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CONVEX CENTRAL CONFIGURATIONS OF THE 4-BODY
PROBLEM WITH TWO PAIRS OF EQUAL ADJACENT MASSES

ANTONIO CARLOS FERNANDES!, JAUME LLIBRE? AND LUIS FERNANDO MELLO?!

ABSTRACT. We study the convex central configurations of the 4-body problem
assuming that they have two pairs of equal masses located at two adjacent
vertices of a convex quadrilateral. Under these assumptions we prove that the
isosceles trapezoid is the unique central configuration.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The classical Newtonian n—body problem studies a system formed by n punctual
bodies with positives masses my, ..., m, and position vectors ry,...,r, in R? d =
2, 3, interacting under the Newton’s gravitational law [20]. The equations of motion
of this problem are

n

. d?r; m;
(1) Ty = —dt; == Z T_gj (ri —75),
j=1 "1
j#i
for i =1,...,n, where r;; = |r; — r;| is the Euclidean distance between the bodies
at r; and r;, and ¢ is the independent variable called time. Taking the unit of mass

conveniently we can assume that the gravitational constant G =1 in (1).

An interesting class of particular solutions of the n—body problem (1) are the
homographic solutions in which the shape of the configuration is preserved as time
varies. The first homographic solutions were found by Euler [10] and Lagrange [13]
in the 3-body problem.

We say that at a given instant ¢ = ty the n bodies are in a central configuration
iffor all i =1,...,n there exists a constant A # 0 such that #; = A(r; — ¢) where ¢
is the center of mass of the n bodies, that is

1

n
cC=—"-—— g mjrj.
77”L1—|—...—|—mnj_1

Such configurations are closely related with homographic solutions. In fact, the

configuration of bodies at any time in a homographic solution is a central configu-
ration. For more details see for instance [19, 22, 23, 25].
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To find a central configuration is reduced to find a solution of a nonlinear system
of equations, because from equations (1) and the definition of a central configura-
tion, we must solve the system of equations

n

s
(2) )\(Ti—c):—zr—;(ﬁ—%),
j=1 "1
J#i
fori =1,...,n. Equations (2) are called the equations of the central configurations.
Two central configurations (71, ...,7,) and (71, ..., 7, ) of the n bodies are related

if we can pass from one to the other through a dilation and a rotation (centered at
the center of mass). So we can study the classes of central configurations defined
by the above equivalence relation.

Taking into account this equivalence relation we have exactly five classes of
central configurations in the 3—-body problem. The finiteness of the number of
central configurations performed by n bodies with positive masses is a question
posed by Chazy [6], Wintner [25] and reformulated to the planar case by Smale
[24]. For n = 4 this problem has an affirmative answer given by Hampton and
Moeckel [12]. Recently, another proof of this finiteness for n = 4 has been given
by Albouy and Kaloshin, see [4], where some results on the finiteness for n = 5 are
also given. But the problem on the finiteness of the classes of central configurations
remains open for n > 5.

In the planar 4-body problem a configuration is convex if there is not a body
located in the interior of the convex hull of the other three, otherwise the configu-
ration is concave, see Figure 1.

T3
T4

1 2
FIGURE 1. A convex 4-body configuration.

In [16], a landmark for the study of convex central configurations in the planar
4-body problem, MacMillan and Bartky proved the following existence theorem.
Theorem 1. For any positive values of my, ma, ms and my there exists a convex
planar central configuration of the 4-body problem with these masses.

MacMillan and Bartky provided information on the admissible shapes of the

4-body convex central configurations.

Theorem 2. In a conver 4—body central configuration

(i) the diagonals are greater than all exterior sides, and
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(i) the biggest side is opposite to the smallest one.

MacMillan and Bartky also provided information on the isosceles trapezoid cen-
tral configuration in the 4-body problem assuming the isosceles trapezoid symmetry
in the hypotheses.

Theorem 3. In a convex configuration of 4 bodies with position vectors oriented
counterclockwise, if ri3 = o4 and roz = 114, then for each pair of positive values
m and p there exists a unique isosceles trapezoid central configuration such that
mi =me = and mz = my = M.

In [16] the authors showed that there exists a curve of central configurations
connecting the equilateral triangle central configuration and the square central con-
figuration in which the mass ratio m/u is strictly increasing.

Recently Deng, Li and Zhang in [9] improved Theorem 3 as follows.

