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Abstract

We consider Edelstein’s dynamical system of three reversible reactions in R3 and
show that it is not Darboux integrable. To do so we characterize its polynomial first
integrals, Darboux polynomials and exponential factors.

1 Introduction

We consider Edelstein’s system of three reversible biochemical reactions among three molec-
ular species [4]:

A
α1−−⇀↽−−
α2

2 A

A + B
β1−−⇀↽−−
β2

C
γ1−−⇀↽−−
γ2

B,
(1)

where α1, α2, β1, β2, γ1, γ2 are positive reaction rate constants. Under mass-action kinetics
the evolution of the species concentrations is described by the following ODE system of
degree 2,

ẋ = α1x+ β2z − α2x
2 − β1xy

ẏ = −γ2y + (γ1 + β2)z − β1xy
ż = γ2y − (γ1 + β2)z + β1xy,

(2)
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where x, y, z denote the (non-negative) concentrations of the species A,B,C, respectively.
Edelstein designed the system as an example of a system with three steady states, two
stable and one unstable, for some choices of reaction rate constants. For other choices there
is a single stable steady state. He characterized the region of multiple steady states by
computational means.

Furthermore, Edelstein suggested that the system’s “analytical simplicity” could serve
as a potential model system, although the scheme had not been biochemically demonstrated
[4]. Despite its apparent simplicity, many aspects of the system are mathematically hard to
analyze. In this paper, we study the Darboux integrability of the system by characterizing
its Darboux polynomials and exponential factors.

The Edelstein system is an example of a deficiency one reaction network [3, 2], which
implies that it has a unique asymptotically stable steady state for each value of the conserved
quantity H = y+z for any parameter value, except (potentially) for set of parameter values
of dimension one (the deficiency). This set naturally includes the region of multi-stationarity
described by Edelstein. The deficiency theory was developed in the 1970s and hence not
available to Edelstein [3, 2].

The use of linear first integrals in reaction network theory is common. Edelstein’s system
has one such first integral, namely H = y + z. With some exceptions the non-linear first
integrals have rarely been considered, see [1, 10, 9] for some general considerations and
[8, 6, 7, 12] for specific examples. Non-linear first integral are often useful for studying the
dynamics of the system, see for example [12, 9]. However, they are generally hard to find.
Here we show that Edelstein’s system in R3 has no polynomial nor rational first integrals,
except for H (and transformations thereof). Additionally, we show that it is not Darboux
integrable.

2 Main theorems

System (2) has a single linear first integral for any choice of positive rate constants,

H = y + z,

which is a consequence of the graphical structure of the reaction network (1) [3]. Using the
fact that the set {(x, y, z) ∈ R3 | y+ z = w} is invariant under the flow generated by (2) for
any w ∈ R≥0, we can reduce the state space by one dimension. Hence, letting w = y + z,
system (2) is transformed into the system

ẋ = c4w + c1x− c4y − c2x2 − c3xy,
ẏ = c5w − c6y − c3xy,
ẇ = 0,

(3)

where the six rate constants c1, . . . , c6 > 0 are defined as

c1 = α1, c2 = α2, c3 = β1, c4 = β2, c5 = β2 + γ1 c6 = β2 + γ1 + γ2.

Note that by definition the constants fulfil c6 > c5 > c4, but this is not important for the
arguments that follow. The system (3) cannot be interpreted as a reaction network with
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mass-action kinetics, because of the term −c4y in the equation for ẋ. The other terms, like
c4w, can be interpreted in terms of reactions, for example, D → D + A in the case of c4w,
where D is a species with concentration w.

Since w is a constant, we set w = 0 and consider the planar differential system with
only five parameters,

ẋ = c1x− c4y − c2x2 − c3xy,
ẏ = −c6y − c3xy.

(4)

Note that the condition w = 0 is biochemically uninteresting as x, y, z are non-negative
concentrations in this context.

We will first prove a theorem for system (4) and then use this result to prove a theorem
for the original system. Let X be the vector field associated system (4),

X = ẋ
∂

∂x
+ ẏ

∂

∂y
.

Then the following holds.

