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LIMIT CYCLES OF CONTINUOUS AND DISCONTINUOUS

PIECEWISE–LINEAR DIFFERENTIAL SYSTEMS IN R
3

BRUNO R. DE FREITAS1, JAUME LLIBRE2 AND JOAO C. MEDRADO3

Abstract. We study the limit cycles of two families of piecewise–linear
differential systems in R

3 with two pieces separated by a plane Σ. In
one family the differential systems are only continuous on the plane Σ,
and in the other family they are only discontinuous on the plane Σ.

The usual tool for studying these limit cycles is the Poincaré map,
but here we shall use recent results which extend the averaging theory
to continuous and discontinuous differential systems.

All the computations have been checked with the algebraic manipu-
lator mathematica.

1. Introduction and statement of the main results

The study of piecewise linear differential systems essentially started with
Andronov, Vitt and Khaikin [1] and still continues to receive attention by
researchers. The continuous and discontinuous piecewise–linear differential
systems plays an important role inside the nonlinear dynamical systems.
First they appear in a natural way in nonlinear engineering models, where
certain devices are accurately modeled by such differential systems, see for
instance the books of di Bernardo, Budd, Champneys and Kowalczyk [3],
and Simpson [28], and the survey of Makarenkov and Lamb [26], and the
hundreds of references quoted in these last three works. Moreover these
kind of differential systems are frequent in applications from electronic engi-
neering and nonlinear control systems, where they cannot be considered as
idealized models; they are also used in mathematical biology as well, see for
instance [7, 29, 30, 31].

There are many studies of the limit cycles of continuous and discontinuous
piecewise–linear differential systems in R

2 with two pieces separated by a
straight line, see for instance [2, 4, 6, 9, 10, 11, 12, 13, 14, 15, 16, 21, 22,
23, 25, 27]. But there are few results about the limit cycles of continuous
and discontinuous piecewise–linear differential systems in R

3 with two pieces
separated by a plane. The objective of this work is to study the limit cycles
of some of these last systems.
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We consider perturbations of the linear differential system

(1)
ẋ = −y,
ẏ = x,
ż = ix,

with (x, y, z) ∈ R
3 and i a real parameter. The dot denotes derivative with

respect to an independent variable t, usually called the time. Straightfor-
ward computations show that the solutions of (1) are all periodic with the
exception of the z–axis which is filled with equilibria.

In this paper first we study the periodic solution of the following perturbed
continuous piecewise linear differential system

(2)
ẋ = −y + ε(a + bx + cy + d|z|),
ẏ = x + ε(e + fx + gy + h|z|),
ż = ix + ε(j + kx + ly + m|z|),

of system (1) with two zones z > 0 and z < 0, where a, b, c, d, e, f, g, h, j, l
and m are real parameters and the parameter ε > 0 is sufficiently small.
Changing z by −z if necessary, we always can assume that the parameter
i ≥ 0.

Our main result on the periodic solutions of the continuous piecewise
linear differential system (2) is the following. This result is obtained using
the extension of the classical averaging theory for smooth differential systems
to continuous differential systems given in [20], see section 2 for more details.

Theorem 1. Using the averaging theory of first order for the continuous
piecewise linear differential system (2) the following statements hold.

(a) For ε 6= 0 sufficiently small if i > 0 system (2) has the periodic
solution

(x(t), y(t), z(t)) = (r∗ cos t + O(ε), r∗ sin t + O(ε), z∗ + ir∗ sin t + O(ε)),

if

(b + g)π

2hi
∈
[

−π

2
, 0

)

∪
(

0,
π

2

]

and
2π(ei − j)

4i(m − hi)
> 0.

In the proof of this statement we describe how to compute the values
of r∗ and z∗ in function of the parameters of system (2).

(b) If i = 0 system (2) has two periodic solutions

(x(t), y(t), z(t)) = (O1(ε) cos t + O(ε2), O1(ε) sin t + O(ε2), ±j/m + O2(ε)),

if (b + g)m 6= 0, j/m < 0 and ε 6= 0 sufficiently small is such that
O1(ε) > 0.

Theorem 1 is proved in section 3.

Many problems in physics, economics, biology and applied areas are mod-
eled by discontinuous differential systems but there exist only few analytical
techniques for studying their periodic solutions. In [19] the authors extended
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the averaging theory to discontinuous differential systems. An improvement
of this result for a much bigger class of discontinuous differential systems is
given in [18].

Applying these tools we also investigate the periodic solutions of the dis-
continuous piecewise linear differential system

(3)
ẋ = −y + ε(a + bx + cy + df(z)),
ẏ = x + ε(e + fx + gy + hf(z)),
ż = ix + ε(j + kx + ly + mf(z)),

with two pieces defined by f(z) = z + sign(z) and

sign(z) =

{

1 if z > 0,
−1 if z < 0.