Theorem 4. The thesis of Theorem 8 holds changing the assumption “ri3 = 794
and 23 = T'14 i by “’1”13 = T9o4 OT T23 = T14 7;.

In [15] Llibre, assuming that the planar central configurations of the 4-body
problem with equal masses have some symmetry, showed numerically that the 4—
body problem with equal masses have 50 classes of central configurations. Later
on Albouy in [1] and [2] proved that such symmetries always exist and provide an
analytical proof of the 50 classes.

Albouy, Fu and Sun [3] studied some symmetric central configurations in the
4-body problem. In particular they showed that in a convex planar central con-
figuration of 4 bodies if two opposite masses are equal then there exists an axis of
symmetry passing through the other two masses. The converse of this statement is
also true. This kind of central configurations are called kite central configurations.
Several papers were written studying kite central configurations and their proper-
ties, see [5, 14, 17, 18] and references therein. In [21] Perez—Chavela and Santoprete
proved that the unique convex planar central configuration with two opposite equal
masses is the kite central configuration or the rhombus central configuration when
the other two masses are also equal.

Albouy, Fu and Sun [3] stated the following conjecture.

Conjecture 5. There is a unique convex planar central configuration having two
pairs of equal masses located at the adjacent vertices of the configuration and it is
an isosceles trapezoid.

Recently Corbera and Llibre [7] proved this conjecture assuming that two equal
masses are sufficiently small.

In this paper we prove Conjecture 5 for all values of the masses. We consider
the 4-body problem in the plane with masses m; = mo and ms = my located at
adjacent vertices of a convex quadrilateral as illustrated in Figure 2. Without loss
of generality, we can consider 1 = (—1,0), ro = (1,0), r3 = (z3,y3), 74 = (T4, Y4),
m1 = me = u and mg = my = m. We state the main result of this article.

Theorem 6. Consider a convex configuration of 4 bodies with position vectors r1,
ro, s, T4 and masses my, Mo, ms3, my. Suppose that my = mqo = @, mz = myg = m,
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4 r3 = (73,Y3)

r = (71,0) r2 = (LO)

FIGURE 2. Coordinates for the problem. Solid lines indicate our coor-
dinates and dashed lines indicate the isosceles trapezoid configuration.

and r1, T2, T3 and ry are disposed counterclockwise at the wvertices of a convex
quadrilateral. Then the only possible central configuration performed by these bodies
is an isosceles trapezoid.

This article is organized as follows. We prove Theorem 6 in Section 3. In Section
2 we prove some preliminary results used in the proof of Theorem 6.

2. PRELIMINARY RESULTS

In this section we present a set of equations equivalent to the central configuration
equations. The following result is well known, see for instance [11].

Lemma 7. Consider n bodies with positive masses mi, ma, ..., m, and position
vectors 11,7, ..., Tn 0 a planar non—collinear configuration. Then the set of equa-
tions (2) is equivalent to the set of equations
n

(3) fij = Z mg (Rik - Rj )Aijk = 0,

k=1

k#i,5
for1 <i<j<n, where R;; = 1/r;-°’j and N = (ri =) N (ri —18).

Note that A;j is twice the oriented area of the triangle formed by the bodies
at r;, r; and ry (see [11]). The n(n — 1)/2 equations (3) are called the Dziobek—
Laura—Andoyer equations or simply the Andoyer equations.

Using the notation of Lemma 7 we can state the main theorem of [3].

Theorem 8. Consider a convexr configuration of 4 bodies with positive masses my,
ma, Mg, My and position vectors T1, T2, T3, 14 oriented counterclockwise like in
Figure 2. Then the central configuration is symmetric with respect to the diagonal
rory if and only if mi1 = mg. Also, my > ms if and only if A1aq > Aozy.

Of course an analogous result to Theorem 8 is true having a symmetry with
respect to the other diagonal.

Without loss of generality we can assume m < p. Moreover since we consider
convex configurations, by the Perpendicular Bisector Theorem (see [19]), we also
can assume that z4 <0, z3 > 0, y3 > 0 and y4 > 0. See Figure 2.
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The six Andoyer equations for our problem are

(4) fi2 =m{(Ri1s — Ra3) A123 + (R14 — Ra4) A124} =0,
(5) J13 = p(Ri2 — Ro3) A1zz +m (Ris — Raa) A13q = 0,
(6) J1a = pp(Riz — Ray) Arg + m (Ris — Ras) Az = 0,
(7) foz = u (Ri2 — R13) Aaz1 + m (Rog — Rsq) Aozq =0,
(8) foa = p(Ri2 — Ria) Aga1 +m (Raz — Raa) Aoaz = 0,
9) faa = p{(Ri3 — Ria) Aza1 + (Ras — Roa) Asaz} = 0.

