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Abstract

We consider planar differential equations of the form ż = f (z)g(z̄) being f (z) and g(z)

holomorphic functions and prove that if g(z) is not constant then for any continuum of period
orbits the period function has at most one isolated critical period, which is a minimum. Among
other implications, the paper extends a well-known result for meromorphic equations, ż = h(z),

that says that any continuum of periodic orbits has a constant period function.
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1. Introduction

Analytic planar autonomous differential equations can be written in complex coordi-
nates as

ż = h(z, z̄), z ∈ C,
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where the dot indicates the derivative with respect the real variable t. In particular,
the holomorphic case, i.e. h(z, z̄) ≡ f (z) with f being holomorphic, has been widely
studied. Among other properties, normal forms for the singularities, the non-existence
of limit cycles or the non-existence of monodromic (stable or unstable) polycycles have
been established, see for instance [1,8,9,11,12,15]. The case of f being meromorphic
or having essential singularities has been also considered in some of the quoted papers.

This paper deals with the following family of planar vector fields:

dz

dt
= f (z)g(z̄), (1)

where f (z) and g(z) are holomorphic maps, and t ∈ R. Notice that it includes the
holomorphic case. It is not difficult to see that any phase portrait of (1) coincides
with the phase portrait of ż = h(z), for some h meromorphic. This is true because by
making the re-parameterization ds/dt = |g(z̄)|2, Eq. (1) can be written as

dz

ds
= f (z)

ḡ(z)
, (2)

which is of the form ż = h(z), being h = f/ḡ, where ḡ(z) := g(z̄). Moreover by
using the new re-parameterization du/dt = |f (z)|2, Eq. (1) can be written as

dz

du
= g(z̄)

f̄ (z̄)
, (3)

which is a Hamiltonian system wherever it is defined. In other words, outside some
points, Eq. (1) is topologically equivalent to (2) and (3). These properties together with
the results of the above-mentioned papers can be used to obtain the phase portraits of
(1). For instance, if f (p) = 0 and g(p̄) �= 0 (resp. g(p̄) = 0 and f (p) �= 0), then
p is a singular point of system (1) with positive (resp. negative) index and having
no hyperbolic (resp. elliptic or parabolic) sectors, see [11,12] or [9]. When (1) is
polynomial, we extend the equations at infinity (so we define them at Ĉ = C ∪ ∞) by
doing the change of variables w → 1/z and studding a neighborhood of w = 0.

Once we know the equivalence of the phase portraits of systems (1)–(3) whenever
they are defined, we focus on the period function of the continuum of periodic orbits.
It is well known that all the orbits of any continuum of periodic orbits of system (2)
have the same period (see [9,11,12]) or Corollary 2.5. As we will prove, and this is the
main goal of this paper, this is no longer true for system (1) (unless g ≡ 1). Before
stating the main result we introduce some notation.

We say that a region P ⊂ C is a period annulus if it is the largest open and doubly
connected set fulfilled of periodic orbits. Notice that one of the boundaries could be
z = ∞. More precisely, since it is convenient for later discussions, we distinguish
between two kinds of period annulus. On the one hand, we denote by Pp when at
least one of the boundaries of P is a single point p. The point p is usually called
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center, and consequently, Pp is the period annulus associated to the center p (here
p = ∞ is possible). If Ĉ \ Pp reduces to two points (namely, p and ∞), we say that
the period annulus is global. On the other hand, we denote by PR when none of the
boundaries of P is a point. In this case, the period annulus is a non-degenerate ring.
As it will become clear the boundaries of PR must be monodromic graphs with at
least one “singularity” p such that g(p̄) = 0 (a generalized saddle point).

Let P be an arbitrary period annulus (of any kind). We define the period function
associated to P as the function

T : P → R

that gives to any point z ∈ P the period of the periodic orbit passing through z. Since
all the z-points in P , belonging to the same periodic orbit �, have the same period we
may denote by T (�) the period of the periodic orbit. We say that T is an increasing
(resp. decreasing) function if for any couple of periodic orbits �0 and �1 in P with �0
contained in �1 we have T (�1) − T (�0) > 0 (resp. < 0). Here contained means that
�0 belongs to the bounded region associated to �1 as a Jordan curve in C. A local
maximum or minimum of the period function is called a critical period.