Theorem 1. Suppose that c2/c3 6∈ Q+, where Q+ denotes the positive rational numbers.
Then the following statements hold for system (4).

(a) It has no polynomial first integrals.

(b) It has at most two irreducible Darboux polynomials, all of them of degree one. Indeed,
F1 = y is a Darboux polynomial with cofactor K1 = −c6 − c3x and either:

(b.1) F2 = (c1 +c6)x−c4y is another Darboux polynomial with cofactor K2 = c1−c2x,
if (c2 − c3)c4 + c3(c1 + c6) = 0;

(b.2) or F3 = c1c4c6−c3(c4−c6)(c6x−c4y) is another Darboux polynomial with cofactor
K3 = −c2x, if (c2 − c3)c4 + c3c6 = 0;

(b.3) or there are no more Darboux polynomials, otherwise.

(c) It has no rational first integrals.

(d) It has no exponential factors.

(e) It is not Darboux integrable.

We remark that Theorem 1(a) and (b.1) are true for all values of the parameters, and
not only for c2/c3 6∈ Q+. The two conditions in (b.1) and (b.2) cannot be fulfilled at the
same time. With the added biochemical constraints on the parameters we observe that the
quantity in (b.1) (c2 − c3)c4 + c3(c1 + c6) = c2c4 + c1c3 + c3(c6 − c4) and the quantity in
(b.2) (c2−c3)c4 +c3c6 = c2c4 +c3(c6−c4) are always positive. Hence with these restrictions
there is a unique irreducible Darboux polynomial F1 = y for all parameter values, provided
that c2/c3 6∈ Q+.

As a consequence of Theorem 1 we can state a theorem for system (3).

Theorem 2. Suppose that c2/c3 6∈ Q+. Then the following statements hold for system (3).
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(a) The unique irreducible polynomial first integral is H = y + z. Any other polynomial
first integral is a polynomial function of H.

(b) It has no Darboux polynomials with non-zero cofactor.

(c) It has no rational first integrals except rational functions of H.

(d) The unique exponential factors are F = ep(H), where p ∈ C[H].

(e) It is not Darboux integrable.

Likewise Theorem 2(a) is true for all parameter values and not only for c2/c3 6∈ Q+. It
is possible to show that the results hold for some rational choices of c2/c3. However, we do
not have a proof in general.

3 Proofs

3.1 Proof of Theorem 1

Statement (c) of Theorem 1 follows directly from statement (b). Statement (e) follows from
(a), (b), (c) and (d). Hence, we only need to prove the statements (a), (b) and (d). We
prove them separately.

3.1.1 Statement (a)

Let H(x, y) be a polynomial first integral of degree m ≥ 1 of system (4). We write H =∑m
i=0Hi(x, y), with Hi being homogeneous polynomials for all i, and split the PDE X (H) =

0 into a system of m+ 2 homogeneous ODEs. The equation of degree m+ 1 is

−x(c2x+ c3y)
∂Hm

∂x
− c3xy

∂Hm

∂y
= 0, (5)

using (4). The solution when c2 6= c3 is

Hm(x, y) = yc2m/(c2−c3)((c2 − c3)x+ c3y)−c3m/(c2−c3).

Since m ≥ 1 and c2c3 > 0, Hm cannot be a polynomial. If c2 = c3 then we get

Hm(x, y) = f(y exp(−x/y)),

where f is here an arbitrary function. Again this cannot be a polynomial.

Therefore Hm is not a polynomial and hence no such H can exist. Statement (a) follows.

Remark 3. We note that, in the proof of statement (a), we do not need the restriction
c2/c3 6∈ Q+.
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3.1.2 Statement (b)

It is straightforward to check that F1 = y is a Darboux polynomial with cofactor K1 =
−c6 − c3x. It holds for all positive values of the constants.

To show that there is a most one other Darboux polynomial we follow the techniques
of [5] and [11]. To system (4), we first apply the change of variables (x, y) = (1, u)/v that
sets the line at infinity in the horizontal axis. We obtain the cubic system

u̇ = u(c2 − c3 + c3u)− (c1 + c6 − c4u)uv,

v̇ = (c2 + c3u)v − (c1 − c4u)v2. (6)

Let Y be the associated vector field. We note that u and v are Darboux polynomial of (6)
since u|u̇ and v|v̇. Note also that we have written the expressions of u̇ and v̇ as polynomials
in v.

