International Journal of Bifurcation and Chaos, Vol. 23, No. 2 (2013) 1350029 (10 pages)
(c) World Scientific Publishing Company

DOI: 10.1142/S0218127413500296

POLYNOMIAL VECTOR FIELDS IN \mathbb{R}^{3} WITH INFINITELY MANY LIMIT CYCLES

ANTONI FERRAGUT*
Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028, Barcelona, Catalonia, Spain antoni.ferragut@upc.edu
JAUME LLIBRE ${ }^{\dagger}$
Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona, Catalonia, Spain jllibre@mat.uab.cat
CHARA PANTAZI ${ }^{\ddagger}$
Departament de Matemàtica Aplicada I (EPSEB), Universitat Politècnica de Catalunya, Av. Doctor Marañón, 44-50, Barcelona, Catalonia, Spain chara.pantazi@upc.edu

Received December 1, 2011; Revised July 4, 2012

Abstract

We provide a constructive method to obtain polynomial vector fields in \mathbb{R}^{3} having infinitely many limit cycles starting from polynomial vector fields in \mathbb{R}^{2} with a period annulus. We present two examples of polynomial vector fields in \mathbb{R}^{3} having infinitely many limit cycles, one of them of degree 2 and the other one of degree 12. The main tools of our method are the Melnikov integral and the Hamiltonian structure.

Keywords: Limit cycle; Melnikov integral; polynomial vector fields in \mathbb{R}^{3}.

1. Introduction

A vector field $X: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ of the form $X=(P$, Q, R) is called a polynomial vector field of degree m if P, Q and R are polynomials and m is the maximum of the degrees of P, Q and R.

A limit cycle of a vector field is an isolated periodic solution in the set of all periodic solutions of this vector field.

In this paper, we provide a method to construct polynomial vector fields in \mathbb{R}^{3} having infinitely

[^0]
[^0]: *Author for correspondence; partially supported by grants MTM2008-03437, Juan de la Cierva, 2009SGR410 and MTM2009-14163-C02-02.
 ${ }^{\dagger}$ Partially supported by grants MTM2008-03437 and 2009SGR410 and by ICREA Academia.
 \ddagger Partially supported by grants MTM2008-03437, MTM2009-06973 and 2009SGR859.