Since m > 0 and p > 0 if we define
(10) G(x3,y3,4,ys) = (Riz — R23) A2z + (R4 — Ras) Aq24,

(11) H(w3,y3,74,y4) = (R13 — R1a) Aza1 + (Raz — Raa) Az,
then f12 =0 if and only if G =0 and f34 = 0 if and only if H = 0.

From equation (5), R14 = Rs4 if and only if Ri2 = Rgs. In this case, Ajgqy =
Assy. So, from equation (8) we have m = p. Then, from Theorem 8 the config-
uration must be a square with four equal masses at the vertices, which is a type
of isosceles trapezoid. Hence in what follows we can assume that R4 # R34 and

Ri2 # Ros.

Again from equation (5), if R34 < Ri4 then Ros < Ris, or equivalently, if
r34 > r14 then rog > 712, which implies that Ajoyq < Aszy. So, from Theorem 8
it follows that m > pu, in contradiction with our hypothesis. Thus we must have
R34 > Ry4 which implies that Ras > Rp2. A similar argument can be used to show
that we must have Rs4 > Rp3 which implies that R4 > Ri2. In order to have a
central configuration, taking out the case of the square and using Theorem 2 the
following inequalities must hold

(12) T13,T24 > T12 > 123,714 > T34.

Since r12 = 2 inequalities (12) imply that

VAV2 =5 <ys <2, \AV2-5<ys <2 —2<z4<0, 0<uz3<2+a,

Without loss of generality we can assume that y4 < y3. Then from Theorem 8 the
following inequalities must hold

Aqo3 2> Aqog > Aozq > Aqzy.

The explicit expressions for these areas are the following

Aqg3 = 2y3, A134 = T3Ys — Tay3 — Y3 + Y4,
(13)
Aqoy = 2y, Ao3y = T3Ys — T4Y3 + Y3 — Ya.

In the rest of this section we consider the hypotheses of Theorem 6. Thus the
configuration is like described in Figure 2 satisfying (12). So we have the first
lemma.
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Lemma 9. Under the assumptions of Theorem 6, if ys = y3 then the configuration
must be an isosceles trapezoid.

Proof. If y3 = y4, using (13), equations (4) and (9) can be written as
m (Ri3 + Ria — Rog — R24) A124 = 0,
p(Raz — Ria + Rz — Rog) Aqza = 0.

Since the areas are positive, these equations are satisfied if and only if R13 = Ray
and R4 = Ro3. But in this case the configuration is an isosceles trapezoid. O

Thus henceforth consider ys > y4.

Lemma 10. Under the assumptions of Theorem 6, if x4 € [—1,0) and x3 €
(0, —x4], then there are no positions satisfying f12 = 0.

Proof. First consider the inequalities (12), in which we must have r14 > 734, or
equivalently

(1+2a)? + 95 > (23 — 22)* + (y3 — ya)*.
In order that this inequality be satisfied for x3 > 0 it is necessary that (z4,y4)

belongs to the region (open and connected set) A; which is determined by the
parabola yi + 2x4 + 1 = 0 and the circles r14 = 2 and roy = 2, see Figure 3.

Yi4+2r,+1=0 T4 =2 ro4 = 2
l l Y4 A l
/’ AN 1 // \\ Yq = 4\/5 — 5 AN

P
\/

T4

FIGURE 3. The admissible region A; is bounded by the parabola y2 +
2x4 + 1 = 0 and by the circles r14 = 2 and req = 2.