When studying the period function, two different approaches appear. On the one
hand, some works deal with its behavior (asymptotic expansion) near the boundaries of
P. Based on this, we can quote, for instance, the results in [3] where it is considered
the period function in a neighborhood of a non-degenerated center, or the ones in [5]
when the center is degenerated. In particular, from the results of this later paper, we
get that, when p is a degenerated center, the period function tends to infinity when
the periodic orbits approach to p. Finally, in [14], the authors describe the asymptotic
expansion of the period function for the same family as [3], but now close to the
connected component of the boundary of the period annulus different to the center
point. Applying all together it is possible to give some partial information of the
period function in the whole annulus.

On the other hand, apart from the local study, one can also deal with giving global
information of the period function. These results are devoted to study the number of
critical periods of this function, and in most cases to study its monotonicity. Without
pretending to be exhaustive we list some of the different approaches to this global
study and we give, in each of these approaches, a representative reference.

• To show that the period function satisfies a Picard–Fuchs system; see [4].
• To prove that the differential equation can be transformed into a potential Hamiltonian

system; see [2].
• To prove that some parametrization of the period function has positive derivatives;

see [10].
• To use a normalizer of the vector field having the continuum of periodic orbits to

get an expression of the derivative of the period function; see [6].
The proof of Theorem A, see below, uses the last approach. It is also worth mention-

ing that among all families of vector fields for which the study of the period function
is done, the Hamiltonian one is the most treated. Some of the reasons for this fact
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are as follows: (a) there are no focus in that family and hence any monodromic point
is a center (so it is not necessarily a primer study on the center conditions); (b) the
Hamiltonian function associated to the vector field may be used to parameterize the
periodic orbits as well as, using the level curves, to compute properties of the period
function or, if possible, the periodic function itself. As we have already mentioned, Eq.
(1) is somehow related to Hamiltonian systems, but it is not included in this family.
Fortunately, it is not difficult to solve the center-focus problem for system (1); see
Propositions 2.6 and 2.8.

Our main result is the following theorem. Part (ii) is a well-known result (see
[9,11,12]) that we state for the sake of completeness.

Theorem A. Let P be a period annulus of Eq. (1)

(i) If g is not a constant function, then the period function in P has at most one
critical period, which whenever exists, is a minimum.

(ii) If g is a constant, then the period function is constant in P.

Precisely, our proof of (i) in the above theorem shows that the period function is a
convex map once we have fixed a convenient parametrization of the period annulus,
that is, the period function has an increasing first derivative (so the second derivative is
positive) with respect to that parametrization. However, although it is true that the sign
of the first derivative does not depend on the parametrization, the second derivative
does. In an appendix we include a totally different approach to the proof of Theorem
A. This approach is merely analytic and looks simpler, but unfortunately it only works
for period annulus which are associated to a critical point, i.e. it does not work for
period annulus of the form PR.

In light of Theorem A, if g is not a constant function, the period function of any
continuum of periodic orbits is either increasing, decreasing or it has a unique critical
period (minimum). As we will see at the end of Section 3 and the Appendix all cases
are possible.

The paper is organized as follows. We give basic tools and the center conditions in
Section 2. We prove Theorem A in Section 3. In Section 4 we show, by means of several
examples, the shape of the period function. In particular we consider the intersection
between the Hamiltonian polynomial family and Eq. (1). Finally the Appendix discusses
an alternative approach to the proof of Theorem A.

2. Preliminaries

Here we give the basic notations and state the main tools we use later on.
The Lie bracket [X, Y ] associated to two C1 vector fields is defined as [X, Y ] =

(DX) Y − (DY) X, where D denotes the differential matrix, see [16]. If the two vector
fields are written as ż = F(z, z̄) and ż = G(z, z̄), it is easy to verify that

[F, G] = FGz − FzG + F̄Gz̄ − ḠFz̄, (4)
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where the subscripts denote the corresponding derivatives of F and G with respect to z

and z̄, respectively. Next theorem is proved for the case of a period annulus associated
to a center in [6]. Here we generalize it to include all type of period annulus. Since
its proof follows with minor changes, we do not include it here.

Theorem 2.1. Let P denote the period annulus of a C1 vector field. Let U be a C1

vector field defined on P , transversal to X. Assume that [X, U ] = �X, with � being
a C1 function defined on P . Then, if �(s) is a trajectory of U , for any s0 such that
�(s0) ∈ P it holds

T ′(s0) =
∫ T (s0)

0
�(x(t; s0), y(t; s0)) dt, (5)

where (x(t; s0), y(t; s0)) is the periodic orbit of X of period T (s0) passing though
�(s0).