Let f(x, y) be an irreducible Darboux polynomial of degree m ≥ 1 of system (4) with
cofactor k(x, y) = k0+k1x+k2y. Then the irreducible polynomial g(u, v) = vmf(1/v, u/v) =∑m

i=0 gi(u)vi is a Darboux polynomial of system (6), where gi ∈ C[u]. The cofactor of g is

K(u, v) = m
v̇

v
+ vk

(
1

v
,
u

v

)
= k1 + c2m+ (k2 + c3m)u+ (k0 − c1m+ c4mu)v.

The degree of K is 2. It follows that

Y(g) = u̇
∂g

∂u
+ v̇

∂g

∂v
= Kg. (7)

This PDE can be transformed into an ODE system by writing it as a polynomial equation
in the variable v with coefficients depending on u [5]. The coefficients of the PDE give rise
to the equations of the ODE system and these equations can be solved recursively to obtain
the polynomials gi, i = 0, . . . ,m, that form g [5]. For the monomial vi, i = 0, . . . ,m, we
extract an equation in g′i−1, gi−1, g

′
i, gi of the form

[k1 + c2m+ (k2 + c3m)u− i(c2 + c3u)] gi(u)− u(c2 − c3 + c3u)g′i(u) =

− [k0 − c1m+ c4mu+ (i− 1)(c1 − c4u)] gi−1(u)− (c1 + c6 − c4u)ug′i−1(u), (8)

where i = 0, . . . ,m, and g−1 ≡ 0. The key point is that all these ODEs depend only on the
variable u.

From equation (8) with i = 0 we have

(k1 + c2m+ k2u+ c3mu)g0(u)− u(c2 − c3 + c3u)g′0(u) = 0,

with solution

g0(u) = u
k1+c2m
c2−c3 (c2 − c3 + c3u)

− k1+c3m
c2−c3

+
k2
c3 , for c2 6= c3,

up to a non-zero constant which we might take as one because v - g (as g is irreducible).
We notice that the quotient of the eigenvalues of the Jacobian of (6) at the singular point
(0, 0) is (c2 − c3)/c2, which by assumption is not rational. Hence Theorem 8 of [11] assures
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that only two analytic curves pass through this point. Since u = 0 and v = 0 are Darboux
polynomials of the system (6), g cannot pass through (0, 0) and therefore the exponent of
u in g0 must be equal to zero. That is, k1 = −c2m. Now since g0 is a polynomial, we have
k2 = −c3(m−n), where n ∈ N∪{0}. Consequently, g0(u) = (c2− c3 + c3u)n. As the degree
of g is m, we have 0 ≤ n ≤ m.

From equation (8) with i = 1 we obtain

g1(u) = (c2 − c3 + c3u)n−1
(

(c2 − c3)(k0 − c1m)

c2

+
c2c4m+ c3(k0 − (c1 + c4)m+ (c1 + c6)n)

2c2 − c3
u+ ∆

∑
i≥2

(i− 1)!ci−13∏i
j=1((j + 1)c2 − jc3)

ui
)
,

where (j + 1)c2 − jc3 6= 0, because c2/c3 6∈ Q+, and

∆ = c3k0 − (c1c3 + c2c4)m+ (2c2c4 + c3(c1 − c4 + c6))n.

Since g1 is a polynomial and c2/c3 is not rational, we must have ∆ = 0 to cancel the infinite
sum. Hence from this equation we obtain an expression for k0. The expression of g1 becomes

g1(u) = (c2 − c3 + c3u)n−1
[
(c2 − c3)

(
c4
c3

(m− 2n)− n

c2
(c1 − c4 + c6)

)
+ c4(m− n)u

]
.

