is studied in
[16]. Moreover, in [10] (p. 28) the differential equation (a(x) + b(x)y(x))y′(x) = a0(x) +
a1(x) y + a2(x) y2 + a3(x) y3 is considered. We deal in this paper with the generalization
to degree n of these two equations with the restrictions a(x) ≡ 0 and b(x) ≡ 1. Indeed, we
consider ordinary differential equations of the form

y
dy

dx
= a0(x) + a1(x) y + a2(x) y2 + . . . + an(x) yn, (1)

where x and y are complex variables, ai(x) are polynomials in C[x] for i = 0, 1, 2, . . . , n and
an(x) 6≡ 0, with n a nonnegative integer. We denote the derivative of y with respect to x by
dy/dx or y′. We assume that a0 6≡ 0, otherwise this differential equation becomes the one
studied in [9]. We note that while the solutions of linear differential equations with constant
coefficients admit relatively easily methods for solving them see for instance [12, 13], the
solutions of nonlinear equations as equations (1) require special investigations.
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2 A. FERRAGUT AND J. LLIBRE

Differential equation (1) can be also written as the planar polynomial differential system

ẋ = y, ẏ = a0(x) + a1(x) y + a2(x) y2 + . . . + an(x) yn, (2)

where the dot denotes derivative with respect to an independent variable t.

We are interested in the polynomial solutions y = p(x) of the differential equation (1),
i.e. the solutions y = p(x) of (1) where p(x) ∈ C[x]. Notice that we can also consider the
algebraic curves p(x)− y = 0 as invariant solutions of system (2).

Let N = max{2, n}. Our four main results are the following.

Theorem 1. The differential equation (1) has at most N2deg a0 polynomials solutions, and
this bound is sharp.

The next two results concern special families of differential equations (1).

Theorem 2. If the differential equation (1), with n ≥ 2 and ai(x) ≡ 0 for all i = 1, . . . , n−
1, has more than one polynomial solution, then either it has exactly n solutions, all constant,
or it has exactly two polynomial solutions y = ±p(x), for some polynomial p(x) ∈ C[x].

Theorem 3. If the differential equation (1), with n even and a2i−1(x) ≡ 0 for i =
1, . . . , n/2, with a2i(x) 6≡ 0 for some i, has more than one polynomial solution, then it
has exactly two polynomial solutions y = ±p(x), for some polynomial p(x) ∈ C[x].

The next theorem deals with the differential equation (1) for several small values of n.

Theorem 4. Consider the differential equation (1). Then the following statements hold.

(a) If n = 0, then either equation (1) has no polynomial solutions, or it has two non-
constant polynomial solutions of the form y = ±p(x), p(x) ∈ C[x].

(b) If n = 1, then two polynomial solutions y = pi(x), i = 0, 1, of (1) always have a
non-constant common factor. Moreover every factor of p0(x) − p1(x) divides both
p0(x) and p1(x).

(c) If n = 2 and there exist three polynomial solutions y = pi(x), i = 0, 1, 2, then
pi(x)/pj(x) is not a constant function, for i 6= j.

(d) If n = 3 and there exist four polynomial solutions y = pi(x), i = 0, 1, 2, 3, then
pi(x)/pj(x) is not a constant function, for i 6= j. Moreover, if y = p(x) is a
polynomial solution of (1), then a0(x)/p(x) is a polynomial solution of the Abel
differential equation a0y

′ = −a20a3 + (a′0 − a0a2)y − a1y2 − y3.

The paper is organized as follows. In section 2 we prove Theorem 1. Theorem 2 is proved
in section 3. Section 4 is devoted to the proof of Theorem 3. Finally in section 5 we prove
Theorem 4.

We must mention that all the algebraic computations that appear in this paper have
been done with the help of the algebraic manipulator Mathematica.

2. An upper bound for the number of polynomial solutions of (1)

The following lemma, despite that it has a trivial proof, provides important information
on the polynomial solutions of the differential equation (1).

Lemma 5. If y = p(x) is a polynomial solution of the differential equation (1), then
p(x)|a0(x).

The next lemma is a key-point in the proof of Theorem 1.

Lemma 6. If y = p(x) is a polynomial solution of (1), then there exist at most N complex
solutions of (1) of the form y = κp(x), with κ ∈ C.
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Proof. Let y = p(x) be a polynomial solution of (1). Suppose that y = κp(x), with
κ ∈ C \ {0, 1}, is another polynomial solution of (1). Then

κ2
n∑

i=0

ai(x)p(x)i = κ2p(x)p′(x) =
n∑

i=0

κiai(x)p(x)i.