We get the following result on the periodic solutions of the discontinuous
piecewise linear differential system (3).

Theorem 2. Using the averaging theory of first order for the discontinuous
piecewise linear differential system (3), the following statements hold.

(a) If i > 0 and

∣

∣

∣

∣

4π(ei − j)

hi − m

∣

∣

∣

∣

∈ (0, 4π], for ε 6= 0 sufficiently small system

(3) has the periodic solution

(x(t), y(t), z(t)) = (r∗ cos t + O(ε), r∗ sin t + O(ε), z∗ + ir∗ sin t + O(ε)),

where z∗ = − ir∗

4

√

16 − π2(b + g + hi)2(r∗)2

h2
if

4π(ei − j)

hi − m
∈ (0, 4π]

and z∗ =
ir∗

4

√

16 − π2(b + g + hi)2(r∗)2

h2
if −4π(ei − j)

hi − m
∈ (0, 4π].

(b) If i > 0,

∣

∣

∣

∣

4π(ei − j)

hi − m

∣

∣

∣

∣

∈ (4π, γ∗) and h(b + g − hi) < 0 or h(b + g +

3hi) > 0, for ε 6= 0 sufficiently small system (3) has two periodic
solutions given by

(x(t), y(t), z(t)) = (r∗

1,2 cos t + O(ε), r∗

1,2 sin t + O(ε), z∗

1,2 + ir∗

1,2 sin t + O(ε)),

where z∗

1,2 = −
ir∗

1,2

4

√

16 −
π2(b + g + hi)2(r∗

1,2)2

h2
if

4π(ei − j)

hi − m
∈

(4π, γ∗) and z∗

1,2 =
ir∗

1,2

4

√

16 −
π2(b + g + hi)2(r∗

1,2)2

h2
if −4π(ei − j)

hi − m
∈

(4π, γ∗).

(c) If i = 0, (b + g)m 6= 0,
∣

∣

∣− j
m

∣

∣

∣ > 1 and ε 6= 0 sufficiently small is such

that O1(ε) > 0, the system (3) has one periodic solution

(x(t), y(t), z(t)) =
(

O1(ε) cos t + O(ε2), O1(ε) sin t + O(ε2), z∗ + O2(ε)
)

,

where z∗ =
−j − m

m
if − j

m
> 1, or z∗ =

−j + m

m
if − j

m
< −1.
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In the proof of this theorem we describe how to compute the values of r∗ and
γ∗ in function of the parameters of system (3).

Theorem 2 is proved in section 4.

2. Basic results on the averaging theory

For proving Theorems 1 and 2 we apply two recent results from the av-
eraging theory, one for the continuous piecewise linear differential systems,
and the other for the discontinuous piecewise linear differential systems. In
this section we present these results and some remarks necessary for their
applications.

2.1. Continuous piecewise linear differential systems. From Theorem
B of [20] taking the k which appears in its statement equal to 1 we get the
next result.

Theorem 3. Consider the following differential system

(4) ẋ(t) = F0(t, x) + εF1(t, x) + ε2R(t, x, ε),

where Fi : R × D → R
n for i = 0, 1 and R : R × D × (−ε0, ε0) → R

n

and for each t ∈ R the functions F0(t, .) ∈ C1, F1(t, .) ∈ C0 and DxF0 is
locally Lipschitz in the second variable, and R ∈ C0 and locally Lipschitz in
the second variable. Moreover D ⊂ R

n is an open subset and ε is a small
parameter. Assume that there exists an open and bounded subset of V with
its closure V ⊂ D such that for each z ∈ V , the solution x(t, z) of the
unperturbed system ẋ(t) = F0(t, x) is T –periodic and satisfies x(0, z) = z.
Denote by Mz(t) the fundamental matrix of the variational equation

(5) Ṁz(t) = DxF0(t, x(t, z))Mz(t),

with z ∈ V such that Mz(0) is the identity. If a ∈ V is a zero of the map
f : V → R

n defined by

f(z) =

∫ T

0
M−1

z (t)F1(t, x(t, z))dt

and

(6) det(Dzf(a)) 6= 0,

then for ε > 0 sufficiently small, system (4) has a T –periodic solution x(t, ε)
such that x(0, ε) → a when ε → 0.

The next result was obtained in [5], for a definition on the Brouwer degree
see [24].