The proof of Theorem A is based on computing the integral given by (5) for a
suitable function �. To this end, we use Green’s Theorem (see [7]) to an annulus given
by two periodic orbits in the interior of the period annulus. For completeness, we
also include here the statement of Green’s Theorem in the (z, z̄)-coordinates (see, for
instance, [7]).

Theorem 2.2. Let D be a bounded domain in the plane whose boundary �D consists
of a finite number of disjoint piecewise smooth closed positively oriented (with respect
to D) curves. If h(z, z̄) is a smooth function on D ∪ �D, then

∫
�D

h(z, z̄) dz = 2i

∫ ∫
D

�h(z, z̄)

�z̄
dx dy.

Remark 2.3. Notice, for instance, that if h(z, z̄) ≡ h(z) is holomorphic, then the above
equality gives the well-known result

∫
�D

h(z) dz = 0.

Finally we study the center conditions for Eq. (1). Before this we state, following
[8] (see also [1,11,12,15,17]), the normal forms for an equation of type (2).

Theorem 2.4. Let h(z) be a one-dimensional holomorphic function in a punctured
neighborhood U ⊂ C of a point p and consider the ordinary differential equation

dz

dt
= h(z), z ∈ U, t ∈ R. (6)

Then, near p, Eq. (6) is conformally conjugate, near 0, to

(a) ż = 1, if h(p) �= 0,

(b) ż = h′(p)z, if p is a zero of h of order 1 (i.e., h(p) = 0 and h′(p) �= 0),
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(c) ż = zn/(1 + czn−1), where c = Re s(1/h, p), if p is a zero of h of order n > 1,

(d) ż = 1/zn, if p is a pole of order n.

As a corollary of this result we get the phase portrait in a neighborhood of a singular
point or a pole.

Corollary 2.5. Under the hypothesis of the previous theorem we have

(a) if h is a holomorphic map at p ∈ C, and it is verified that h(p) = 0, h′(p) �= 0
and Re(h′(p)) = 0 (respectively, Re(h′(p)) �= 0), then p is a center (respectively,
focus),

(b) if h is a holomorphic map at p ∈ C, and it is verified that hk)(p) = 0, k =
0, . . . n − 1 for some n > 1, then p is the union of 2(n − 1) elliptic sectors, and

(c) if h has a pole of order n�1 at p ∈ C, then p is the union of 2(n+1) hyperbolic
sectors.

As we have already mentioned, by taking a time re-parameterization, Eq. (1) can be
transformed (without modifying the phase portrait) into Eq. (2), or equivalently into
Eq. (6) with h(z) := f (z)/ḡ(z). So, Corollary 2.5 applied to h(z) := f (z)/ḡ(z) gives
the center conditions for Eq. (1).

Proposition 2.6. Let p ∈ C. Eq. (1) has a center at p ∈ C if and only if there exist
a natural index k�0 such that the following conditions hold:

(a) f k)(p) = 0 and f i)(p) = ḡ i)(p) = 0, i = 0, . . . , k−1, and f k+1)(p) ḡk)(p) �= 0.

(b) Re
(

f k+1)(p)

ḡk)(p)

)
= 0.

Proof. Of course p is a center for Eq. (1) if and only if p is a center for Eq. (2).
Thus, all we need to do is to visualize the conditions of Corollary 2.5 when h(z) =
f (z)/ḡ(z). �

The above proposition uses, from the point of view of the phase portrait, Eqs. (1)
and (6) with h(z) = f (z)/ḡ(z), which are indistinguishable. However, we know from
Theorem 2.4 that each center at z = p of Eq. (6) is linear, so non-degenerate, while
Eq. (1) can have a center at z = p with g(p̄) = 0, i.e., k > 0 in the previous
proposition. If this is the case, we will say that z = p is a degenerate center for Eq.
(1). Although there is no topological difference between degenerate and non-degenerate
centers it is well known that the behavior of the period function in a neighborhood of
the center itself varies. It is not difficult to see the following result, see also [5].

Lemma 2.7. Assume that system (1) has a finite center at z = p. Then, the value of
the period function as we approach the point p tends, either

(a) to 2�
|Im(f ′(p)g(p̄)|) , if p is a non-degenerate center, or,

(b) to ∞, if p is a degenerate center.

Finally, we discuss the case of z = ∞ being a center when f (z) and g(z̄) are
polynomials.
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Proposition 2.8. Let f and g be polynomials in z and z̄ write as f (z) = a0 + a1z
n +

· · ·+ anz
n and g(z̄) = b0 + b1z̄ + · · ·+ bmz̄m, with anbm �= 0. Then, z = ∞ is a center

of Eq. (1) if and only if n = m + 1 and Re
(
an/bm

) = 0.