Here the first equality holds because y = p(x) is a solution of (1) and the second one
because y = κp(x) also is a solution. Hence we get

n∑
i=0

(κi − κ2)ai(x)p(x)i = 0. (3)

This is a polynomial equation of degree exactly N in the variable κ for all x fixed, except
perhaps for a finite number of values. Therefore this equation, for almost all fixed x, has
exactly N complex solutions for κ, and of course this set of solutions includes κ = 1. �

Next we provide some definitions concerning integrability. They will be used later no.
If ẋ = P (x, y), ẏ = Q(x, y) is a differential system, a non-constant C1-function H(x, y) is a
first integral of this system if it is constant on the solutions of the system; i.e., if it satisfies
the equation

P (x, y)
∂H

∂x
+Q(x, y)

∂H

∂y
= 0. (4)

An algebraic curve f = 0 is invariant under the flow of the differential system ẋ =
P (x, y), ẏ = Q(x, y) if there exists a polynomial k ∈ C[x, y], called the cofactor, such
that

P (x, y)
∂f

∂x
+Q(x, y)

∂f

∂y
= kf.

The Darboux Theory of Integrability relates the number of invariant algebraic curves
of a differential system with the existence of a (Darboux) first integral, see [7]. The key
point in the existence of such a Darboux first integral is whether a linear combination of
the cofactors of such curves is identically zero.

Example 1. Consider the following differential equation (1) with n = 1:

yy′ = −2x(2x2 − 1) + 6xy. (5)

This equation has four polynomial solutions given by p0(x) = x2 − 1/2, p1(x) = 2x2 − 1
and y(x) =

√
2x(
√

2x ± 1). Notice that all of them divide a0 and have common factors.
Moreover, we have p1(x) = 2p0(x), hence equation (3) in this case and for p(x) = p0(x) has
the maximum number of solutions κ, which is N = max{1, 2} = 2.

Finally we note that the differential system associated to the differential equation (5)
has the rational first integral

H(x, y) =
(y − 2p0(x))2

y − p0(x)
,

as is easy to check using (4). �

Proof of Theorem 1. We recall from Lemma 5 that a polynomial solution y = p(x) must
divide a0(x). This means that, up to a multiplicative constant, we can obtain at most
2deg a0 different polynomial solutions of (1). Now from Lemma 6 the first part of the
theorem follows.

The differential equation yy′ =
∏n

i=1(y − ci), with n ≥ 2 and ci 6= 0 for all i, has n
polynomial solutions given by y = pi(x) = ci, i = 1, . . . , n. This is an example where the
upper bound given by Theorem 1 is sharp, since it is N2deg a0 = n · 20 = n. This completes
the proof of the theorem. �
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3. Proof of Theorem 2

We consider in this section the subfamily of (1) given by the differential equation

y
dy

dx
= a0(x) + an(x) yn. (6)

The case n = 1 will be studied in section 5. We assume here that n ≥ 2.

Proof of Theorem 2. Suppose that the differential equation (6) has two polynomial solu-
tions y = p(x) and y = q(x) such that p(x)n 6≡ q(x)n. Substituting p(x) and q(x) into (6)
we obtain two linear equations with unknowns a0(x), an(x), from which

a0(x) =
p(x)nq(x)q′(x)− q(x)np(x)p′(x)

p(x)n − q(x)n
, an(x) =

p(x)p′(x)− q(x)q′(x)

p(x)n − q(x)n
.

Note that, since n ≥ 2, an(x) is not a polynomial, which is a contradiction. Hence this
situation cannot happen. Therefore we must have p(x)n ≡ q(x)n. Then

pp′ − a0
an

= pn = qn =
qq′ − a0
an

.

Hence pp′ = qq′. We distinguish two cases. If p′ = q′ = 0 then p and q are constant, and
therefore

pn = qn = −a0
an

is a constant, meaning that we have n constant solutions given by

y = n

√
−a0
an
.

If p′, q′ 6= 0 then integrating pp′ = qq′ we have p2 = q2 and hence p = ±q. �

Example 2. The differential equation

yy′ = x(1− x)(3x− 4) + (3x− 1)y

has the polynomial solutions y = ±(x− 1). �

Example 3. The differential equation yy′ = 1− y4 has four constant solutions: the fourth
roots of unity. �

4. Proof of Theorem 3

We consider in this section the subfamily of (1) given by the differential equation

y
dy

dx
=

m∑
i=0

a2i(x)y2i, (7)

with m = n/2 ∈ N, with a0, a2j , a2m 6≡ 0, for some 0 < j < m.

