Note

A Note on the Periods of Surface Homeomorphisms

JEAN-MARC GAMBAUDO

I.N.L.N., Université de Nice, Parc Valrose 06108, Nice Cedex, France

AND

JAUME LLIBRE

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelonu, Spain

Submitted by R.B. Boas

Received June 3, 1991

If f is a surface homeomorphism isotopic to a pseudo-Anosov one, then its set of periods is cofinite, i.e., there exists a finite subset S of \mathbb{N} such that the set of periods of f is equal to $\mathbb{N} \setminus S$. © 1993 Academic Press, Inc.

1. Introduction

Let M be a compact connected oriented surface possibly with boundary. A homeomorphism $F: M \to M$ is said to be pseudo-Anosov if there is a real number $\lambda = \lambda(F) > 1$ and a pair of transverse measured foliations F^s and F^u such that $F(F^s) = \lambda^{-1}F^s$ and $F(F^u) = \lambda F^u$. Pseudo-Anosov homeomorphisms are topologically transitive, have positive entropy, and have Markov partitions [5]. More concretely, let $\{R_1, R_2, ..., R_k\}$ be a Markov partition for F. It is known that F is semi-conjugate to the subshift of finite type (Σ_k, A, σ) defined as follows. Set $\Sigma_k = \{1, 2, ..., k\}^{\mathbb{Z}}$, A = A(F) the $k \times k$ transition matrix defined by $a_{ij} = 1$ if $F(\operatorname{Int} R_i) \cap \operatorname{Int} R_j \neq \emptyset$, and $a_{ij} = 0$ otherwise, and $\sigma: \Sigma_k \to \Sigma_k$ the shift map. If $\{b_i\} \in \Sigma_k$ then $\bigcap_{i \in \mathbb{Z}} F^{-1}(R_{b_i})$ consists of a single point, and the semi-conjugacy $h: \Sigma_k \to M$, satisfying $h \circ \sigma = F \circ h$, is given by $h(\{b_i\}) = \bigcap_{i \in \mathbb{Z}} F^{-1}(R_{b_i})$. Moreover, if $\rho(A)$ is the spectral radius of A, then λ is the unique

627

0022-247X/93 \$5.00