Theorem 4. We consider the following differential system

(7) ẋ = εF1(t, x) + ε2R(t, x, ε),
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where F1 : R × D → R
n, R : R × D × (−εf , εf ) → R

n are continuous
functions, T –periodic in the first variable, and D is an open subset of R

n.
We define f : D → R

n as

(8) f(z) =

∫ T

0
F1(s, z)ds,

and assume that:
(i) F1 and R are locally Lipschitz with respect to x;
(ii) for a ∈ D with f(a) = 0, there exists a neighborhood V of a such that

f(z) 6= 0 for all z ∈ V \ {a} and dB(f, V, 0) 6= 0.
Then, for |ε| > 0 sufficiently small, there exists an isolated T –periodic solu-
tion x(t, ε) of system (7) such that x(0, ε) → a as ε → 0.

From the proof of Theorem 4 it follows the next remark.

Remark 5. If f : D → R
n be a C1 function, with f(a) = 0, where D is

an open subset of R
n and a ∈ D. Whenever a is a simple zero of f (i.e.

the Jacobian det Df(a) 6= 0), there exists a neighborhood V of a such that
f(z) 6= 0 for all z ∈ V \ {a}. Then dB(f, V, 0) ∈ {−1, 1}.

2.2. Discontinuous piecewise linear differential systems. Let D ⊂ R
n

be an open subset and h : R × D → R a C1 function having 0 as regular
value. Consider F 1, F 2 : R× D → R

n continuous functions and Σ = h−1(0).
We define the discontinuous diffeential system as

(9) ẋ(t) = F (t, x) =

{

F 1(t, x) if (t, x) ∈ Σ+,
F 2(t, x) if (t, x) ∈ Σ−,

where Σ+ = {(t, x) ∈ R × D : h(t, x) > 0} and Σ− = {(t, x) ∈ R × D :
h(t, x) < 0}. The manifold Σ is divided in the closure of two disjoint regions,
namely Crossing region (Σc) and Sliding region (Σs) where

Σc = {p ∈ Σ : 〈∇h(p), (1, F 1(p))〉〈∇h(p), (1, F 2(p))〉 > 0},

Σs = {p ∈ Σ : 〈∇h(p), (1, F 1(p))〉〈∇h(p), (1, F 2(p))〉 < 0}.

The differential system (9) can be written as

(10) ẋ(t) = F (t, x) = χ+(t, x)F 1(t, x) + χ−(t, x)F 2(t, x),

where χ+, χ− are the characteristic functions defined as

χ+(t, x) =

{

1 if h(t, x) > 0,
0 if h(t, x) < 0,

and χ−(t, x) =

{

0 if h(t, x) > 0,
1 if h(t, x) < 0.

We apply the Fillipov’s convention for the solutions of systems (9) or (10)
passing through a point (t, x) ∈ Σ (see [8]). Let P be the space formed by
the periodic solutions of (9) or (10). If dim(P ) = dim(D) = d then the
following result follows directly from Theorem B of [18].

Theorem 6. Consider the differential system

(11) ẋ(t) = F0(t, x) + εF1(t, x) + ε2R(t, x, ε),
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where

Fi(t, x) = χ+(t, x)F 1
i (t, x) + χ−(t, x)F 2

i (t, x), for i = 0, 1, and

R(t, x) = χ+(t, x)R1(t, x) + χ−(t, x)R2(t, x),

with F 1
i , F 2

i ∈ C1, for i = 0, 1 and R1, R2 are continuous functions which
are Lipschitz in the second variable, and all these functions are T –periodic
functions in the variable t ∈ R.

For z ∈ D and ε > 0 sufficiently small denote by x(., z, ε) : [0, t(z,ε)] → R
d

the solution of system (11) such that x(0, z, ε) = z. Define the averaged
function

f(z) =

∫ T

0
M−1

z (s)F1(s, x(s, z, 0))ds,

where x(s, z, 0) is a periodic solution of (11) with ε = 0 such that x(0, z, 0) =
z and Mz(s) is the fundamental matrix of the variational system Ṁz(t) =
DxF0(t, x(t, z, 0))Mz(t) associated to the unperturbed system evaluated on
the periodic solution x(t, z, 0) such that Mz(0) = Id. Moreover we assume
the following hypotheses.

(H−) There exists an open bounded subset C ⊂ D such that, for ε suffi-
ciently small, every orbit starting in C reaches the set of discontinu-
ity only at its crossing region.

(H+) For a ∈ C with f(a) = 0 there exists a neighborhood U ⊂ C of a
such that f(z) 6= 0, for all z ∈ U/{a} and det(Dzf(a)) 6= 0.

Then for ε > 0 sufficiently small there exists a T –periodic solution x(t, ε) of
(11) such that x(0, ε) → a as ε → 0.

Let D be an open subset of Rn. We shall denote the points of R× D. Let
h : R × D → R be a C1 function having the 0 ∈ R as a regular value, and
let Σ = h−1(0).