Now consider (z4,y4) fixed. Computing the partial derivative of G, defined in
(10), with respect to x3 we get
oG
D 6y3 (—(1 +23)Q13 — (1 — 23)Q23) <0,
3
for x3 € (0, —xz4] because —z4 < 1, where Q;; = T‘i_j5.
Computing the partial derivative of G with respect to ys we get

oG
T = —6y3 (Q13 — Q23) + 2 (R13 — Ras),
Y3
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or equivalently
G =2[Qua (Lt aa)? ~ 23) = Qaa (1= 0)? — 243)]
> 2 [Quz (1 —x3)* — 2y3) — Qaz (1 — x3)* — 2y3) ]

=2(Q23 — Q13) (243 — (1 — x3)?) > 0.
The last part of the above inequality arises from the fact that the points (z3,ys)
must belong to the region Ay symmetric to A; determined by the parabola y3 —
2x3 + 1 = 0 and the circles ro3 = 2 and 713 = 2, where we have Q23 > Q13 and
2y2 — (1 — 23)® > 0. See Figure 4. Thus for 74 € [—~1,0) and x3 € (0, —x4] the
gradient of G points always northwest. Since G(—x4, y4, T4, y4) = 0 for all values of
(24,v4), G > 0 for all values of (x3,y3) € Ba characterized by the points of Az such
that y3 > y4 and a3 € (0, —z4]. See Figure 4. Thus f12 > 0 and this completes the
O

proof.
Y3 —225+1=0

A\

€3

1 D)
\ /
2y3 — (1 —23)? =0

FIGURE 4. The region As is bounded by the parabola y3 — 2z3+1 = 0
and by the circles re3 = 2 and 13 = 2. The set Bz is defined by the

points of Az such that y3 > y4 and x3 € (0, —z4].
Lemma 11. Under the assumptions of Theorem 6, if x4 € (—2,—1) then there are
no positions satisfying f1o = 0.
Proof. With (z4,y4) fixed, the zero level set of G is the set of points (x3,ys3) such

that
(Ra3 — R13) y3 = (R1a — Roa) a.

Since y3 > y4 we must have

Rz — Ri3 < Riq — Roy,

which implies that
Ro3 — Ri4 < Ri3 — Rog.

Thus if Ri3 — Roy < 0 we must have Ro3 — R4 < 0. Analogously if Roz — R4 >0

we must have Ri3 — Ros > 0.
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Consider the point (z3,y3) = (2 + x4, y4) in the circle ro3 = 114 (remember ry is

fixed). Thus
G(2 + 74,Y1,24,Y4) = (R13 — Raa)ya.

But at this point G is positive since the point (x3,ys) = (2 + x4,y4) belongs to the
interior of the circle 1135 = ro4 (remember 74 is fixed). Notice that the gradient of
G remains pointing northwest as in Lemma 10, because x3 € (0,2 + z4) C (0,1).
So G > 0 for all points in Bs, which is the subset of Ay with a3 € (0,2 + z4) and

y3 > y4. See Figure 5. Thus f12 > 0. O

rog = 2 y§—2$3+1:0

T13 = 2
\L - \L
® -
7’ //
/ .
/, //
/ ,
/
/ y
; /
’ /
/ /
1 ’
1 1
1 1
Il l’ ‘\
1’ 1’ \|
1 1 \
I I Il
. ¢ e >
zs3
™ T T2

r3 =24 24

FIGURE 5. The set Bs is defined by the points of A, (see Figure 4)
such that zs € (0,2 + z4) and y3 > ya.

From the above calculations we only need to study the case where x4 € [—1,0)

and x3 € (—x4,2 + x4). In order to satisfy (12) with z3 > —x4 we need that
1 < (=224)° + (y3 — y4)* < (L +24)® +yf =1l

Thus it is necessary that (x4, ys) belongs to the region Az determined by the hy-
perbola yz — 3:1:2 + 2z4 + 1 = 0 and the circles r14 = 2 and rog4 = 2, see Figure 6.
The intersection of the hyperbola yi — 333?1 + 2x4 + 1 = 0 with the circle roy = 2 is

N (1—v5)?
—7, yc—\/4—\/——?.

Thus we must have y4 > y..

the point

N~

(14) T =

Since we are considering values of 3 € (—x4,2 + x4) and y3 > y4, for a fixed
pair (z4,y4) the region of interest for (3, ys) is the region By defined by the points
of Ay where z3 € (—x4,2 + z4) and y3 > y4, see Figure 7.