Proof. First we notice that the change of variable w = 1/z transform the infinity of
the z-plane to the origin of the w-plane. Therefore to guarantee that a neighborhood of
infinity is fulfilled by periodic orbits (formally we say that z = ∞ is a center) we need
to show that w = 0 is a (finite) center for the corresponding transformed equation. We
notice that, although we can always do the transformation w = 1/z, it can be possible
that w = 0 becomes a essential singularity of the new equation. This will not be the
case when assuming that f and g in Eq. (1) are polynomials. Indeed, Eq. (1) in this
case becomes,

ż = f (z)

ḡ(z)
= anz

n + · · · + a0

bmzm + · · · + b0
where anbm �= 0.

Considering the change of variables w = 1/z we obtain

ẇ = −w2 f (1/w)

ḡ(1/w)
= −w2+m−n an + · · · + a0w

n

bm + · · · + b0wm
= −w2+m−n

(
an

bm

+ O(1)

)
. (7)

From Corollary 2.5, Eq. (7) has a center at w = 0 if and only if 2 + m − n = 1 and
Re
(
an/bm

) = 0. �

3. Proof of Theorem A

To compute the derivative of the period function through Theorem 2.1, we need to
obtain a transversal generator U for a Lie symmetry for Eq. (1). This is done in the
following lemma.

Lemma 3.1. Let X = f (z)g(z̄) be the planar vector field defined by Eq. (1). Then, if

U = i
f (z)
ḡ(z)

and �(z) = 2 Im
(

f (z)ḡ′(z)
ḡ2(z)

)
, it is satisfied that [X, U ] = �X. Furthermore,

outside the singularities of X, both vector fields are transversal.

Proof. Using the expression of the Lie bracket in the (z, z̄) coordinates (see, Eq. (4)),
we obtain the expression of the Lie bracket of f (z)g(z̄) and i

f (z)
ḡ(z)

[
f (z)g(z̄), i

f (z)

ḡ(z)

]
= f (z)g(z̄)

�
�z

(
i
f (z)

ḡ(z)

)
−i

f (z)

ḡ(z)

�
�z

(f (z)g(z̄)) +i
f (z)

g(z̄)

�
�z̄

(f (z)g(z̄))

= −i
f 2(z)g(z̄)ḡ′(z)

ḡ2(z)
+ i

f (z)f (z)g′(z̄)
g(z̄)

.
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Fig. 1. Sketch of the relevant objects in the proof of Theorem A. On the left-hand side if the orbits
in the period annulus P are positively oriented, in this case we observe that �� = �s1

− �s0
. On the

right-hand side, the orbits are negatively oriented, so �� = �s0
− �s1

.

Hence, this shows that
[
f (z)g(z̄), i

f (z)
ḡ(z)

]
= �(z, z̄)f (z)g(z̄) is verified with,

�(z, z̄) = −i
f (z)ḡ′(z)

ḡ2(z)
+ i

f (z)g′(z̄)
g2(z̄)

= 2 Im

(
f (z)ḡ′(z)

ḡ2(z)

)
,

as we wanted to see. The proof that X and U are transversal is straightforward. �

Remark 3.2. Notice that, if X has a periodic orbit � positively oriented with respect
its interior, then U , as defined in the above lemma, is a transversal vector field going
from the exterior to the interior of �. In contrast, if X has a periodic orbit � negatively
oriented with respect its interior, then U , as defined in the above lemma, is a transversal
vector field going from the interior to the exterior of �. Of course, from the definition
of the Lie bracket (see, Eq. (4)), if we use −U instead of U in the above lemma, we
have [X, −U ] = −� X.

Proof of Theorem A. We want to prove that the first derivative is a non-decreasing
function, once we have fixed a suitable parametrization. Notice that this is sufficient to
prove the theorem since the number and character of the critical periods do not depend
on the particular parametrization used.
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Let P be an arbitrary period annulus of the vector field X defined by Eq. (1).
Fix a periodic orbit � in P. Let us assume �, parameterized by z(t), is a negatively
oriented periodic orbit of period T in the interior of P , passing through p. Of course all
orbits in P have the same orientation. The case positively oriented will be conveniently
discussed at the end of the proof.