Let X, Y : R × D → R
n be two continuous vector fields. Assume that

the functions h, X and Y are T –periodic in the variable t. Now we define a
discontinuous piecewise differential system

(12) x′(t) = Z(t, x) =

{

X(t, x) if h(t, x) > 0,

Y (t, x) if h(t, x) < 0.

We concisely denote Z = (X, Y )h.

The discontinuous differential system (12) can be written using the func-
tion sign(u) as

(13) x′(t) = Z(t, x) = F1(t, x) + sign(h(t, x))F2(t, x),

where

F1(t, x) =
1

2
(X(t, x) + Y (t, x)) and F2(t, x) =

1

2
(X(t, x) − Y (t, x)) .

The next result is Theorem A of [19].
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Theorem 7. We consider the following discontinuous differential system

(14) x′(t) = εF (t, x) + ε2R(t, x, ε),

with
F (t, x) = F1(t, x) + sign(h(t, x))F2(t, x),

R(t, x, ε) = R1(t, x, ε) + sign(h(t, x))R2(t, x, ε),

where F1, F2 : R × D → R
n, R1, R2 : R × D × (−ε0, ε0) → R

n and h :
R × D → R are continuous functions, T –periodic in the variable t and D is
an open subset of Rn. We also suppose that h is a C1 function having 0 as
a regular value.

Define the averaged function f : D → R
n as

(15) f(x) =

∫ T

0
F (t, x)dt.

We assume the following conditions.

(i) F1, F2, R1, R2 and h are locally Lipschitz with respect to x;
(ii) there exists an open bounded subset C ⊂ D such that, for |ε| > 0

sufficiently small, every orbit starting in C reaches the set of discon-
tinuity only at its crossing regions.

(iii) for a ∈ C with f(a) = 0, there exist a neighbourhood U ⊂ C of a
such that f(z) 6= 0 for all z ∈ U\{a} and dB(f, U, 0) 6= 0.

Then, for |ε| > 0 sufficiently small, there exists a T –periodic solution x(t, ε)
of system (14) such that x(0, ε) → a as ε → 0.

If the function f(x) in (15) is C1 the Remark 5 works for it.

3. Proof of Theorem 1

Proof of statement (a) of Theorem 1. By assumption we have that i 6= 0.
Changing to cylindrical coordinates x = r cos θ, y = r sin θ, z = z, the system
(2) writes as

(16)

ṙ = εg1(θ, r, z),

θ̇ = 1 +
ε

r

(

cos θ(e + h|z| + fr cos θ) − sin θ(a + d|z|+

(b − g)r cos θ) − cr sin2 θ
)

,

ż = ir cos θ + ε(j + m|z| + kr cos θ + lr sin θ),

where

g1(θ, r, z) = cos θ
(

a + d|z| + br cos θ
)

+ sin θ
(

e + h|z|+
(c + f)r cos θ

)

+ gr sin2 θ,

and taking θ as the new independent variable system (2) becomes

(17)
r′ = εg1(θ, r, z),

z′ = ir cos θ + εg2(θ, r, z),
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where the prime denotes derivative with respect to θ, and

g2(θ, r, z) = j + m|z| − fir cos3 θ + lr sin θ − i cos2 θ
(

e+

h|z| + (g − b)r sin θ
)

+ cos θ
(

kr + di|z| sin θ+

i sin θ(a + cr sin θ)
)

.

The unperturbed system is

(18)
r′ = 0,
z′ = ir cos θ.

For each (r0, z0) the solution ϕ(θ, (r0, z0)) such that ϕ(0, (r0, z0)) = (r0, z0)
is ϕ(θ, (r0, z0)) = (r0, z0 + ir0 sin θ), which is 2π-periodic for all r0 6= 0. For
r0 = 0 the system has a straight line filed of equilibria.

Now the differential system (17) is in the normal form (4) with

F0(θ, (r, z)) = (0, ir cos θ),

F1(θ, (r, z)) = (g1(θ, r, z), g2(θ, r, z)),

satisfying all the assumptions of Theorem 3. So we apply this theorem to
system (17) and we must calculate the averaged function

f(r0, z0) =

∫ 2π

0
M−1(θ)F1(θ, (r0, z0))dθ,

where the fundamental matrix M(θ) of the variational equation (5) on the
periodic (r(θ), z(θ)) = (r0, z0 + ir0 sin θ) of system (17), satisfying that M(0)
is the identity matrix, is

M(r0,z0)(θ) = M(θ) =

(

1 0
i sin θ 1

)

.