Now define the region A4 bounded by the hyperbola 33 — 323 — 223 +1 = 0
and the circles 793 = 2 and r13 = 2, see again Figure 7. Note that the points on
the straight line x3 = —x4 between the line y3 = y4 and the circle ro3 = 2 always
belong to A4. Note also that in region By we have r13 > 194.
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Yy =322+ 204 +1=0 114 =2 Toq =2
Ya A
\
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7 /7 0\ \ \
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FIGURE 6. The admissible region Az is bounded by the hyperbola y? —
3:0421 + 2z4 + 1 = 0 and by the circles 714 = 2 and r24 = 2.
y§—3$§+2$3+1:0 r13 =2 ro3 = 2 y§—3x§—2x3+1:0
A /
N l Y3 l , y2—2r3+1=0
_____\x\___»_‘
/" @ .
L N i \ / _d N
’ \ e N ’ - N
K G As | - N\
/ A AN \
’ LAY [N 4 \
/ / \ [N // N
/I /I ‘\ ! A // \\
r/ r/ “ ’I’ /X‘ ‘\\
| ! \ Y \
! ' ! ! / \ \
1 /
:’ P N ‘a
I ‘ : \ " ‘ | >
x
71 T2 3
T3 = —T4 T3 =24+ x4

FIGURE 7. The region B, defined by the points of Az where x3 €
(—24,2 + x4) and y3 > ya. The region A4 is bounded by the hyperbola
y% — 3m§ — 2x3 + 1 = 0 and by the circles 723 = 2 and r13 = 2.

For a fixed pair (z4,y4) consider the function
T(x3,y3) = y3(1 — x4) — ya(l + 23).

The zero level set of this function, denoted by Tp, is the straight line passing through
(z3,y3) = (=1,0) and (z3,y3) = (—24,y4)-

The sum of equation (6) multiplied by Agys and equation (7) multiplied by A143
gives

p[(Ri2 — Roa)A124A034 — (R12 — Ri3)A123A134] + m [Ri3 — Raa] A13aAg34 = 0.
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In the region B, the coefficient of m is always negative, so in order to satisfy this
equation the coefficient of p must be positive. We define the following function
(15)

L(z3,y3) = (R12 — Ro4)A124A034 — (R12 — R13)A123A134.
In Lemmas 12 and 14 we use the sets defined below

1
By = BsN {(9637?13) ty3 < M},

1—934

1—934

1
By = BsN {(9637?13) fY3 > M}

Thus, T'<0in B4y and T > 0 in Bss. See Figure 8.

To3 = 2
X

y

Ys = Ya
_r
L3 = —T4

r3 =24+ x4
FIGURE 8. The sets B4 and Bas.

.
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- N
. N
- \\
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\
y N\
\
rez =2
\
\
\
\
\
\
1
\
1
1
1
! »
»
xs3
71 T2

r3 =2+ x4
FIGURE 9. L is negative in Byj.
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Lemma 12. Under the assumptions of Theorem G, if (x3,ys) € Ba1 then the
function L is negative. See Figure 9. Thus the equations fi4 = 0 and fo3 = 0 are
not satisfied simultaneously.

Proof. Consider the function L restricted to Ty. Note that L(—xz4,y4) = 0. Using
equation (13) and the definition of R;; the expression (15) restricted to Ty can be
written as

3
L|t, = (Ri2 — Roa)4z3y; + [Rm - R24%] 4x4y3.

3
Solving T' = 0 for x3 and replacing the result in the last equation we have
Lip = 4@ [y§I4R12 + (—R2ays + Ri2ys + Roayaxa)ys + yiRz4iE4] .

Note that the expression between the brackets is a function P of y3 whose graph is
a parabola concave downward. We will compare the position of the roots of P with
y3 = y4 in order to study the sign of L restricted to Ty. Evaluating P at y3 = y4
we get

yi(Riz(1 + 24) + Roa(—1+ 2z4)).

From the last equation, define
Li(24,y4) = R12(1 4+ 24) + Roa(—1 + 2x4).
The zero level set of Ly is given by
20 — 1 — x4+ 4 (14 24)2(1 — 224))°
(14 x4)2 '
Thus the zero level set of Ly for y4 > 0 is a function of z4 passing through the

point (0,1/3) and going to +o0o when x4 goes to —1%. So the zero level set of L;
crosses the circles 114 = 2 and 74 = 2 just at the point (0,/3).

o

yi =

Evaluating the derivative of P with respect to y3 at y3 = ys we get
Ya(2w4R12 — Rog + Riz2 + x4 Ra4).
From the last equation, define
Ki(24,y1) = 204 R12 — Rog + Ria + w4 Roy.