From equation (8) with i = 2 we obtain

g2(u) = (c2 − c3 + c3u)n−2
[
p2(u) + Λ 2F1

(
1, 1, 2 +

2c2
c2 − c3

,− c3x

c2 − c3

)]
,

where p2 is a polynomial of degree 2, Λ is a constant depending onm,n and the coefficients of
the system, and 2F1 is the hypergeometric function. Since this function is not a polynomial,
we must have Λ = 0. This equation provides a well-defined expression for m:

m =
n

c2c4(c2 + c3)(c1c3 + c2c4)

[
2c32c

2
4 − c2c23(c4 − c6)(c1 − 3c4 + c6)

+ 2c22c3c4(c1 − c4 + c6) + c33(c4 − c6)(c1 − c4 + c6)
]
. (9)

Of course this expression must be a natural number, but this is not important at this
moment for the argument.

From equation (8) with i = 3 we obtain three different situations in order to obtain a
polynomial expression for g3:

(i (c2 − c3)c4 + c3(c1 + c6) = 0, or c3(c4 − c6) = c2c4 + c1c3,

(ii) (c2 − c3)c4 + c3c6 = 0, or c3(c4 − c6) = c2c4,

(iii) 2c2(2c4 − c6) + c3(c1 − c4 + c6) = 0.
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In the first two cases we have n = m from (9) by direct computations. Moreover further
direct computations show that there is a linear solution g(u, v) = (c1+c6−c4u)m in the first
case and g(u, v) = (c3(c4 − c6)(c6 − c4u) − c1c4c6v)m in the second case. By transforming
back to the coordinates (x, y), we obtain the Darboux polynomials F2 and F3, respectively,
as given in the theorem. No more Darboux polynomials are obtained in these two cases.

It remains to deal with the third case. We aim to show that this case does not lead to
more Darboux polynomials. From equation (8) with i = 4 we obtain two different situations
that provide a polynomial expression for g4:

(iv) 2c4 = c6,

(v) c4(2c2 − c3) = c6(c2 − c3).

We do not provide the solutions g3 and g4 because they are very long and not relevant
for the proofs.

Concerning the cases (iv) and (v), we discard the first case because by insertion of (iv)
into (iii), we get c1 < 0, which is not possible. We study the second case, for which we have
m = 2n by insertion of (iii) and (v) into (9).

We claim that under the stated hypotheses system (6) has no Darboux polynomials but
the axes. If we prove the claim then statement (b) of the theorem follows.

Assume (iii) and (v) hold. To prove the claim we first show that deg gi(u) = n for all
0 ≤ i ≤ m. Using the expressions obtained for k0, k1, k2 that hold generally, and (iii) and
(v), the solution of equation (8) can be directly computed;

gi(u) = (c2 − c3 + c3u)n−iCi(u),

where Ci ∈ R[u] is a polynomial (this is consistent with the expressions obtained for
g0, g1, g2). Now write Ci(u) as a power series in u. Plugging this expression into (8) and
reducing, then the first i+ 1 coefficients (corresponding to the monomials uj , j = 0, . . . , i)
of the power series can be obtained from a determined linear system of equations. The rest
of the coefficients of the power series is solved from an infinite homogeneous determined
linear system of equations, hence they are all zero. This last step assumes c2/c3 6∈ Q+,
which holds by assumption. Thus Ci is a polynomial of degree i and therefore gi has degree
n.

In particular, this implies that g(u, v) =
∑n

i=0 gi(u)vi, that is gi ≡ 0 for i = n+1, . . . ,m.
This further implies that (8) for i+ 1 = n becomes

(n(c1 − c4u) + (k0 − c1m+ c4mu))gn(u) + u(c1 + c6 − c4u)g′n(u) = 0,

where m, k0, c1, c4 must be substituted by their respective values. From this equation we
get

gn(u) = Cnu
c2n

3c2−c3 (3c2 − c3 − c2u+ c3u)
(2c2−c3)n
3c2−c3 ,

where Cn is a constant. Since this is a polynomial and c2/c3 6∈ Q+, we must have Cn = 0,
and hence gn ≡ 0. However, this contradicts the fact that g has degree m. Therefore no
new Darboux polynomials are obtained in this case and hence statement (b) of the theorem
follows.
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3.1.3 Statement (d)

We divide the proof of statement (d) into different partial results.

