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Abstract. Using the qualitative theory, the global dynamics of

the cosmological model based on Hořava-Lifshitz gravity is de-

scribed.

1. Introduction

Ten years ago Hořava [1] put forward a theory of spacetime asym-

metric gravity, which is similar to Lifshitz’s scalar field theory. If the

spatial dimension in Lifshitz’s scalar field theory has a weight of one,

then the time dimension has a weight of three. Therefore this theory

is also known as Hořava-Lifshitz gravity. It ignited a great deal of re-

search on the possible application of this theory in cosmology and black

hole physics (see [2]-[5] or the review articles [6], [7] and the references

therein).

With or without detailed-balance conditions, Leon and Saridakis [8]

carried out a detailed phase space analysis of Hořava-Lifshitz cosmol-

ogy, and found that the universe governed by Hořava gravity had late-

time solutions compatible with observations. They also presented sev-

eral results on the stability of de Sitter solutions in Hořava-Lifshitz

cosmology by using the central manifold theory [9]. Furthermore Sari-

dakis [10] reviewed some general aspects of Hořava-Lifshitz cosmology

and extracted cosmological equations from its basic version. He proved
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that bouncing and cycling can occur naturally by phase space analy-

sis. However, he also showed that Hořava-Lifshitz gravity is affected

by instability in its basic version with detailed perturbation analysis.

For the stability of gravitational scalar mode Chen [11] briefly summa-

rized the Hořava-Lifshitz theory of gravity and its modifications and

its implications in cosmology.

In recent years Lepe and Saavedra [12] discussed some aspects of

Hořava-Lifshitz cosmology with emphasis on some cosmological solu-

tions that exist in general relativity (Friedmann cosmology), especially

in the flat case that dust-driven evolution is the same in both cos-

mological theories. For Hořava-Lifshitz theory of gravitation Abreu

et al. [13] explored a non-commutative version of the Friedmann-

Robertson-Walker cosmological model, in which material content is de-

scribed by ideal fluids, and the constant curvature of the spatial sections

can be positive, negative or zero. Under the background spacetime

of Friedmann-Lemâıtre-Robertson-Walker, Paliathanasis and Leon [14]

divided the integrability of Hořava-Lifshitz scalar field into four cases

according to the existence of cosmological constant term and the dis-

appearance of space curvature. They followed the singularity analysis

method to determine integrability. It is believed that their work will

be very helpful to the integrability of the gravitational field equation

in cosmology. In addition to the cosmological solutions in [14], two

versions of Hořava-Lifshitz gravity were discussed for finding and an-

alyzing the plane symmetric, static (non-static) solutions in Hořava-

Lifshitz gravity [15]. They also studied the plane symmetry of the new

modified version of Hořava gravity.
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Here we shall describe the global dynamics of the Hořava-Lifshitz

cosmological model in a Friedmann-Lemâıtre-Robertson-Walker space-

time with zero curvature and without the cosmological constant term.

This dynamics is provided by the gravitational field equations in di-

mensionless variables given by

(1)

dy1
dt

= (y21 − 1)
(
3y1 −

√
6y3
)
,

dy2
dt

= (3y21 − 2) y2,

dy3
dt

= −2
√

6y1f(y3),

with the power law potential f(y3) = −y23/(2n), where n is a natural

number. See equations (17)-(19) of [14] for more details.

The description of dynamics of system (1) is given in section 4.

2. Phase portraits on the invariant planes

In order to study the phase portraits of system (1), we start studying

the phase portraits of its invariant planes

y1 = ±1, y2 = 0, y3 = 0.

After we will study the local phase portraits of the finite and infinite

equilibrium points, and finally the global phase portraits in the region

−1 ≤ y1 ≤ 1, which is the interest region for cosmology.

2.1. The invariant plane y1 = 1. On this plane system (1) becomes

(2) dy2
dt

= y2,
dy3
dt

=

√
6

n
y23.
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The unique finite equilibrium point is qy1,1 = (0, 0). It is a semi-

hyperbolic equilibrium point and using Theorem 2.19 of [16] qy1,1 is

a saddle-node.

Based on the Poincaré transformation y2 = 1/v, y3 = u/v, on the

local chart U1 (see for more details on the Poincaré compactification

Chapter 5 of [16]) equations (2) become

(3) u̇ =

√
6

n
u2 − uv, v̇ = −v.