The zero level set of K is given by

o

4 ((1 —x4)% (224 + 1)2)‘
(2x4 + 1)2

Thus the zero level set of K; for y4 > 0 is a function of x4 passing through the point

(0,4/3) and going to +oo when x4 goes to —(1/2)T. See Figure 10. In conclusion,

K is negative in the region Az and this implies that L; is negative in the region

As. So the function L restricted to Ty is always negative when ys > 4.

yi = —(za —1)° +

To see that the function L is negative in By; we compute the partial derivative
of L with respect to 3

oL
(91:3
Denote the first two terms in the above expression by the following function

Lo(z3,y3) = (Ri2 — Roa)2y; — (R12 — Ri3)2y3ya.

= (Ri2 — R24)2y; — (R12 — R13)2y3ys — 3(1 + 73)Q13A123A134.
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FIGURE 10. The solid curve indicates the zero level set of L; while
the dashed one indicates the zero level set of Ki1. Both L1 and K are
negative in the region As.

This function vanishes at the point (x3,y3) = (—z4,ys4) and its gradient points
southwest in By. In fact

OLo

—= =-3(1 0

D5 (1+ 23)Q13y3ys <
and

OLo
s —2(R12 — Ri3)ys — 6Q13y3ys < 0.
3
Thus the partial derivative of L with respect to x3 is always negative when ys > y4.
See Figure 9. So the function L is always negative in By;. In short, the equations

f12 = 0 and fa3 = 0 are not satisfied simultaneously in By;. O

For a fixed pair (x4,y4) € As, define the following two functions
Hiy(w3,y3) = Ro3ys — R1aya,
Hy(z3,y3) = Ri3ys — Roaya.

In the next lemmas we prove some properties of the above functions.

Lemma 13. Under the assumptions of Theorem 6, if (x3,ys) in By then the func-
tion Ha is megative.

Proof. Note that Ho(—x4,y4) = 0. The derivative of Ha with respect to x3 is given
by

OH.

2 = =3(1 + 23)Q13y3 < 0,

6,@3
while the derivative of Hy with respect to ys is given by
0H,

N = —3Q13y3 + Ris.
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The zero level set of this last derivative is formed by the two straight lines

Y3 = i@(l + 1'3).

2
The derivative of the function Hs with respect to y3 is negative in the region Ay.
Thus the function Hs is negative in the region By. (|

Lemma 14. Under the assumptions of Theorem 6, if (zs,y3) € B2 then the
function Hy is negative.

Proof. Note that Hy(—x4,y4) = 0 and H;y (2424, y4) = 0. Computing the derivative

of H; with respect to y3 we obtain
OH,
ys

The zero level set of this derivative is formed by the two straight lines

Yz = ig(l — 1'3).

= —3Q23Y3 + Ras.

In the region B, the derivative of Hy with respect to y3 is negative. Thus the zero
level set of H; is a function of x3 which has implicit derivative given by

ag = % _ 3y3(1 — Ig) '
drs  2y% — (1 —x3)?
The slope of the straight line T} is given by
apg = L
1-— g
Now we study the function
ya(1 — 23)* — 2yay3 + 3ys(1 — 23)(1 — 24)
(1= z4) (1 = 23) — 2053) '
The denominator of the above expression is negative in By according to the previous
analysis. The numerator of the above expression vanishes on the straight lines

ag — a1 =

(3(1 — 24) £ /0 — 1824 + 922 + syz) (1 — 23)
4y '

See Figure 11. Thus in the set By the difference ag — a1 is positive. Since the zero
level set of Hy passes through the point (—x4,y4), it means that the zero level set
of Hy belongs to the set B4;. Therefore the function H; is negative on Bys. O

(16) Y3 =

Now we state the last lemma of this section.

Lemma 15. Under the assumptions of Theorem 6, if (zs,y3) € B2 then the
equation fs4 = 0 is not satisfied.

Proof. Consider the function H defined in (11) for a fixed pair (z4,y4) € As, that
is

H(zs,y3) = (R13 — R14)A134 + (Ra3 — R24)Agaa.
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FIGURE 11. The numerator of ap — a1 is negative in the cone defined
by the straight lines (16) containing the region Bj.

Note that H(—x4,y4) = 0. By Lemmas 13 and 14 in the set B4y we have Ri3ys <
Rosys and Razys < Rigys. So in By

H(z3,y3) < <R24% - R14) Aqzq + <R14% - 324) Agzq = Mh(%,ys),
Ys Y3 Ys

where

h(z3,y3) = (1 + x4)Ris — (1 — x4)R24) y3 — Ya (R1a + Ros) 3 + ya(R1a — Roa).