Lemma 4. System (4) has no exponential factors of the form exp(g), with g ∈ C[x, y].

Proof. Suppose that exp(g) is an exponential factor of system (4) with cofactor L and
deg g = m ∈ N. It is clear that g satisfies the equation X (g) = L. We can write this equa-
tion as a system of homogeneous ODE, g(x, y) =

∑m
i=0 gi(x, y), where gi is a homogenous

polynomial of degree i in x, y. The equation of degree m+ 1 is

−x(c2x+ c3y)
∂gm
∂x
− c3xy

∂gm
∂y

= 0.

According to the proof of statement (a) in Section 3.1.1, such polynomial g cannot exist
and the lemma follows.

Lemma 5. System (4) has no exponential factors of the form exp(g/yn), with g ∈ C[x, y],
y - g and n ∈ N.

Proof. Suppose that exp(g/yn) is an exponential factor of system (4) with cofactor L. Then

X (g) + n(c6 + c3x)g = Lyn.

Let g̃ = g|y=0 6≡ 0 (by assumption), which is a polynomial in x. Evaluating the above
equation on y = 0 we get

x(c1 − c2x)g̃′(x) + n(c6 + c3x)g̃(x) = 0.

This equation has solution

g̃(x) = C̃x
− c6

c1
n
(c1 − c2x)

c3
c2
n+

c6
c1
n
,

where C̃ 6= 0 is a constant. The function g̃ is not a polynomial since it has degree nc3/c2 6∈
Q+ by assumption. Hence the lemma follows.

Proof of statement (d). If exp(g/f), with g, f ∈ C[x, y], is an exponential factor, then f is
a Darboux polynomial. For (c2 − c3)c4 + c3(c1 + c6) 6= 0 and (c2 − c3)c4 + c3c6 6= 0, system
(4) has only the Darboux polynomial F1 = y. An exponential factor with f = yn for some
n ∈ N is excluded by Lemma 5.

Assume that (c2 − c3)c4 + c3(c1 + c6) = 0. In this case, system (4) has exactly two
Darboux polynomials with non-zero cofactor, namely F1 = y and F2. Consequently, if it
has an exponential factor, then it must be of the form eg/(y

n1F
n2
2 ), where y, F2 - g and with

n1 ∈ N ∪ {0} and n2 ∈ N. Proceeding as in the proof of Lemma 5, we have n1 = 0. So the
exponential factor must be of the form eg/F

n
2 , with n ∈ N. Let L be its cofactor. Since Fn2

has cofactor of nK2, we have

X (g) = LFn2 + (nK2)g = LFn2 + n(c1 − c2x)g,
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where K2 = (c1−c2x) follows from statement (b). We take F2 = 0, that is, y = (c1+c6)x/c4
and let g̃ = g|F2=0 6≡ 0. Then

n(c1 − c2x)g̃(x) + x(c6 + c3x)g̃′(x) = 0.

Solving this equation we obtain

g̃(x) = C̃x
− c1

c6
n
(c6 + c3x)

c1
c6
n+

c2
c3
n
,

where C̃ 6= 0 is a constant. This expression is not a polynomial since the exponent of x is
negative, because n 6= 0, or since it has degree nc2/c3 6∈ Q. Hence we get a contradiction
and statement (d) follows in this case.

Finally assume (c2 − c3)c4 + c3c6 = 0. As above, system (4) has exactly two Darboux
polynomials with non-zero cofactor, namely, F1 = y and F3. Consequently, if it has an
exponential factor, then it must be of the form eg/(y

n1F
n2
3 ), where y, F3 - g and with n1 ∈

N ∪ {0} and n2 ∈ N. Proceeding as in the proof of Lemma 5, we have n1 = 0. So the
exponential factor has the form eg/F

n
3 , with n ∈ N. Let m = deg g ∈ N. We can assume

that m < n. Indeed, if m ≥ n, then there exist polynomials q and r such that g = qFn3 + r,
with deg r < n. Hence eg/F

n
3 = eqer/F

n
3 and therefore eq is an exponential factor, in

contradiction with Lemma 4. Thus m < n.