Set z = y2/2. Then z′ = yy′, and hence the differential equation (7) can be written, in
terms of z, as

dz

dx
=

m∑
i=0

b2i(x)zi, (8)

where b2i = 2ia2i. The following result appears in [9].

Theorem 7. The differential equation (8) has at most m polynomial solutions. The dif-
ference between two such polynomial solutions is a constant.
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Proof of Theorem 3. Let z = r(x)/2 be a solution of (8). Then y = ±
√
r(x) are two

solutions of (7). They are polynomial if and only if r(x) is a perfect square; that is, if there
exists p(x) ∈ C[x] such that r(x) = p(x)2. In such a case, y = ±p(x) are two polynomial
solutions of (7). From Theorem 7, this implies that we have at most n = 2m polynomial
solutions for (7).

Now suppose that indeed r(x) = p(x)2 is a perfect square. Suppose also that z = s(x)/2
is another polynomial solution of (8). Again from Theorem 7, we know that there exists a

non-zero constant C such that s(x) = p(x)2 + C, for all x. Hence y = ±
√
p(x)2 + C are

two solutions of (7). If s(x) is a perfect square, that is s(x) = q(x)2, then from the proof
of Proposition 8 and from q(x)2− p(x)2 = C we get that C = 0, and therefore r(x) = s(x).
Thus only two polynomial solutions can exist for the differential equation (7), which are
y = ±p(x), and the theorem follows. �

5. Proof of Theorem 4

5.1. The differential equation (1) with n = 0. The following proposition proves state-
ment (a) of Theorem 4.

Proposition 8. The differential equation (1) with n = 0,

y
dy

dx
= a0(x), (9)

has either zero or two distinct polynomial solutions. They have the form y = ±p(x),
p(x) ∈ C[x].

Proof. Equation (9) can be directly solved, providing the solutions

y(x) = ±

√
K + 2

∫
a0(x) dx,

where K is an arbitrary constant. Now we must prove that, if there exists K ∈ C such
that y = p(x) is a polynomial solution, then this K is unique and y = −p(x) is another
polynomial solution. Indeed, if y = q(x) is a solution of (9) different from y = p(x), then
p2− q2 is a constant. We need to prove that this constant is zero, and hence q(x) = −p(x).

Let p(x) =
∑
pix

i and q(x) =
∑
qix

i. It is clear that deg p = deg q. Let m ∈ N be this
degree. Thus

p2 − q2 = (p2m − q2m)x2m

+ 2(pmpm−1 − qmqm−1)x2m−1 + (p2m−1 − q2m−1 + 2(pmpm−2 − qmqm−2))x2m−2 + · · · .

Since p2−q2 is a constant, all the monomials of the previous polynomial except the constant
one must be zero. In particular, p2m = q2m. If pm = qm 6= 0, then from the monomial of
x2m−1 we have pm−1 = qm−1. Otherwise pm = −qm 6= 0 and then pm−1 = −qm−1. From
the next monomial, x2m−2, we get either pm−2 = qm−2 (in case pm = qm), or pm−2 = −qm−2
(in case pm = −qm).

We can continue this argument by using the induction principle to have either pi = qi
or pi = −qi, for all i = m, . . . , 0 from the monomials from x2m to xm: the coefficient of
the monomial xm+i is the sum of non-zero multiples of the expressions pmpi − qmqi and
pjpk − qjqk, with j + k = m+ i, i < j, k < m. Since pjpk = qjqk, we have pmpi = qmqi. So
again if pm = qm 6= 0, then pi = qi, and if pm = −qm 6= 0 then pi = −qi.

Hence we obtain either p(x) = q(x) or p(x) = −q(x), and the proposition follows. �

Example 4. The only polynomial solutions y = p(x) of the differential equation (9) with
a0(x) = 2(x− 1)(x+ 1)(x− 3) are y(x) = ±(x− 3)(x+ 1). �
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5.2. The differential equation (1) with n = 1. We recall that a polynomial is square-free
if it has no multiple factors in this factorization.

Proposition 9. Consider the differential equation (1) with n = 1:

y
dy

dx
= a0(x) + a1(x)y. (10)

Then two polynomial solutions of (10) have a square-free common factor.