In short we have

(19) f(r0, z0) = (f1(r0, z0), f2(r0, z0)),

where

f1(r0, z0) =

∫ 2π

0
g1(θ, r0, z0 + ir0 sin θ)dθ,

f2(r0, z0) =

∫ 2π

0

(

g2(θ, r0, z0 + ir0 sin θ) − i sin θg1(θ, r0, z0 + ir0 sin θ)
)

dθ.

For calculating these two integrals for a given z0 and r0 we need to know
the sign of S = z0 + ir0 sin θ in function of θ, because in the functions g1

and g2 appears the expression |z0 + ir0 sin θ|. Thus we have to distinguish
the following cases.

For i > 0 we have that

(i) If
z0

ir0
< −1, then S < 0 for all θ. If

z0

ir0
= −1, then S < 0 for all θ,

except for θ =
π

2
where takes the value 0.
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(ii) If

∣

∣

∣

∣

z0

ir0

∣

∣

∣

∣

< 1, then S > 0 when θ ∈
(

− arcsin
z0

ir0
, π + arcsin

z0

ir0

)

;

(iii) If
z0

ir0
> 1, then S > 0 for all θ. If

z0

ir0
= 1, then S > 0 for all θ,

except for θ =
3π

2
where takes the value 0.

Case (i):
z0

ir0
≤ −1. In this case the averaged function (19) is

f(r0, z0) = ((b + g − hi)πr0, 2π(−ei + j + hiz0 − mz0)),

whose unique zero is (r0, z0) =

(

0,
ei − j

hi − m

)

. This solution (when it exists)

corresponds to the equilibrium

(

x = 0, y = 0, z =
ei − j

hi − m

)

of the initial sys-

tem when ε = 0, so the averaging theory in this case does not provide any
periodic solution.

Case (ii):

∣

∣

∣

∣

z0

ir0

∣

∣

∣

∣

< 1. In this case the averaged function f(r0, z0) = (f1(r0, z0),

f2(r0, z0)) is

f1(r0, z0) =

∫ π+arcsin
z0

ir0

− arcsin
z0

ir0

(

br0 cos2 θ + (z0 + ir0 sin θ)(d cos θ + h sin θ)+

cos θ(a + (c + f)r0 sin θ) + sin θ(e + gr0 sin θ)
)

dθ+

∫ 2π−arcsin
z0

ir0

π+arcsin
z0

ir0

(

br0 cos θ2 − (z0 + ir0 sin θ)(d cos θ + h sin θ)+

cos θ(a + (c + f)r0 sin θ) + sin θ(e + gr0 sin θ)
)

dθ,

f2(r0, z0) =

∫ π+arcsin
z0

ir0

− arcsin
z0

ir0

(

j − ei + (m − hi)(z0 + ir0 sin θ)+

(k − fi)r0 cos θ + (l − gi)r0 sin θ
)

dθ+

∫ 2π−arcsin
z0

ir0

π+arcsin
z0

ir0

(

j − ei − (m − hi)(z0 + ir0 sin θ)+

(r − fi)r0 cos θ + (l − gi)r0 sin θ
)

dθ.
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Computing these integrals we obtain

f1(r0, z0) = π(b + g)r0 + 2h

(

z0

√

1 − z2
0

i2r2
0

+ ir0arc csc

(

ir0

z0

)

)

,

f2(r0, z0) = 2π(j − ei) + 4(m − hi)

(

ir0

√

1 − z2
0

i2r2
0

+ z0arc csc

(

ir0

z0

)

)

.

Subcase (ii.1): Assume that h and m − hi are not zero. Then for computing
the solutions of the system f1(r0, z0) = f2(r0, z0) = 0, we must solve the
equivalent system

z0

ir0

√

1 − z2
0

i2r2
0

+ arc csc

(

ir0

z0

)

= α = −(b + g)π

2hi
,

r0

(
√

1 − z2
0

i2r2
0

+
z0

ir0
arc csc

(

ir0

z0

)

)

= β =
2π(ei − j)

4i(m − hi)
,

or equivalently we must solve the system

(20)
a(u) = u

√
1 − u2 + arc csc

1

u
= α,

b(u) = r0

(√
1 − u2 + u arc csc

1

u

)

= β,

where u =
z0

ir0
with u ∈ [−1, 1]. We obtain that a(1) =

π

2
and a(−1) =

−π

2
. In Figure 1 there are the graphics of the functions a(u) and b(u)/r0

respectively.

-1.0 -0.5 0.5 1.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

-1.0 -0.5 0.5 1.0

1.1

1.2

1.3

1.4

1.5

Figure 1. Graphics of functions a(u) and b(u)/r0.