From statement (b) we have that nK3 = −c2x is the cofactor of Fn3 . Proceeding as in
the previous case, this leads to the equation

X (g) = LFn3 + (nK3)g = LFn3 − nc2xg, (10)

where L = `0 + `1x + `2y is the cofactor of the exponential factor. Let g =
∑m

i=0 gi(x, y),
where gi is a homogeneous polynomial of degree i, for all i = 0, . . . ,m. The homogeneous
equation of degree n + 1 is (`1x + `2y)Sn = 0, where S = c6x − c4y is, up to a non-zero
constant, the homogeneous part of highest degree of F3. Since S 6≡ 0, we have `1 = `2 = 0.

We distinguish two cases. If m + 1 < n then the homogeneous equation of degree n is
`0S

n = 0, and therefore `0 = 0. This implies that L = 0 and hence that g/Fn3 is a rational
first integral of system (4), in contradiction with statement (c) of the theorem.

Now we consider the case m + 1 = n. The homogeneous equation of degree m + 1 of
(10) is

−x(c2x+ c3y)
∂gm
∂x
− c3xy

∂gm
∂y

+ c2nxgm = `0S
n.

Since x divides the left hand side of this equation, we must have `0 = 0. Then again L = 0,
and we have reached a contradiction.

All cases have been considered and therefore the proof of statement (d) follows.

3.2 Proof of Theorem 2

Statement (c) of Theorem 2 follows immediately from statements (a) and (b). Statement
(e) follows from (a), (b), (c) and (d). This is because it is not possible to construct rational
first integrals nor Darboux first integrals without Darboux polynomials. Hence, we need
only prove the statements (a), (b) and (d). We prove them separately. Instead of system
(2) we shall consider its equivalent system (3).
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3.2.1 Statement (a)

Let H(x, y, w) be an irreducible polynomial first integral of degree m ∈ N of system (3).
Since w is also a polynomial first integral of (3) and H is irreducible, we can assume that
w - H. Let H0 = H|w=0 6≡ 0. Clearly, H0(x, y) is a polynomial first integral of system (4).
Thus by Theorem 1(a) we have H0 ≡ 0, which is a contradiction. Therefore statement (a)
follows.

Remark 6. We note that, in the proof of statement (a), we do not need the restriction
c2/c3 6∈ Q+ as the proof only depends on Theorem 1(a).

3.2.2 Statement (b)

Let f(x, y, w) be an irreducible Darboux polynomial of degree m ∈ N of system (3) with
cofactor k = k0 + k1x+ k2y + k3w. We write f =

∑m
i=0 fi(x, y)wi, with fi ∈ C[x, y] for all

i = 0, . . . ,m, with deg fi ≤ m− i.
We first assume that (c2 − c3)c4 + c3(c1 + c6) 6= 0 and (c2 − c3)c4 + c3c6 6= 0. Clearly

f0(x, y) = f |w=0 is a Darboux polynomial of system (4), which is system (3) with w = 0
fixed. It follows from Theorem 1(b) that f0(x, y) = c0y

n with c0 ∈ C and n ∈ N ∪ {0}.
Moreover we have k = −n(c6+c3x)+k3w from the expression for the cofactor of F1 = y, see
Theorem 1(b). Note that we can take c0 = 1 as it cannot be zero because f is irreducible
(and in particular w - f). Indeed, we must have n = m, otherwise there is a factor w in
the highest degree terms of f , and this is not possible because w = 0 is not invariant at
infinity (we only have the directions xy((c2− c3)x+ c3y) = 0, which are fulfilled for singular
points). Since f is invariant under the flow of system (3), we have

(c1x−c4y − c2x2 − c3xy + c4w)
m∑
i=1

∂fi
∂x

wi + (−(c6 + c3x)y + c5w)

(
mym−1 +

m∑
i=1

∂fi
∂y

wi

)

= (−m(c6 + c3x) + k3w)

(
ym +

m∑
i=1

fiw
i

)
,

(11)

where the terms of system (3) have be reordered and we have used f0 = ym.