This system has the infinite semi-hyperbolic equilibrium point py1,1 =

(0, 0). Applying to it Theorem 2.19 of [16] we obtain the saddle-node

shown in Figure 1(a).

Similarly on the local chart U2 system (2) is

(4) u̇ = −
√

6

n
u+ uv, v̇ = −

√
6

n
v.

Then the equilibrium point py1,2 = (0, 0) of system (4) is a hyperbolic

stable node with eigenvalues −
√

6/n of multiplicity two.

Finally joining the previous information on the studied three equi-

librium points qy1,1 , py1,1 and py1,2 , together with the diametrically

opposite equilibrium points Py1,1 and Py1,2 at infinity of py1,1 and py1,2 ,

we obtain the global phase portrait of system (2) in the Poincaré disc

of the invariant plane y1 = 1 in Figure 1(b). Here we have also used

that the straight lines y2 = 0 and y3 = 0 are invariant by the flow of

system (2).
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y2

y3

Py1 2,

py1 1,Py1 1, qy1 1,

py1 2,

(a) (b)

Figure 1. In (a) there is the local phase portraits of the
saddle-node py1,1 = (0, 0) in the Poincaré disc. In (b) there
is the phase portraits of the invariant plane y1 = 1.

2.2. The invariant plane y1 = −1. On this plane system (1) reduces

to

(5) dy2
dt

= y2,
dy3
dt

= −
√

6

n
y23.

System (5) is similar to system (2), so the equilibrium point qy1,2 =

(0, 0) is a saddle-node.

On the local chart U1 system (5) is

(6) u̇ = −
√

6

n
u2 − uv, v̇ = −v.

The semi-hyperbolic equilibrium point py1,3 = (0, 0) is a saddle-node

by Theorem 2.19 of [16], and its local phase portrait in the Poincaré

disc is described in Figure 2(a).

On the local chart U2 system (5) becomes

(7) u̇ =

√
6

n
u+ uv, v̇ =

√
6

n
v.
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y2

y3

py1 3,

py1 4,

qy1 2,
Py1 3,

Py1 4,

(a) (b)

Figure 2. In (a) there is the local phase portraits of the
saddle-node py1,3 = (0, 0) in the Poincaré disc. In (b) there
is the phase portraits of the invariant plane y1 = −1.

Its equilibrium point py1,4 = (0, 0) is a hyperbolic unstable node with

eigenvalue
√

6/n of multiplicity two.

In short joining the previous information as we did for the plane

y1 = 1, we get the global phase portraits in the Poincaré disc of the

invariant plane y1 = −1 in Figure 2(b). Furthermore by using the

method of Poincaré compactification y1 = z1/z3, y2 = 1/z3, y3 = z2/z3

and the change of time dt = z33dτ in R3, then the analytical vector field

of system (1) in the local chart U2 becomes

(8)

z′1 = −
√

6z21z2 − z1z23 +
√

6z2z
2
3 ,

z′2 = z2

(
−3z21 +

√
6

n
z1z2 + 2z23

)
(−1 + z23),

z′3 = −3z21z3 + 2z33 ,

where the prime denotes derivative with respect to the time τ . Then

this system has the equilibrium points (z1, z2, z3) = (0, a, 0) for all a.

So the infinity of Figure 3 is filled up with equilibrium points when

y1 = 0.
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Therefore combining Figures 1(b) and 2(b) we obtain the phase por-

trait of system (1) inside the Poincaré ball as shown in Figure 3. All

the points on the dashed circle in the plane y1 = 0 are the equilibrium

points.

(-1,0,0)

(1,0,0)

y2

y3

y1

Figure 3. Phase portraits on the planes y1 = ±1
inside the Poincaré ball.

2.3. The invariant plane y2 = 0. On this plane system (1) can be

rewritten as

(9) dy1
dt

= (y21 − 1)
(
3y1 −

√
6y3
)
,
dy3
dt

=

√
6

n
y1y

2
3.

This system has three equilibrium points Oy2,0 = (0, 0), qy2,1 = (1, 0),

qy2,2 = (−1, 0), which are semi-hyperbolic.

In order to apply Theorem 2.19 of [16], the linear part at each equi-

librium point of system (9) must be written into its real Jordan normal
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form. So we do the following transformation to the linear part of Oy2,0

y1 =

√
6

3
(y − x), y3 = −x.

Then equations (9) become

(10)
ẋ = − 2

n
x3 +

2

n
x2y,

ẏ = 3y − 2

n
x3 +

1

2

(
1

n
− 1

)
x2y + 4xy2 − 2y3.