Proof. Let y = p(x) a polynomial solution of (10). Then, by Lemma 5, p(x)|a0(x), that is
a0(x) = p(x)ã0(x), for some ã0(x) ∈ C[x]. Hence p(x) satisfies

p′(x) = ã0(x) + a1(x).

Then a1(x) = p′(x)− ã0(x). Substituting the expressions of a0(x) and a1(x) into (10), we
have

y
dy

dx
= p(x)ã0(x) + (p′(x)− ã0(x))y.

Let y = q(x) be another solution of (10). Then

q(x)q′(x) = p(x)ã0(x) + (p′(x)− ã0(x))q(x),

and consequently

ã0(x) = −q(x)
p′(x)− q′(x)

p(x)− q(x)
.

This must be a non-zero polynomial. Since deg(p − q) > deg(p′ − q′), the polynomials q
and p − q have a square-free common factor dividing also p. Therefore the proposition
follows. �

We prove that the existence of n + 1 solutions determines completely the differential
equation (1). We shall use this result later on.

Proposition 10. Let y = pi(x), for i = 0, . . . , n, be n + 1 distinct C1-solutions of the
differential equation (1). Then, for all i ∈ {0, . . . , n}, ai(x) can be written as a function of
p0(x), . . . , pn(x) and their first derivatives.

Proof. For j = 0, . . . , n, since y = pj(x) is a solution of (1), we have

pj(x)p′j(x) =

n∑
i=0

ai(x)pj(x)i.

These n + 1 equations can be written altogether as a linear system of equations with
unknowns the ai: 

1 p0 p20 · · · pn0
1 p1 p21 · · · pn1
...

...
...

. . .
...

1 pn p2n · · · pnn




a0
a1
...
an

 =


p0p
′
0

p1p
′
1

...
pnp
′
n

 . (11)

The square matrix has non-zero determinant, since it is a Vandermonde matrix. Then there
exist unique a0, . . . , an that satisfy this linear system. In particular, the solutions ai depend
on the pj ’s and their first derivatives. �

Remark 1. When the pi’s are polynomials, the linear system (11) provides rational solu-
tions a0, . . . , an with denominator

∏
0≤i<j≤n(pi − pj). Since ai(x) is assumed to be poly-

nomial for all i, some relations among the pj may appear. See Proposition 9 for the case
n = 1.

Remark 2. If equation (10) has two solutions y = p(x) and y = q(x), then by Proposition
10

a0(x) = −p(x)q(x)(p′(x)− q′(x))

p(x)− q(x)
, a1(x) =

p(x)p′(x)− q(x)q′(x)

p(x)− q(x)
. (12)
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We recall that if y = p(x) is a polynomial solution of (1), then p(x)−y = 0 is a polynomial
solution of system (2). In such a case, there exists a polynomial k(x, y), called the cofactor,
such that

p′(x)y −
n∑

i=0

ai(x)yi = k(x, y)(p(x)− y). (13)

This cofactor has degree at most n−1 in y. We note that equation (1) follows from equation
(13) with y = p(x).

Proposition 11. The following statements hold for the differential equation (10).

(a) If (C + 1)a0(x) + Cp(x)a1(x) ≡ 0 for some polynomial p(x) and some constant
C ∈ C \ {−1, 0, 1}, then the differential equation has y = p(x) and y = Cp(x) as
polynomial solutions.

(b) If the differential equation has two polynomial solutions given by y = p(x) and y =
Cp(x), with C ∈ C\{−1, 0, 1}, then a0(x) = −Cp(x)p′(x) and a1(x) = (C+1)p′(x).
Moreover the associated differential system (2) has the first integral

H(x, y) =
y − p(x)

(y − Cp(x))C
.

Proof. The proof about the polynomial solutions and their relation with the differential
equation follows directly after substituting q(x) by Cp(x) in the expressions of a0 and a1
provided in (12).

Concerning the first integral, we just need to note that the cofactor of the invariant
algebraic curve f1(x, y) = p(x)−y = 0 for the associated system (2) is k1(x, y) = Cp′(x) and
the cofactor of f2(x, y) = Cp(x) − y = 0 is k2(x, y) = p′(x). Hence k1(x, y) − Ck2(x, y) ≡
0. Applying the Darboux Theory of Integrability the (Darboux) first integral f1/f

C
2 is

obtained, for more details see Theorem 8.7 of [7]. �

Proposition 12. If y = pi(x), i = 0, 1, are polynomial solutions of (1) with n = 1, then
the factors of p0(x)− p1(x) divide to p0(x) and p1(x).