Let U and � be as in Lemma 3.1. Take a transversal section � (on P) parameterized
by

g : (−ε, ε) → �,

g(s) being the solution of the differential equation x′ = U(x), such that g(0) = p.
Notice that, because � is negatively oriented, g′(0) = U(p) is compatible with the
parametrization of � by s.

Let −ε < s0 < s1 < ε. Let us denote by �s0
and �s1

the periodic orbits, parameterized
by z0(t) and z1(t), of period T (s0) and T (s1) passing through s0 and s1, respectively.
We denote by � the open annulus bounded by �s0

and �s1
.

We need to show that T ′(s0) − T ′(s1)�0. Because of Theorem 2.1 the derivative of
the period function can be formulated as the integral of �. Precisely we have,

T ′(s1) − T ′(s0) = 2
∫ T (s1)

0
Im

(
f (z1(t))ḡ

′(z1(t))

ḡ2(z1(t))

)
dt

−2
∫ T (s0)

0
Im

(
f (z0(t))ḡ

′(z0(t))

ḡ2(z0(t))

)
dt. (8)

In order to apply Green’s Theorem (to the domain �), we have to write the above
integrals as a line integral such that all the closed curve involved are positively oriented
with respect to �. Consider �� = �0 − �1. So, Eq. (8), under the change of variable
w = z(t) becomes

T ′(s0) − T ′(s1) = −2 Im

(∫
��

ḡ′(w)

ḡ2(w)g(w̄)
dw

)

= −4 Im

(
i

∫ ∫
�

ḡ′(w)

ḡ2(w)

�
�w̄

(
1

g(w̄)

)
dx dy

)
,

where the second equality follows from Green Theorem. Evaluating the derivative we
finally get

T ′(s1)−T ′(s0) = 4 Im

(
i

∫ ∫
�

∣∣∣∣ ḡ′(w)

ḡ2(w)

∣∣∣∣
2

dx dy

)
= 4

∫ ∫
�

∣∣∣∣ ḡ′(w)

ḡ2(w)

∣∣∣∣
2

dx dy�0, (9)

as desired. Note also that the integral is zero only when g is a constant function and
thus in this situation the period function is constant.
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To end the first part of the proof we suppose � (and all orbits in P ) are positively
oriented. In this case, the transversal section � by s is exactly opposite to the direction
of U . Hence we need to consider −U , and so, −� (see Remark 3.2). The same proof
follows straightforward by noting that in this case �� = �1 − �0. �

From the proof of Theorem A and Corollary 2.7 we easily conclude the following
result for the period function of a non-degenerate center.

Corollary 3.3. Assume P = Pp with p ∈ Ĉ being a non-degenerate center. Then, if
p ∈ C (respectively, p = ∞) the period function is a strictly increasing (respectively,
strictly decreasing) map.

Proof. Let us assume that P = Pp, with p being a finite non-degenerate center. From
Corollary 2.7 we know that the value of the period function, as we approach the point
p, tends to 2�/|Im(f ′(p)g(p̄)|). So, it is enough to show that, as we approach the point
p, the derivative of the period function tends to 0. Similar to the proof of Theorem A
it is easy to verify that (assuming �s negatively oriented)

T ′(s) = −2 Im

(∫
�s

ḡ′(w)

ḡ2(w)g(w̄)
dw

)
= 4

∫ ∫
int(�s )

∣∣∣∣ ḡ′(w)

ḡ2(w)

∣∣∣∣
2

dx dy,

since the center is non-degenerate. If we take limit when s → 0, the left-hand side
tends to the derivative of the period function at p while, we claim, that the right-hand
side tends to zero. To see the claim we observe that the function inside the integral
tends to a number bounded below (since p is non-degenerate, ḡ(p) �= 0).

In case of p = ∞ being a non-degenerate center we can transform it to the origin
by the change w = 1/z, and the result follows similarly as before. �

4. Consequences of Theorem A and examples

It is well known that if the boundary of a period annulus has a finite singular point
q, which is not a non-degenerate center, then the period function tends to infinity as we
approach it. From Corollary 2.5, this general fact for Eq. (1), reads as follows: If the
boundary of the period annulus has either a degenerate center or it has a finite singular
point q such that g(q̄) = 0 and f (q) �= 0 (i.e., a finite generalized saddle), then the
period function tends to infinity as the periodic orbits approach to it. However, when
there is no (generalized) saddle in the boundary of the period annulus, it is not possible
to know, by using the above remark, Theorem A and Corollary 2.7, the behavior of
the period function near it. Several examples showing different shapes are given along
this section and in the appendix.