From the graphic of a(u) we conclude that given α ∈ [−π/2, π/2] there
is a unique solution u∗ ∈ [−1, 1] for u satisfying the first equation of (20).
Substituting u∗ in second equation b(u) = β of (20), and taking into account
the graphic of b(u)/r0 it follows that there is a unique solution r∗ for r0 > 0
if β > 0 and u∗ 6= 0. Hence we have proved that in the subcase (ii.1)
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there is one periodic solution using the averaging theory of first order if
α ∈ [−π/2, 0) ∪ (0, π/2] and β > 0. So, by Theorem 3, the periodic solution

(r(θ), z(θ)) = (r∗, z∗ + ir∗ sin θ)

of the unperturbed system (1) can be continued to a periodic solution

(r(θ), z(θ)) = (r∗ + O(ε), z∗ + ir∗ sin θ + O(ε))

of the perturbed system (17). Going back through the changes of coordinates
this periodic solution for the system (16) becomes

(r(t), θ(t), z(t)) = (r∗ + O(ε), t + O(ε), z∗ + ir∗ sin t + O(ε)).

Finally for system (2) we get the periodic solution

(x(t), y(t), z(t)) = (r∗ cos t + O(ε), r∗ sin t + O(ε), z∗ + ir∗ sin t + O(ε)).

In short we have proved the positive result of Theorem 1, but it remains
to show that the averaging theory of first order does not provide more results
on the periodic solutions of the continuous piecewise differential system (2).

Subcase (ii.2): Suppose that h = 0 and m − hi = 0. Then

f1(r0, z0) = π(b + g)r0 and f2 = 2π(j − ei).

This system has no solution if j − ei 6= 0. For j − ei = 0 the Jacobian
determinant (6) will be zero, so in any case the averaging theory does not
provide information about the periodic solutions.

Subcase (ii.3): Suppose that h = 0 and m − hi 6= 0. Therefore

f1(r0, z0) = π(b + g)r0,

f2(r0, z0) = 2π(j − ei) + 4(m − hi)

(

ir0

√

1 − z2
0

i2r2
0

+ z0arc csc

(

ir0

z0

)

)

.

If b+g = 0 then the Jacobian determinant (6) will be zero, so we can assume
b + g 6= 0. Then we obtain the solution r0 = 0, which corresponds to an
equilibrium point of the unperturbed system (18), therefore the averaging
theory does not provide any periodic solution in this subcase.

Subcase (ii.4): Suppose now that h 6= 0 and m − hi = 0. We obtain

f1(r0, z0) = π(b + g)r0 + 2h

(

z0

√

1 − z2
0

i2r2
0

+ ir0arc csc

(

ir0

z0

)

)

,

f2(r0, z0) = 2π(j − ei).

The same arguments than in the subcase (ii.2) show that the averaging
theory does not provide information about the periodic solutions in this
subcase. This completes the study of case (ii).

Case (iii):
z0

ir0
≥ 1. In this case the averaged function is given by

f(r0, z0) = (π(b + g + hi)r0, 2π(j − ei + (m − hi)z0)),
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whose unique zero is (r0, z0) =

(

0,
j − ei

hi − m

)

. The conclusion follows as in

Case (i).

�

Proof of statement (b) of Theorem 1. Since i = 0 we have system (17) with
i = 0. This system satisfies the assumptions of the averaging Theorem 4, so
we must compute the function (23), i.e.

(f1(r, z), f2(r, z)) =

∫ 2π

0
(g1(θ, r, z), g2(θ, r, z))dθ

=
(

π(b + g)r, 2π(j + m|z|)
)

.

This function has two simple zeros if and only if (b + g)m 6= 0 and j/m < 0,
namely (r, z) = (0, ±j/m). Going back through the changes of variables as
we did in the proof of statement (a) we get the result of statement (b).

We note that the function (f1(r, z), f2(r, z)) has a unique zero if (b+g)m 6=
0 and j = 0, but in this case the Brouwer degree is zero, and the averaging
Theorem 4 cannot be applied.

If (b + g)m = 0, then it is easy to verify that the averaging Theorem 4
does not provide information about the periodic solutions of system (17).
This completes the proof of statement (b) of Theorem 1. �

4. Proof of Theorem 2

Proofs of statements (a) and (b) of Theorem 2. Changing to cylindrical co-
ordinates x = r cos θ, y = r sin θ, z = z, system (3) writes as

(21)

ṙ = εh1(θ, r, z),

θ̇ = 1 +
ε

r

(

cos θ(e + hz + fr cos θ + h sign(z)) − sin θ(a + dz+

(b − g)r cos θ + d sign(z)) − cr sin2 θ
)

,

ż = ir cos θ + ε(j + mz + kr cos θ + m sign(z) + lr sin θ),

where

h1(θ, r, z) = cos θ(a + dz + br cos θ + d sign(z)) + sin θ(e + hz+

(c + f)r cos θ + h sign(z)) + gr sin2 θ,

and taking θ as the new independent variable system (3) becomes

(22)
r′ = εh1(θ, r, z),

z′ = ir cos θ + εh2(θ, r, z),
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where the prime denotes derivative with respect to θ, and

h2(θ, r, z) = j + mz + cos θ(kr − i cos θ(e + hz + fr cos θ)) + lr sin θ+

i cos θ sin θ(a + dz + (b − g)r cos θ + cr sin θ)+

sign(z)(m + i cos θ(−h cos θ + d sin θ)).

