CONVEX CENTRAL CONFIGURATIONS OF THE 4-BODY PROBLEM WITH TWO PAIRS OF EQUAL ADJACENT MASSES

ANTONIO CARLOS FERNANDES ${ }^{1}$, JAUME LLIBRE ${ }^{2}$ AND LUIS FERNANDO MELLO ${ }^{1}$

Abstract

We study the convex central configurations of the 4-body problem assuming that they have two pairs of equal masses located at two adjacent vertices of a convex quadrilateral. Under these assumptions we prove that the isosceles trapezoid is the unique central configuration.

1. Introduction and statement of the main results

The classical Newtonian n-body problem studies a system formed by n punctual bodies with positives masses m_{1}, \ldots, m_{n} and position vectors r_{1}, \ldots, r_{n} in $\mathbb{R}^{d}, d=$ 2,3 , interacting under the Newton's gravitational law [20]. The equations of motion of this problem are

$$
\begin{equation*}
\ddot{r}_{i}=\frac{d^{2} r_{i}}{d t^{2}}=-\sum_{\substack{j=1 \\ j \neq i}}^{n} \frac{m_{j}}{r_{i j}^{3}}\left(r_{i}-r_{j}\right), \tag{1}
\end{equation*}
$$

for $i=1, \ldots, n$, where $r_{i j}=\left|r_{i}-r_{j}\right|$ is the Euclidean distance between the bodies at r_{i} and r_{j}, and t is the independent variable called time. Taking the unit of mass conveniently we can assume that the gravitational constant $G=1$ in (1).

An interesting class of particular solutions of the n-body problem (1) are the homographic solutions in which the shape of the configuration is preserved as time varies. The first homographic solutions were found by Euler [10] and Lagrange [13] in the 3-body problem.

We say that at a given instant $t=t_{0}$ the n bodies are in a central configuration if for all $i=1, \ldots, n$ there exists a constant $\lambda \neq 0$ such that $\ddot{r}_{i}=\lambda\left(r_{i}-c\right)$ where c is the center of mass of the n bodies, that is

$$
c=\frac{1}{m_{1}+\ldots+m_{n}} \sum_{j=1}^{n} m_{j} r_{j} .
$$

Such configurations are closely related with homographic solutions. In fact, the configuration of bodies at any time in a homographic solution is a central configuration. For more details see for instance [19, 22, 23, 25].

[^0]
[^0]: 2010 Mathematics Subject Classification. 70F10, 70F15, 37N05.
 Key words and phrases. planar central configuration, convex central configuration, 4-body problem, celestial mechanics, trapezoidal central configuration.