Since y3 > y4 we will prove that H(zs,y3) < 0 in Bys by proving that h(zs,ys) <0
in this set. Note that the zero level set of h is the straight line given by

s = Ya (R14 + Roa) 3 — ya(Ria — Roa)
(1+24)Ria — (1 —24)Roa

This straight line always pass through (x3,ys) = (—24,—y4). Thus in order to
complete the proof we need to analyze the slope of this straight line which is

(17) ya (R1a + Roa)
(1 + {E4)R14 — (1 — $4)R24.

The numerator of this last expression is positive so the sign of the slope is given by
the denominator

(1+z4)Ris — (1 — 24)Roy.
The zero level set of this expression for y4 > 0 is a function of x4 given by
i = (=2 P (1+20)*® + (1= 20)* P (14 20)?

whose graph is depicted in Figure 12. Thus for all points in the region As the sign
of the slope is negative. Therefore the function H is always negative in Bys and
this implies that the equation f34 = 0 is not satisfied in Bys. O
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Y3 —3r3 +2r4+1=0 714 =2

1 9

FIGURE 12. The solid curve represents the zero level set of the slope
given in (17). Note that this zero level set passes through the point
(zc,ye) given in (14) and is negative in the region As.

3. PROOF OF THEOREM 6

In this section we give the proof of Theorem 6. We will prove that the symmetry
in the masses implies the symmetry in the positions in order to satisfy all the
Andoyer equations. Thus we will be under the hypotheses of MacMillan and Bartky
Theorem, that is of Theorem 3. In other words, if we have symmetry in the masses
and the positions then the uniqueness follows from that theorem.

Consider the position vectors r; = (—1,0), 72 = (1,0), r3 = (z3,¥3), 74 = (T4, Yy4)
and masses m; = mg = p and mg = my = m with m < pu. Thus the Andoyer
equations (3) are

fiz2 =m{(Ri3 — Ra3) A123 + (R1s — Roa) A124} = 0,
J13 = p(Ri2 — Ra3) A1zz +m (Ria — Raa) Aq3q = 0,
J1a = p(Ri2 — Raa) Avgz +m (Ri3 — Rag) Argz =0,
foz = p (Ri2 — Ri3) Aogy +m (Rag — Raa) Agzs =0,
foa = p(Ra2 — Ria) Aogr +m (Raz — Rag) Aogz =0,
f3a = p{(R13 — R14) Aza1 + (Ra3 — Ras) Aszg2} = 0.

As mentioned before the necessary conditions for these equations be satisfied are
the inequalities (12). Since r15 = 2 those inequalities imply that

VAV2 =5 <ys <2, 1<ys<2, —2<z4<0, 0<uz35<2+ 4.

Without loss of generality we can assume that y4 < ys. Thus for a fixed pair
(24,v4), by Lemma 9, we have that if y5 = y4 then the configuration is an isosceles
trapezoid. So, consider henceforth ys > 4.

Note that if (z3,y3) = (—x4,y4) we have an isosceles trapezoid and the equations
fi2 =0 and f34 = 0 are already satisfied.
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The aim of the proof is to show that, if x3 # —x4 and y3 # y4, then at least one
of the Andoyer equations will not be satisfied.

If 24 € [-1,0) and 23 € (0, —z4] then, by Lemma 10, f12 = 0 is not satisfied.
Thus we do not have a central configuration.

If 24 € (—2,—1) then, by Lemma 11, fi2 = 0 is not satisfied. Thus we do not
have a central configuration.

If ¢4 € [-1,0) and @3 € (—x4,2 + x4) then (x3,y3) € By and, by Lemma 12,
equations f14 = 0 and fo3 = 0 are not satisfied simultaneously in Bs;. Thus we do
not have a central configuration.

If x4 € [-1,0) and x5 € (—x4,2+ x4) then (x3,y3) € By and, by Lemma 15, the
equation f34 = 0 is not satisfied in B4s. Thus we do not have a central configuration.

From the previous analyses a necessary condition to satisfy all the Andoyer
equations is the symmetry (x3,ys) = (—4,y4), that is the quadrilateral must be
an isosceles trapezoid, see Theorem 3. This completes the proof of Theorem 6.

For a modern and very well written work about the isosceles trapezoid central
configuration, see Cors and Roberts [8].
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