As in the continuous case the unperturbed system is given by

r′ = 0,
z′ = ir cos θ.

Now the differential system (22) is in the normal form (11) with

F0(θ, (r, z)) = (0, ir cos θ),

F1(θ, (r, z)) = (h1(θ, r, z), h2(θ, r, z)),

satisfying all the assumptions of Theorem 6. So we apply this theorem to
system (22) and we must calculate the averaged function

f(r0, z0) = (f1(r0, z0), f2(r0, z0)) =

∫ 2π

0
M−1(θ)F1(θ, (r0, z0))dθ,

where as in the proof of statement (a) of Theorem 1 the fundamental matrix
is

M(r0,z0)(θ) = M(θ) =

(

1 0
i sin θ 1

)

.

In short we have

f1(r0, z0) =

∫ 2π

0
h1(θ, r0, z0 + ir0 sin θ)dθ,

f2(r0, z0) =

∫ 2π

0

(

h2(θ, r0, z0 + ir0 sin θ) − i sin θh1(θ, r0, z0 + ir0 sin θ)
)

dθ.

Analogously to the study of the continuous system for i > 0, we separate
the computation of the averaged function in the same three cases, because
in the functions h1 and h2 also appears the expression sign(z0 + ir0 sin θ).

Case (i):
z0

ir0
≤ −1. In this case the averaged function is

f(r0, z0) = ((b + g + hi)r0, 2π(−ei + j − m + mz0 + hi(1 − z0))),

whose unique zero is (r0, z0) =

(

0,
(h − e)i + j − m

hi − m

)

. This solution (when

it exists) corresponds to the equilibrium (x, y, z) =

(

0, 0,
(h − e)i + j − m

hi − m

)

of the initial system when ε = 0, so the averaging theory in this case does
not provide any periodic solution.
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Case (ii):

∣

∣

∣

∣

z0

ir0

∣

∣

∣

∣

< 1. In this case the averaged function f(r0, z0) = (f1(r0, z0),

f2(r0, z0)) is

f1(r0, z0) =

∫ π+arcsin
z0

ir0

− arcsin
z0

ir0

(

br0 cos2 θ + (d cos θ + h sin θ) + cos θ(a + dz0+

(c + f + di)r0 sin θ) + sin θ(e + hz0 + (g + hi)r0 sin θ)
)

dθ+

∫ 2π−arcsin
z0

ir0

π+arcsin
z0

ir0

(

br0 cos2 θ − (d cos θ + h sin θ) + cos θ(a + dz0+

(c + f + di)r0 sin θ) + sin θ(e + hz0 + (g + hi)r0 sin θ)
)

dθ,

f2(r0, z0) =

∫ π+arcsin
z0

ir0

− arcsin
z0

ir0

(

− ei + j − hiz0 + mz0 + (−fi + k)r0 cos θ+

(−hi + m) + (l − i(g + hi − m))r0 sin θ
)

dθ+

∫ 2π−arcsin
z0

ir0

π+arcsin
z0

ir0

(

− ei + j − hiz0 + mz0 + (−fi + k)r0 cos θ−

(−hi + m) + (l − i(g + hi − m))r0 sin θ
)

dθ.

Computing these integrals we obtain

(23)

f1(r0, z0) = π(b + g)r0 + h

(

πir0 + 4

√

1 − z2
0

i2r2
0

)

,

f2(r0, z0) = 2π(j − ei) + (m − hi)

(

2πz0 + 4arc csc

(

ir0

z0

))

.

Subcase (ii.1) Assume that h and m−hi are not zero. Note that f1(r0, z0) =

0 if and only if z0 = ± ir0

4

√

16 − π2(b + g + hi)2r2
0

h2
. As

∣

∣

∣

∣

z0

ir0

∣

∣

∣

∣

< 1, we

get that (b + g + hi) is nonzero. These zeros exist if and only if r0 ∈
(

0,

∣

∣

∣

∣

4h

(b + g + hi)π

∣

∣

∣

∣

)

.