We start with an example in which the period functions in all the period annuli would
be determined without explicitly computing them, i.e., using only the phase portrait and



324 A. Garijo et al. / J. Differential Equations 224 (2006) 314–331

Fig. 2. Sketch of the phase portrait of ż = (z − 2i)(z − 3i)z̄(z̄ + i). Note that this differential equation
has three period annuli.

the above-mentioned results. Let us consider the equation

ż = (z − 2i)(z − 3i)z̄(z̄ + i). (10)

In Fig. 2 we sketch its phase portrait. It has three different period annuli. On the
one hand we have P2i and P3i , associated to its non-degenerate finite centers located
at z = 2i and z = 3i, and, on the other hand, we have a ring period annulus PR .
Moreover, there are two saddle points, located at z = 0 and i. Applying Corollary 3.3
we show that the period function associated to the period annuli P2i and P3i is a strictly
increasing map tending to infinity since there is a finite saddle in their common outer
boundary. Similar arguments and Theorem A show that the period function associated
to PR has a unique critical period (a minimum) in its interior and tends to infinity
when we approach the inner/outer boundaries. So, the shape of the period functions of
all annuli of Eq. (10) are qualitatively determined without being computed.

Now we illustrate the case when the outer boundary does not have any (general-
ized) finite saddle. We compute the period function and show that different shapes are
possible. We consider the following family of equations:

ż = izF (z)F (z) = iz|F(z)|2, (11)

with F(z) = 0 either never vanishing or vanishing only when z = 0. Note that these
equations have a global center. We write them in polar coordinates z = rei�. We get

ṙ = 0,

�̇ = |F(rei�)|2. (12)

Note that for any ��0 their solutions are contained in the circles r = �. Hence
integrating the second equation we can have an exact expression of the period function
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parameterized by �:

T (�) =
∫ 2�

0

d�

|F(�ei�)|2 .

Taking F(z) = zkeaz, for a�0 and k�0 we have

T (�) = 1

�2k

∫ 2�

0
e−2a� cos �d�.

If a = 0 we obtain that T (�) = 2�/�2k which is a strict decreasing function tending
to 0 when � → ∞ for k > 0, and it is constant for k = 0.

If a > 0 it follows that

T (�) > T̃ (�) :=
∫ 5�/4

3�/4

e−2a� cos �

�2k
d� >

�e−2a�/
√

2

2�2k
.

So, T (�) → ∞ when � → ∞. We remark that following the same steps as in the
Appendix, we can obtain an explicit expression of the period function in terms of the
Bessel functions. More concretely,

T (�) = 2�

�2k

∞∑
j=0

(a�)2j

(j !)2 = 2�

�2k
J0(2a�i),

being y = J0(t) the usual Bessel function, solution of t2y′′(t) + ty′(t) + t2y(t) = 0.

So, when k = 0 the period function is strictly increasing, when k > 0 it has a unique
critical period and tends to infinity as we approach the inner as well as the outer
boundary.

4.1. The Hamiltonian case

We study the planar Hamiltonian systems lying inside the family given by Eq. (1).
As we already mentioned in the Introduction there is a re-parametrization (not defined
everywhere, although) which transforms Eq. (1) into Eq. (3), which induces a planar
Hamiltonian system. In other words we can say that |f (z)|−2 is a singular integrating
factor for Eq. (1). The presence of singularities is natural because the topological picture
of the phase portraits near these points has elliptic or parabolic sectors and thus the
flow cannot preserve the area in a whole neighborhood of them.

However, inside the family of Eq. (1) there are pure Hamiltonian systems. Since the
period function of Hamiltonian systems is broadly studied and, as far as we know our
general results particularized on this subfamily of Eq. (1) are new, we detail them in
the sequel. It is easy to see that, when Eq. (1) does not depend on z̄ (that is, g(z̄) ≡ 1),
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the only Hamiltonian case is ż = ikz, k ∈ R. Next lemma extends the above remark
to a general g.

Lemma 4.1. Eq. (1) is Hamiltonian if and only if there exist c ∈ R such that f ′(z) =
icḡ(z).

Proof. A necessary condition for a general planar vector field ż = F(z, z̄) to be
Hamiltonian is that �(Re F(z, z̄))/�x + �(Im F(z, z̄))/�y ≡ 0. It is not difficult to see
that

Re

(
�F(z, z̄)

�z

)
= 1

2

(
� Re(F (z, z̄))

�x
+ � Im(F (z, z̄))

�y

)
.