Let y = g(x) = 2x3/3n + 4(n − 1)x5/(9n2) + O(x5) be the solution

of the second equation of system (10). Substituting y = g(x) into the

first equation of system (10), we obtain ẋ = −2x3/n + O(x5). So by

Theorem 2.19 of [16], Oy2,0 = (0, 0) is a saddle point.

Applying again Theorem 2.19 of [16] to the equilibrium points qy2,1 =

(1, 0) and qy2,2 = (−1, 0), we obtain that they are saddle-nodes.

On the local chart U1 system (9) becomes

(11)

u̇ = u

[
3 (v2 − 1) +

√
6

n
u (1 + n− nv2)

]
,

v̇ = v
(
3−
√

6u
)

(v2 − 1) .

Its equilibrium points are py2,1 = (0, 0), py2,2 =
(√

6n/(2(1 + n)), 0
)
.

The equilibrium point py2,1 is a hyperbolic stable node with eigenvalues

−3 of multiplicity two, and py2,2 is a hyperbolic unstable saddle with

eigenvalues 3 and −3 + 3n/(1 + n).

On the local chart U2 system (9) writes

(12) u̇ = v2
(√

6− 3u
)
−
√

6(1 + n)

n
u2 + 3u3, v̇ = −

√
6

n
uv.



9

The py2,3 = (0, 0) is a linearly zero equilibrium point, i.e. its linear part

is identically zero. Its topological index is zero by the Poincaré-Hopf

theory (see Theorem 6.30 of [16] for more details).

In order to study the local phase portraits of the equilibrium point

(0, 0) of system (12) we apply the blow-up techniques (see [17] for more

details). We do a vertical blow-up by introducing the transformation

w = v/u, then we have

(13)

u̇ = u2

[
−
√

6

n
+
(√

6− 3u
)

(w2 − 1)

]
,

ẇ = −uw
(√

6− 3u
)

(w2 − 1) .

The common factor u of system (13) can be eliminated by rescaling

the time udt = dτ . So we get

(14)

u′ = u

[
−
√

6

n
+
(√

6− 3u
)

(w2 − 1)

]
,

w′ = −w
(√

6− 3u
)

(w2 − 1) ,

where the prime represents the derivative with respect to the time τ .

Note that system (14) has three equilibrium points py2,4 = (0,−1),

py2,5 = (0, 0) and py2,6 = (0, 1) on u = 0. Therefore both the equilib-

rium points py2,4 and py2,6 are hyperbolic stable nodes with eigenvalues

−
√

6/n and −2
√

6, the equilibrium point py2,5 is a hyperbolic unstable

saddle with eigenvalues −
√

6(1 + n)/n and
√

6. The local phase por-

traits around these three equilibrium points are shown in Figure 4(a).

Considering that there is a time rescaling dτ = udt between systems

(13) and (14), so the local phase portraits of system (13) is shown in



10 FABAO GAO1,2, AND JAUME LLIBRE2

Figure 4(b). Moreover, all points on the w-axis, i.e. u = 0, are singu-

larities of system (13). Thus the local phase portraits of system (12) is

shown in Figure 4(c), and then the local phase portrait at the origins

of U2 and V2 for y2 = 0 can be found in Figure 4(d).

In summary joining the previous information we obtain the global

phase portraits in Figure 5 in the Poincaré disc of the plane y2 = 0

restricted to the strip −1 ≤ y1 ≤ 1.

2.4. The invariant plane y3 = 0. On this plane system (1) writes

(15)
dy1
dt

= 3y1 (y21 − 1) ,
dy2
dt

= y2 (3y21 − 2) .

This system has three equilibrium points Oy3,0 = (0, 0), qy3,1 = (1, 0)

and qy3,2 = (−1, 0). Then Oy3,0 is a hyperbolic stable node with eigen-

values -3 and -2, both qy3,1 and qy3,2 are unstable hyperbolic nodes with

eigenvalues 1 and 6.

On the local chart U1 system (15) becomes

(16) u̇ = uv2, v̇ = 3v (v2 − 1) .

So all the infinity of this system is filled of equilibrium points. We note

that removing v of system (16) doing the change of time dτ = vdt, we

get the system

(17) u′ = uv, v′ = 3 (v2 − 1) ,

which has no infinite equilibrium points.