Proof. We have

p0p
′
0 = a0 + a1p0, p1p

′
1 = a0 + a1p1.

The difference of these equations is

p0p
′
0 − p1p′1 = a1(p0 − p1).

Let ω be a factor of p0 − p1. Then p0 − p1 = ωkγ, for some k ∈ N and some polynomial
γ such that ω - γ. Thus p′0 − p′1 = kωk−1ω′γ + ωkγ′. Substituting p0 and p′0 from these
equalities in the previous equation we obtain

(p1 + ωkγ)(p′1 + kωk−1ω′γ + ωkγ′)− p1p′1 = a1ω
kγ.

After some simplifications we have

kp1ω
′γ + ω(p1γ

′ + p′1γ − a1γ) = 0.

Hence ω|p1. From p0 − p1 = ωkγ we also have that ω|p0. �

Note that Propositions 9, 11 and 12 prove statement (b) of Theorem 4. We needed to
omit the case C = −1 in Proposition 11 because in that case we have a1 ≡ 0, which is not
possible because we are working with n = 1.

Remark 3. Statement (b) of Proposition 11 shows that, given a polynomial p(x) and a
constant C, we can construct a differential equation (10) having the polynomial solutions
y = p(x) and y = Cp(x).
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Remark 4. Regarding equation (3) for n = 1, we note that it has degree 2 in κ. So if
(C + 1)a0(x) +Ca1(x)p(x) = 0, then it writes always as κ2− (C + 1)κ+C = 0 and has the
solutions κ = 1, C.

The next lemma provides some information about the degrees of a0 and a1 when the
differential equation (10) has a polynomial solution. Its proof is trivial and we omit it.

Lemma 13. Consider the differential equation (10) having a polynomial solution y = p(x).
Then

(a) If deg p < (deg a0 + 1)/2, then deg a1 = deg a0 − deg p.
(b) If deg p = (deg a0 + 1)/2, then deg a1 ≤ deg a0 − deg p.
(c) If deg p > (deg a0 + 1)/2, then deg a1 = deg p− 1.

5.3. The differential equation (1) with n = 2. When n = 2, the proof of Proposition
10 gives

a0(x) =
p0p1p2

[
p′0(p1 − p2) + p′1(p2 − p0) + p′2(p0 − p1)

]∏
i<j(pi − pj)

,

a1(x) =
p0p
′
0(p

2
2 − p21) + p1p

′
1(p

2
0 − p22) + p2p

′
2(p

2
1 − p20)∏

i<j(pi − pj)
,

a2(x) =
p0p
′
0(p1 − p2) + p1p

′
1(p2 − p0) + p2p

′
2(p0 − p1)∏

i<j(pi − pj)
,

if y = pi(x), for i = 0, 1, 2, are solutions of the differential equation (1) with n = 2.

Next we provide an example of the differential equation (1) with n = 2 having three
polynomial solutions.

Example 5. The differential equation yy′ = x2(x2 − 1) − (2x2 − 2x − 1)y + y2 has three
polynomial solutions p0(x) = x2; p1(x) = x2 − 1; and p2(x) = x(x+ 1). �

Proposition 14. Suppose that the differential equation (1) with n = 2 has three distinct
solutions y = pi(x), i = 0, 1, 2. Then there does not exist C1 ∈ C \ {0, 1} such that
p1(x) = C1p0(x).

Proof. Suppose that we can write p1(x) = C1p0(x), for some C1 ∈ C\{0, 1}. The associated
differential system (2) has a first integral given by

H(x, y) =
(y − p0(x))(C1p0(x)− p2(x))C1

(y − C1p0(x))C1(p0(x)− p2(x))
.

Since the curves pi(x) − p2(x) = 0, i = 0, 1, are not invariant by the system because
they do not divide ẋ = y, the quotient (C1p0 − p2)C1/(p0 − p2) must be a constant, say
1/(C(1− C1)). If we let q(x) = C1p0(x)− p2(x), then

q(x)C1 =
p0(x)

C
+

q(x)

C(1− C1)
,

or

p0(x) = Cq(x)C1 − q(x)

1− C1
, p2(x) = CC1q(x)C1 − q(x)

1− C1
.

Substituting p0(x) and p2(x) into the expression of a2 we get a2 ≡ 0, which contradicts the
initial hypotheses on (1). Hence no such C1 may exist. �

Remark 5. If, besides p1(x) = kp0(x), we have p2(x) = C2p0(x), then direct computations
show that a0(x) ≡ 0.