So the Hamiltonian condition gives Re
(

�F(z,z̄)

�z

)
≡ 0. In order to apply above condition

to Eq. (1), we observe that in our case F(z, z̄) = f (z)g(z̄). Hence, Eq. (1) will be
Hamiltonian when

Re(f ′(z) g(z̄)) ≡ 0,

or equivalently, when f ′(z) = icḡ(z), where c ∈ R, as desired.
For the converse, we claim that

H(z, z̄) = − c

2

∫ z

z0

ḡ(s) ds

∫ z̄

w0

g(s) ds (13)

is a Hamiltonian function for Eq. (1) with f ′(z) = icḡ(z). To see the claim, we observe
that the Hamiltonian system generated by a general map H(z, z̄),

ẋ = Hy,

ẏ = −Hx

writes, in the (z, z̄)-variables, as ż = −2i Hz̄. Hence, the Hamiltonian system generated
by (13) is ż = f (z)g(z̄), with f ′(z) = icḡ(z). �

Corollary 4.2. The following statements hold.

(a) The equation ż = g(z̄) is always Hamiltonian.
(b) If Eq. (1) is polynomial Hamiltonian and f ′(z) �≡ 0, then

(b1) it has an odd degree, 2n + 1, and is written as

ż = ic

(
a0 + a1z + a2

2
z2 + · · · + an+1

n + 1
zn+1

)(
a1 + a2z̄ + · · · + an+1z̄

n
)
,

with c ∈ R, aj ∈ C, j = 0, 1, . . . , n + 1, and
(b2) there exists a neighborhood of infinity, where all orbits are periodic. In other

words we always have a period annulus of the form P∞.
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Proof. Statements (a) and (b1) are straightforward. From Proposition 2.8, all we need
to see to prove the remainder statement (b2) is that Re(an(bm)−1) = 0. If we denote
by bm the coefficient of zm for g(z̄) (hence bm is the coefficient of zm for ḡ(z)) and
by an the coefficient of zn for f (z) (so, n = m + 1), we easily get an = ic(m + 1)bm.
Thus Re

(
an(bm)−1

) = 0. �

As a corollary of the previous result we may characterize the Hamiltonian equation
given by (1) having a finite center. Here we present the list up to degree 5.

Corollary 4.3. Suppose ż = f (z)g(z̄) is a planar polynomial Hamiltonian equation of
degree m�5 having a finite center. Then there is an affine change of variables that is
written as

(a) ż = icz,

(b) ż = ic
(
az + z2/2

)
(ā + z̄),

(a) ż = ic
(
az + bz2/2 + z3/3

)
(ā + b̄z̄ + z̄2),

where c ∈ R, a, b ∈ C.

Although, apparently, from all we have been done, it seems easy to determine the
phase portrait of any of those Hamiltonian equations (even for an arbitrary given
degree), we have to be precise about the existence (or not) of possible separatrix
connections changing the relative position of the centers could be a deep obstruction
to do so. However, the existence of a first integral is certainly helpful in many cases.
In contrast, once we know the phase portrait (and the degenericity of the centers), the
qualitative behavior of the period function is trivial.

Precisely, the relevant information about the equation given in Corollary 4.3(b), can
be summarized as follows.

• When a = 0 the period annulus is global and p = 0 is a degenerate center. According
to the computations in the example given by (11), the period function is a strictly
decreasing map.

• When a �= 0 the origin has a period annulus and its phase portrait has two further
period annuli, P−2a and P∞; see Fig. 3(a). Moreover, the period function is

• increasing from a constant value to infinity in P0 and P−2a ,
• decreasing from infinity to a constant value in P∞.

A similar approach to the equation given in Corollary 4.3(c) gives rise to several
different phase portraits, all of them having infinity as a non-degenerate center. To
avoid all the casuistic, we assume that all the zeroes of f and g are simple, and there
are no common zeros of f and g. So we have three non-degenerate centers (the zeroes
of az + bz2/2 + z3/3) and two hyperbolic saddles (the zeroes of ā + b̄z̄ + z̄2). In this
framework there are 4 different configurations depending on the number and relative
position of the heteroclinic connections between the separatrices of the two distinct
saddles (2 phase portraits with no connection between them, 1 with two connections and
one with 4 connections). As an example we give the phase portrait when a = 3 and b =
5; see Fig. 3(b). There are five period annuli denoted by P0, P−6, P−3/2, PR and P∞.
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(a) (b)

Fig. 3. Sketch of the phase portrait of some polynomial Hamiltonian equation. (a) corresponds to degree
3 while (b) corresponds to degree 5.