On the local chart U2 system (15) writes

(18) u̇ = −uv2, v̇ = v (−3u2 + 2v2) .
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(0,0)

(0,1)

(0,-1)

u

w

(a)

(0,0)

(0,1)

(0,-1)

u

w

(b)

(0,0) u

v

(c)

py2 3,

Py2 3,

(d)

Figure 4. In (a), (b) and (c) there are the local phase
portraits of the equilibrium points in system (14), (13) and
(12), respectively. In (d) there is the local phase portraits
at the origin of U2 and V2 for y2 = 0.

Again doing the change of variable dτ = vdt system (18) becomes

(19) u′ = −uv, v′ = −3u2 + 2v2.
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1-1

y1

y3

Figure 5. The phase portraits of the invariant plane
y2 = 0 restricted to −1 ≤ y1 ≤ 1.

The py3,1 = (0, 0) is also a linearly zero equilibrium point of system

(19). Applying again the blow-up techniques of [17] to py3,1 , then we

obtain

(20) u′ = −u2w, w′ = 3u(w2 − 1),

after doing the change of variable w = v/u. Rescaling the time of

system (20) we get

(21) u̇ = −uw, ẇ = 3(w2 − 1).
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Hence system (21) has two equilibrium points py3,2 = (0,−1) and

py3,3 = (0, 1) on u = 0. Therefore both the equilibrium points py3,2

and py3,3 are hyperbolic unstable saddles with eigenvalues 1, −6 and

−1, 6, respectively. The local phase portraits around these two equi-

librium points is shown in Figure 6(a). Considering that there is time

dτ = udt to rescale between systems (20) and (21), the local phase por-

traits of system (20) is shown in Figure 6(b). In addition, all points on

the w-axis, i.e. u = 0 are the singularities of the system (20). Therefore

the local phase portraits of system (19) is shown in Figure 6(c), and

then the local phase portraits at the origins of U2 and V2 of y3 = 0 can

be found in Figure 6(d).

In conclusion from the previous information and taking into account

that the straight lines y1 = 0 and y2 = 0 are invariant under the flow

of system (15), we obtain the global phase portraits restricted to the

band −1 ≤ y1 ≤ 1 in Figure 7 in the Poincare disc of the plane y3 = 0.

3. Phase portraits inside the Poincaré ball restricted to

−1 ≤ y1 ≤ 1

We divide the Poincaré ball restricted to −1 ≤ y1 ≤ 1 into four

regions:

R1 : y2 ≤ 0, y3 ≥ 0. R2 : y2 ≤ 0, y3 ≤ 0.

R3 : y2 ≥ 0, y3 ≥ 0. R4 : y2 ≥ 0, y3 ≤ 0.

Since system (1) is invariant under the symmetry with respect to

the y2-axis, i.e. (y1, y2, y3) = (−y1, y2,−y3), we only need to study the

phase portraits in the regions R1 and R2.
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(0,1)

(0,-1)

u

w

(a)

(0,1)

(0,-1)

u

w

(b)

u

v

(c)

py3 1,

Py3 1,

(d)

Figure 6. In (a), (b) and (c) there are the local phase
portraits of the equilibrium points in system (21), (20) and
(19), respectively. In (d) there is the local phase portraits
at the origins of U2 and V2 for y3 = 0.

Putting together the phase portraits of the invariant planes y1 = ±1,

y2 = 0 and y3 = 0 we obtain the phase portraits in the boundary of
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1-1

y1

y2

Figure 7. The phase portrait of the invariant plane
y3 = 0 restricted to −1 ≤ y1 ≤ 1.

the regions R1 and R2 in Figures 8 and 9, respectively. The three-

dimensional cartesian coordinate system in this paper is defined as

follows: we consider the y1y2-plane as the horizontal plane in R3, in

which the direction of the y2-axis is horizontally to the right. If the

y2-axis is rotated 90 degrees counterclockwise we get the y1-axis. The

y3-axis is vertically upward, then y1y2y3 constitutes a three dimensional

left-handed cartesian coordinate system.

These five planes divide the regions R1 and R2 into twelve differ-

ent subregions Gi, i = (1, 2, · · · , 12) (see Figures 10 and 11 for more

details).
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(-1,0,0)

(1,0,0)

(0,0,0)

N

y2

y3

y1

Figure 8. Phase portrait in the boundary of the
region R1. N denotes the North Pole of the Poincaré
ball.