Assume that
h

b + g + hi
> 0 and z0 = − ir0

4

√

16 − π2(b + g + hi)2r2
0

h2
. In

this case z0 < 0 and thus −1 <
z0

ir0
< 0. Substituting this z0 in f2(r0, z0),
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we get that f2(r0, z0) = 0 if and only if G(r0) = µ where

G(r0) = πir0

√

16 − π2(b + g + hi)2r2
0

h2
+ 8 arc csc





4
√

16 − π2(b+g+hi)2r2

0

h2



 ,

and µ =
4π(ei − j)

hi − m
. Note that G(r0) ≥ 0, G(0) = 4π, G(r0) → 0 if

r0 → 4h

π(b + g + hi)
, and

(24) G′(r0) =

16πh2ir0 − 2π3i(b + g + hi)2r3
0 − 8h2π

√

(b + g + hi)2r2
0

h2

h2r0

√

16 − π2(b + g + hi)2r2
0

h2

.

As
h

b + g + hi
> 0, we obtain that the point (when it is real)

rc
0 =

2

π

√

− h(b + g − hi)

i(b + g + hi)2

is a maximum of G(r0). It exists if and only if h(b + g − hi) ≤ 0. Let
G(rc

0) = γ∗ be the maximum value of G(r0). In Figure 2 there are the
graphics of the function G(r0) for h(b + g − hi) < 0 and h(b + g − hi) ≥ 0
respectively.

Figure 2. Function G(r0) for h(b + g − hi) < 0 and h(b +
g − hi) ≥ 0.

In short, from Theorem 6, for h(b + g − hi) < 0 we have that system (22)
has at least one periodic solution if µ ∈ (0, 4π], and system (22) has at least
two periodic solutions if µ ∈ (4π, γ∗).

For h(b+g−hi) ≥ 0 the function G(r0) is decreasing and thus if µ ∈ (0, 4π),
system (22) has exactly one periodic solution. In both cases going back
through the changes of coordinates the periodic solutions of system (3) are
of the form

(x(t), y(t), z(t)) = (r∗ cos t + O(ε), r∗ sin t + O(ε), z∗ + ir∗ sin t + O(ε)),
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where z∗ = − ir∗

4

√

16 − (b + g + hi)2π2(r∗)2

h2
, and G(r∗) = µ.

For
h

b + g + hi
< 0 we get analogous results, changing the critical point

of function G(r0) (see (24)) for rc
0 =

2

π

√

h(b + g + 3hi)

i(b + g + hi)2
that exists if and

only if h(b + g + 3hi) ≥ 0.

Suppose now that z0 =
ir0

4

√

16 − (b + g + hi)2π2r2
0

h2
. In this case z0 > 0

and thus 0 <
z0

ir0
< 1. Substituting z0 in f2(r0, z0) we get that f2(r0, z0) = 0

if and only if G(r0) = −µ. The result is analogous to the previous case,
changing µ by −µ.

Subcase (ii.2): Suppose that h = 0 and m − hi = 0. The system (f1(r0, z0),
f2(r0, z0)) = (0, 0) has no solutions if −ei+ j 6= 0, and when −ei+ j = 0 the
Jacobian determinant (6) will be zero. So, by Theorem 6 in any case the
averaging theory does not provide information about the periodic solution
in this subcase.

Subcase (ii.3): Suppose that h = 0 and m − hi 6= 0. We obtain the solution
r0 = 0, so the averaging theory does not provide periodic solution.

Subcase (ii.4): Suppose that h 6= 0 and m − hi = 0. This case is similar to
the subcase (ii.2). This completes the study of case (ii).

Case (iii):
z0

ir0
≥ 1. In this case the averaged function is given by

f(r0, z0) = ((b + g + hi)πr0, 2π(−ei + j + m + mz0 − hi(1 + z0))),

whose unique zero is (r0, z0) =

(

0,
(−e − h)i + j + m

hi − m

)

. The conclusion

follows as in Case (i).

�

Proof of statement (c) of Theorem 2. Since i = 0 we have system (22) with
i = 0. This system satisfies the assumptions of the averaging Theorem 7, so
we must compute the function (15), i.e.

(f1(r, z), f2(r, z)) =

∫ 2π

0
(h1(θ, r, z), h2(θ, r, z))dθ

=
(

π(b + g)r, 2π(j + m(z + sign(z)))
)

.

This function has one simple zero if and only if (b+g)m 6= 0, namely (r, z) =
(0, (m−j)/m) if −j/m < −1 or (r, z) = (0, (−m−j)/m) if −j/m > 1. Going
back through the changes of variables as we did in the proof of statement
(a) we get the result of statement (b).
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Clearly if (b + g)m = 0 the averaging Theorem 7 does not provide infor-
mation about the periodic solutions. This completes the proof of statement
(c) of Theorem 2. �
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