CONVEX CENTRAL CONFIGURATIONS OF THE 4–BODY PROBLEM WITH TWO PAIRS OF EQUAL ADJACENT MASSES

ANTONIO CARLOS FERNANDES¹, JAUME LLIBRE² AND LUIS FERNANDO MELLO¹

ABSTRACT. We study the convex central configurations of the 4–body problem assuming that they have two pairs of equal masses located at two adjacent vertices of a convex quadrilateral. Under these assumptions we prove that the isosceles trapezoid is the unique central configuration.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The classical Newtonian *n*-body problem studies a system formed by *n* punctual bodies with positives masses m_1, \ldots, m_n and position vectors r_1, \ldots, r_n in \mathbb{R}^d , d = 2, 3, interacting under the Newton's gravitational law [20]. The equations of motion of this problem are

(1)
$$\ddot{r}_i = \frac{d^2 r_i}{dt^2} = -\sum_{\substack{j=1\\j\neq i}}^n \frac{m_j}{r_{ij}^3} (r_i - r_j),$$

for i = 1, ..., n, where $r_{ij} = |r_i - r_j|$ is the Euclidean distance between the bodies at r_i and r_j , and t is the independent variable called time. Taking the unit of mass conveniently we can assume that the gravitational constant G = 1 in (1).

An interesting class of particular solutions of the n-body problem (1) are the *homographic* solutions in which the shape of the configuration is preserved as time varies. The first homographic solutions were found by Euler [10] and Lagrange [13] in the 3-body problem.

We say that at a given instant $t = t_0$ the *n* bodies are in a *central configuration* if for all i = 1, ..., n there exists a constant $\lambda \neq 0$ such that $\ddot{r}_i = \lambda(r_i - c)$ where *c* is the center of mass of the *n* bodies, that is

$$c = \frac{1}{m_1 + \ldots + m_n} \sum_{j=1}^n m_j r_j.$$

Such configurations are closely related with homographic solutions. In fact, the configuration of bodies at any time in a homographic solution is a central configuration. For more details see for instance [19, 22, 23, 25].

²⁰¹⁰ Mathematics Subject Classification. 70F10, 70F15, 37N05.

Key words and phrases. planar central configuration, convex central configuration, 4–body problem, celestial mechanics, trapezoidal central configuration.