Note that the original system (1) admits three finite equilibrium

points (−1, 0, 0), (0, 0, 0) and (1, 0, 0). The dynamical behavior of the

system inside the regions R1 and R2 depends on the behavior of the

flow in the following five planes

y1 = ay3, y1 = ±a, y1 = 0, y3 = 0,

where a =
√

6/3.

4. Dynamics in the interior of the regions R1 and R2

In Table 1 we describe the behavior of ẏ1, ẏ2 and ẏ3 in the twelve

subregions Gi for i = 1, 2, · · · , 12. From this table we get that the

orbits from the subregion G1 must go to the equilibrium point N , this
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S
y2

y3

y1

Figure 9. Phase portrait in the boundary of the
region R2. S denotes the South Pole of the Poincaré
ball.

(-1,0,0)

(1,0,0)

(0,0,0)

G1

G2

G4

G3

G5

G6

y y1 3=a

a

-a

N

y2

y3

y1

Figure 10. The six subregions of R1 in the Poincaré ball.
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G12

G11

G10

G9

a

-a

y ay1 3=

G8

G7

S
y2

y3

y1

Figure 11. The six subregions of R2 in the Poincaré ball.

is represented as follows

G1 N .

In a similar way and taking into account that y2 = 0 and y3 = 0 are

invariant planes, we obtain that

G2

G1 N

G4 G3 N

and G6 G5 G3 N,

G8

G7 S

G9 G10 S

and G12 G11 G10 S.
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Table 1. Dynamical behavior in twelve different subregions

Subregions Corresponding Region Increase or decrease

G1 y1 < y3,
√

6/3 < y1 < 1, y3 > 0 ẏ1 > 0, ẏ2 < 0, ẏ3 > 0

G2 y1 > y3,
√

6/3 < y1 < 1, y3 > 0 ẏ1 < 0, ẏ2 < 0, ẏ3 > 0

G3 y1 < y3, 0 < y1 <
√

6/3, y3 > 0 ẏ1 > 0, ẏ2 > 0, ẏ3 > 0

G4 y1 > y3, 0 < y1 <
√

6/3, y3 > 0 ẏ1 < 0, ẏ2 > 0, ẏ3 > 0

G5 y1 < y3, −
√

6/3 < y1 < 0, y3 > 0 ẏ1 > 0, ẏ2 > 0, ẏ3 < 0

G6 y1 < y3, −1 < y1 < −
√

6/3, y3 > 0 ẏ1 > 0, ẏ2 > 0, ẏ3 < 0

G7 y1 > y3, −1 < y1 < −
√

6/3, y3 < 0 ẏ1 < 0, ẏ2 < 0, ẏ3 < 0

G8 y1 < y3, −1 < y1 < −
√

6/3, y3 < 0 ẏ1 > 0, ẏ2 < 0, ẏ3 < 0

G9 y1 < y3, −
√

6/3 < y1 < 0, y3 < 0 ẏ1 > 0, ẏ2 > 0, ẏ3 < 0

G10 y1 > y3, −
√

6/3 < y1 < 0, y3 < 0 ẏ1 < 0, ẏ2 > 0, ẏ3 < 0

G11 y1 > y3, 0 < y1 <
√

6/3, y3 < 0 ẏ1 < 0, ẏ2 > 0, ẏ3 > 0

G12 y1 > y3,
√

6/3 < y1 < 1, y3 < 0 ẏ1 < 0, ẏ2 < 0, ẏ3 > 0

If we define the subregions

R1+ = {(y1, y2, y3) ∈ R1 : 0 < y1 < 1},

R1− = {(y1, y2, y3) ∈ R1 : −1 < y1 < 0},

R2+ = {(y1, y2, y3) ∈ R2 : 0 < y1 < 1},

R2− = {(y1, y2, y3) ∈ R2 : −1 < y1 < 0},

the orbits obtained from Table 1 says that the orbits of system (1) con-

tained in the region R1+ have α-limit at the equilibrium point (1, 0, 0)

and ω-limit at the infinite equilibrium point N ; the orbits of system

(1) contained in the region R1− have α-limit and ω-limit at the infinite

equilibrium point N ; the orbits of system (1) contained in the region

R2+ have α-limit and ω-limit at the infinite equilibrium point S; finally

the orbits of system (1) contained in the region R2− have α-limit at
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the equilibrium point (−1, 0, 0) and ω-limit at the infinite equilibrium

point S.

This completes the description of all the qualitative dynamics of the

system (1).
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[11] B. Chen, On Hořava-Lifshitz cosmology, Chinese Physics C 35 (5), 429-435,

2011.
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