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Preface

This thesis is organized in three parts. In Part I we study the iteration of the entire
transcendental maps

Fyxm(z) = Az exp(2), where m > 2 and \ € C.

This part is organized in five chapters. In Chapter 1 we introduce some fundamental concepts
of complex dynamics and present the main results. In Chapter 2 we recall some well known
tools in complex dynamics which we will use in this part. To deal with the dynamics generated
by the iterates of the map F),,, we consider three different points of view. First, we take
an entire transcendental approach, trying to solve the problems staying within the type of
functions that we study. Second we take a polynomial approach, that is we study a family
of polynomials that approximate (in a sense to be determined) F} ,,, and try to transfer the
obtained polynomial properties to the limit. Third and last, we consider a family of functions
of C* that relate to F} ,, via a surgery procedure. We call this the surgical approach and
although we do not obtain new information about F) ,,, it does open several very interesting
questions. We devote one chapter to each one of these approaches. Chapters 3, 4 and 5 have
a common structure. The first section is an introduction; in the second section we introduce
specific tools used in the corresponding chapter, and finally, in the rest of the sections we
prove the corresponding results.

In Part II we present a transition from discrete to continuous complex dynamical system.
We connect them using Euler’s method. This part is organized in one chapter. The first
section of Chapter 6 is an introduction where we present this connection. In the second
section of Chapter 6 we explain the relation between the relaxed Newton’s method and
Newton’s flow. In the third section we explain some general properties of Newton’s method.

In Part IIT we investigate in the complex first order differential equation

%:f(z), zeC, teR,

where f is an analytic function in C except, possibly, at isolated singularities. This part is
organized in seven chapters. In Chapter 7 we introduce the equation above and we present
the main results. In Chapter 8 we present specific tools which we will use in this part.
Chapter 9 is devoted to study the local normal forms of a complex differential equation near
a singularity. In Chapter 10 we investigate the phase portrait near periodic orbits or graphs.
In Chapter 11 we present an application of Chapter 9 and 10. In Chapter 12 we study the
period function of a family of complex differential equations related to dz/dt = f(z). In the
final chapter, we include two appendixes where we present alternatives proofs of two results
of this part.
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