ANALYTIC INTEGRABILITY OF THE BIANCHI CLASS A COSMOLOGICAL MODELS WITH $0 \leq k<1$

ANTONI FERRAGUT ${ }^{1}$, JAUME LLIBRE ${ }^{2}$ AND CHARA PANTAZI ${ }^{3}$

Abstract

There are many works studying the integrability of the Bianchi class A cosmologies with $k=1$. Here we characterize the analytic integrability of the Bianchi class A cosmological models when $0 \leq k<1$.

1. Introduction

Bianchi models describe space-times which are foliated by homogeneous (and so we have three dimensional Lie algebras) hypersurfaces of constant time. Bianchi $[2,3]$ was the first to classify three dimensional Lie algebras which are nonisomorphic. There are nine types of models according to the dimension n of the algebra:
(a) $n=0$: type I;
(b) $n=1$: types II, III;
(c) $n=2$: types IV, V, VI, VII;
(d) $n=3$: types VIII, IX.

If we consider X_{1}, X_{2}, X_{3} an appropriate basis of the 3 -dimensional Lie Algebra, then the classification depends on a scalar $a \in \mathbb{R}$ and a vector $\left(n_{1}, n_{2}, n_{3}\right)$, with $n_{i} \in\{+1,-1,0\}$ such that

$$
\left[X_{1}, X_{2}\right]=n_{3} X_{3}, \quad\left[X_{2}, X_{3}\right]=n_{1} X_{1}-a X_{2}, \quad\left[X_{3}, X_{1}\right]=n_{2} X_{2}+a X_{1},
$$

where [,] is the Lie bracket. In particular for $a=0$ we obtain models of class A and for $a \neq 0$ we obtain models of class B. A good reference for the Bianchi models is Bogoyavlensky [4].

In a cosmological model Einstein's equations connect the geometry of the space-time with the properties of the matter. The matter occupying the space-time is determined by the stress energy tensor of the matter. In our study we follow [4] and we consider the hydrodynamical tensor of the matter. We will work with an equation of state of matter of the form $p=k \varepsilon$, where ε is the energy density of the matter, p is the pressure and $0 \leq k \leq 1$.

Following [4] the Einstein equations for the homogenous cosmologies of class A without motion of matter can be formalized as a Hamiltonian system in the phase space p_{i}, q_{i} for

[^0]
[^0]: 2010 Mathematics Subject Classification. 34A05, 34A34, 34C14.
 Key words and phrases. homogeneous systems, polynomial first integral, analytic first integral, Bianchi cosmological models.

 All the authors are partially supported by the MICINN/FEDER grant MTM2008-03437. A.F. is additionally supported by grants Juan de la Cierva, 2009SGR410 and MTM2009-14163-C02-02. J.L. is additionally partially supported by an AGAUR grant number 2009SGR410 and by ICREA Academia. C.P. is additionally partially supported by the MICINN/FEDER grant number MTM2009-06973 and by the AGAUR grant number 2009SGR859.

