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We develop techniques for the verification of the Chebyshev prop-
erty of Abelian integrals. These techniques are a combination of
theoretical results, analysis of asymptotic behavior of Wronskians,
and rigorous computations based on interval arithmetic. We apply
this approach to tackle a conjecture formulated by Dumortier and
Roussarie in [F. Dumortier, R. Roussarie, Birth of canard cycles, Dis-
crete Contin. Dyn. Syst. 2 (2009) 723–781], which we are able to
prove for q � 2.
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1. Introduction and setting of the problem

The present paper addresses the problem of verifying when a collection of Abelian integrals form
an extended complete Chebyshev system (ECT-system for short). This problem arises in the context of
the second part of Hilbert’s 16th problem [16], that asks about the maximum number and location of
limit cycles of a planar polynomial vector field of degree d. Solving this problem even for the case
d = 2 seems to be out of reach at the present state of knowledge (see [19,23] for a survey of the
recent results on the subject). Arnold [2] proposed a weaker version of this problem, the so-called
infinitesimal Hilbert’s 16th problem. Let ω be a real 1-form with polynomial coefficients of degree at
most d. Consider a real polynomial H of degree d + 1 in the plane. A closed connected component of
a level curve H = h is called an oval of H and denoted by γh . These ovals form continuous families,
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