Periods of Surface Homeomorphisms

JOHN FRANKS AND JAUME LLIBRE

ABSTRACT. The goal of this paper is to investigate which sets of positive integers can occur as the periods of the periodic orbits of a surface homeomorphism on a given compact surface. We also investigate the influence of the induced map on homology on the sets of periods which can occur.

1. Introduction and statement of results

Compact connected 2-dimensional manifolds are called surfaces. Any orientable surface without boundary is homeomorphic to the sphere S^2 or to the torus T^2 or to the connected sum of n tori with $n \ge 2$ (i.e. the n-holed torus). The genus of an orientable surface without boundary is the number of torus summands.

Let f be a surface homeomorphism. We denote by Per(f) the set of periods of all periodic points of f.

Fuller, in [Fu], proved the following result; see also Halpern [HI] and Brown [Br].

THEOREM 1. Let f be a homeomorphism of a compact polyhedron Xinto itself. If the Euler characteristic of M is not zero, then f has a periodic point with period not greater than the maximum of $\sum_{k \text{ odd}} B_k(X)$ and $\sum_{k \text{ even}} B_k(X)$, where $B_k(X)$ denotes the k-th Betti number of X.

If we apply Theorem 1 to surface homeomorphisms we obtain

COROLLARY 2. Let S be an orientable surface without boundary of genus g and let $f: S \to S$ be a homeomorphism. Then the following statements hold:

- (1) If g = 0 then $Per(f) \cap \{1, 2\} \neq \emptyset$.
- (2) If g > 1 then $Per(f) \cap \{1, 2, ..., 2g\} \neq \emptyset$.

PROOF. It is well known that $B_0(S) = B_2(S) = 1$ and that $B_1(S) = 2g$

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 58F20. This paper is in final form and no version of it will be submitted for publication elsewhere.