The equation of degree i in w obtained from (11) is

(c1x− c4y − c2x2 − c3xy)
∂fi
∂x

+ c4
∂fi−1
∂x

− (c6 + c3x)y
∂fi
∂y

+ c5
∂fi−1
∂y

= −m(c6 + c3x)fi + k3fi−1. (12)

Equation (12) for i = 0 is trivial. Equation (12) for i = 1 writes as

(c1x− c4y − c2x2 − c3xy)
∂f1
∂x
− (c6 + c3x)y

∂f1
∂y

+ c5my
m−1 +m(c6 + c3x)f1 + k3y

m = 0.

Direct computations show that f1|y=0 ≡ 0. Hence we must have f1 = ykf̃1, for some k ∈ N,

k < m, and some f̃1 such that y - f̃1. Plugging the expression of f̃1 into the previous
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equation and simplifying we obtain an ODE with unknown f̃1. Direct computations show
that this equation has no polynomial solutions unless k = m− 1. Thus f1 = ym−1f̃1.

We can repeat this argument to show that ym−i|fi, for all i < m. That is, fi = ym−if̃i,
with y - f̃i. Now equation (12) for i = m writes as

c5f̃m−1 +m(c6 + c3x)fm − k3f̃m−1y = 0,

where both f̄m−1 and f̃m = 0 are constant. Since c3 > 0 we must have m = 0. Therefore
statement (b) follows in this case.

Now assume that (c2 − c3)c4 + c3(c1 + c6) = 0. In this case y and F2 are Darboux
polynomials of system (4). It follows from Theorem 1(b) that f0(x, y) = yn1Fn2

2 with
n1, n2 ∈ N ∪ {0}. It can be proved in a similar way as in the previous case that if n1 > 0
then we have y|f . Thus we have n1 = 0. Hence we can write f0(x, y) = Fn2 with n ∈ N∪{0}.
Now the same arguments explained above but restricting to F2 = 0 instead of restricting
to y = 0 lead to F2|f . Hence no irreducible Darboux polynomial f can exist and statement
(b) follows in this case.

The case (c2 − c3)c4 + c3c6 = 0 follows using the same arguments, replacing F2 by F3.
Hence all cases have been considered and statement (b) is proved.

3.3 Proof of statement (d)

It follows from statements (a) and (b) that if system (3) has an exponential factor with
cofactor L, then it must be of the form exp(g/wn), with g ∈ C[x, y, w], w - g and n ∈ N∪{0}.
Moreover

X (g) = Lwn.

Let g̃ = g|w=0 6≡ 0. If n > 0 then the above equation on w = 0 writes as X (g̃) = 0, and
hence g̃ is a polynomial first integral of system (4), which is not possible by Theorem 1.

Hence, any exponential factor of system (3) must be of the form exp(g), with g ∈
C[x, y, w]. Now let exp(g) be an exponential factor of system (3) with cofactor L and
deg g = m ∈ N, that is, X (g) = L. We can write this equation as a system of homogeneous
ODEs. Let gm be the homogeneous polynomial of degree m of g, and let g̃m = gm|w=0. The
equation of degree m+ 1 is

−x(c2x+ c3y)
∂g̃m
∂x
− c3xy

∂g̃m
∂y

= 0.

This equation is identical to equation (5) of the proof of Theorem 1(a). Hence the same
conclusions apply. In particular we conclude that it has no polynomial solutions of positive
degree. Hence g̃m ≡ 0, which yields g = wj ḡ with j ∈ N and ḡ ∈ C[x, y, w], w - ḡ. Moreover
since degL ≤ 1 because the system is quadratic we must have L = αw, where α ∈ C \ {0},
and then j = 1. We note that L has no constant term because j > 0.

We end the proof by showing that indeed α = 0. After simplifying by w, we have that
ḡ satisfies the equation X (ḡ) = α. The arguments in the proof of Theorem 1(a) show that
ḡ does not depend on x, y, that is ḡ = ḡ(w) (because ẇ = 0), so X (ḡ) = 0, which means
that α = 0, a contradiction.
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