Proposition 14 proves statement (c) of Theorem 4.
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5.4. The differential equation (1) with n = 3. If y = pi(x), for i = 0, 1, 2, 3, are
solutions of the differential equation (1), then from Proposition 10 with n = 3 we can write
ai as functions of these pj . We do not write the expression of the ai because they are too
long.

Statement (d) of Theorem 4 follows from the next two propositions.

Proposition 15. Suppose that the differential equation (1) with n = 3 has four distinct
solutions y = pi(x), i = 0, 1, 2, 3. Then there do not exist C1, C2 ∈ C \ {0, 1} such that
pi(x) = Cip0(x), i = 1, 2.

Proof. Suppose that we can write pi(x) = Cip0(x), i = 1, 2, for some Ci ∈ C \ {0, 1},
C1 6= C2. From Proposition 10 we can compute ai(x) in terms of pj(x). We note that it is
not possible to have, in addition, p3(x) = C3p0(x), otherwise a0 ≡ 0. From the expression
of a0 and a1 we have the relation

(C1 + C2 + C1C2)a0(x) + C1C2p0(x)a1(x) = 0.

Moreover it is easy to check that the associated system (2) has a first integral given by

H(x, y) =
(y − p0(x))C1−C2(y − C1p0(x))C1(C2−1)(C2p0(x)− p3(x))C2(C1−1)

(y − C2p0(x))C2(C1−1)(C1p0(x)− p3(x))C1(C2−1)(p0(x)− p3(x))C1−C2
.

Since the curves pi(x) − p3(x) = 0, i = 0, 1, 2, are not invariant by the system because
they do not divide ẋ = y, it must happen that

(C2p0(x)− p3(x))C2(C1−1)

(C1p0(x)− p3(x))C1(C2−1)(p0(x)− p3(x))C1−C2

is a constant. Let q(x) = C2p0(x)− p3(x). Thus

q(x)C2(C1−1)

((C1 − C2)p0(x) + q(x))C1(C2−1)((1− C2)p0(x) + q(x))C1−C2
= C ∈ C. (14)

We claim that q(x)/p0(x) = Cq is a constant. Assuming the claim, we obtain p3(x) =
(C2 −Cq)p0(x), and thus as before a0 ≡ 0. Hence no such C1, C2 exist and the proposition
will follow once the claim is proved.

So it remains to prove the claim. From (14) we have

q(x)C2(C1−1) = C
(
(C1 − C2)p0(x) + q(x)

)C1(C2−1)((1− C2)p0(x) + q(x)
)C1−C2 .

Or, equivalently,

1 = C

(
(C1 − C2)

p0(x)

q(x)
+ 1

)C1(C2−1)(
(1− C2)

p0(x)

q(x)
+ 1

)C1−C2

.

Thus (
(1− C2)

p0(x)

q(x)
+ 1

)
= C̃

(
(C1 − C2)

p0(x)

q(x)
+ 1

)C1(C2−1)
C2−C1

,

where C̃ is another constant. From this last equality we get that either p0/q is a constant,
or C1(C2 − 1) = C2 − C1. In the second case we get C1 = 1, which is a contradiction.
Therefore the claim is proved. �

Proposition 16. We have that y = p(x) is a polynomial solution of the differential system
(1) with n = 3 if and only if y = q(x) = a0(x)/p(x) is a polynomial solution of the Abel
differential equation

a0y
′ = −a20a3 + (a′0 − a0a2)y − a1y2 − y3. (15)
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Proof. It is clear from Lemma 5 that if y = p(x) is a polynomial solution of (1) then q(x)
is a polynomial. If y = q(x) is a polynomial solution of (15), then we have

a0
a′0p− a0p′

p2
= −a20a3 + (a′0 − a0a2)

a0
p
− a1

a20
p2
− a30
p3
.

This is equivalent to have

a0a
′
0p

2 − a0pp′ = −a20a3p3 + a0(a
′
0 − a0a2)p2 − a20a1p− a30,

which is equivalent to

pp′ = a3p
3 + a2p

2 + a1p+ a0.

And this last equation means that the polynomial y = p(x) is a solution of (1). �

Example 6. The differential equation

yy′ = 5(x− 2)(x− 3)(3x2 − 9x+ 5)− (17x3 − 97x2 + 168x− 80)y + x2y2 + (x− 1)y3

has the polynomial solutions y = x− 2 and y = −5(x− 2). Direct computations show that
it has no more polynomial solutions. �
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