Notice that since we can compute the Hamiltonian associated to this equation it is easy
to determine the phase portrait. As before, the relevant information about the period
function for these parameter values can be summarized as follows.

• It is increasing from a constant value to infinity in P0, P−6 and P−3/2.
• It has a unique critical period in PR , and tends to infinity as we approach the inner

as well as the outer boundary.
• It is decreasing from infinity to a constant value in P∞.

Appendix. An alternative approach to the proof of Theorem A

In this section, we give a different approach to the proof of Theorem A, as long as
the period annulus is not of the form PR . As it will become clear in the sequel, the
main difficulty in extending this different point of view to all the cases, is that it is
strongly based on the existence of a holomorphic linearizing change of variables for
non-degenerate holomorphic centers of the equation ż = icz + O(z2). Note that period
annulus of the form PR does not have a center in its boundary.

Assume that Eq. (1) has a singular point of center type (degenerate or not) at the
origin, and as usual denote by P0 its period annulus. The differential equation can be
written as

dz

dt
= f (z)g(z̄)

ḡ(z)

ḡ(z)
= f (z)

ḡ(z)
|ḡ(z)|2. (14)
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Since the origin is a center (degenerate or not), by Proposition 2.6 we know that
f (z)/ḡ(z) = icz + O(z2), c ∈ R, is an holomorphic function on P0 and ḡ(z) =
azk + 0(zk+1), for some k ∈ N and a ∈ C \ {0} (of course, k = 0 corresponds
to the non-degenerate case). Applying Theorem 2.4(b) we also know that there is a
holomorphic linearizing map w = �(z) = z + 0(z2) for ż = f (z)/ḡ(z), i.e., equation
ż = f (z)/ḡ(z), in this new variable writes as ẇ = icw. In [8] it is shown that

w = �(z) = z exp

(∫ z

0

(
icḡ(s)

f (s)
− 1

s

)
ds

)
,

so the conformal conjugacy extends to the whole period annulus P0. Notice that �
transforms P0 in a disc D(0, R), where R geometrically corresponds to the supremum
of the radius of the images by � of the periodic orbits in P0.

Thus in the new variable w, Eq. (14) is written as

dw

dt
= icw|ḡ(�−1(w))|2. (15)

From above, we can write ḡ(�−1(w)) in the form wk/H(w), where H(w) = wk/

ḡ(�−1(w)) is holomorphic at least in D(0, R). Because of that we notice that, in
D(0, R), H(w) can be written as a power series, H(w) = ∑∞

j=0 hjw
j . Thus the

radius of convergence of this series is R̄�R.
Hence, writing Eq. (15) in polar coordinates we get

ṙ = 0,

�̇ = c

∣∣∣∣ wk

H(w)

∣∣∣∣
2

w=rei�
. (16)

The circles r = � are invariant in the above equation, and for � < R, they correspond
to the periodic orbits �−1({w : |w| = �}) of Eq. (14). The period of these orbits is
given by

T (�) = |c|
∫ 2�

0

|H(w)|2
w=�ei�

�2k
d�.

For � < R̄, using the power series expansion of H , it is easy to verify that (see, for
instance, [13])

T (�) = 2�|c|
�2k

∞∑
j=0

|hj |2�2j ,
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since |H(w)|2 = (h0 + h1w + · · ·)(h̄0 + h̄1w̄ + · · ·), and the only terms of the product
series not vanishing after integration are |hk|2wkw̄k for all k. Clearly, the radius of
convergence of

∑∞
j=0 |hj |2�2j is the same as the radius of convergence of

∑
j �0 hjw

j ,

that is R̄.
Finally, for � < R, we write down the period function as

T (�) = 2�|c|
�2k

∞∑
j=0

|hj |2�2j = 2�|c|
⎛
⎝ 0∑

j=−k

|hj+k|2�2j +
∞∑

j=1

|hj+k|2�2j

⎞
⎠ .

So, under this parametrization by �, all derivatives of �2kT (�) are positive.
If k = 0, i.e. the origin is a non-degenerate center, the period function, parameterized

by �, is an strictly increasing function defined in [0, R). We remark that this does not
imply that the period function tends to infinity, as we approach the outer boundary of
the period annulus. As the following example illustrates, the radius of convergence of
the above series can be infinite but the function defined by the series only coincide
with the period function in [0, R).

Let ż = z(i + z)(i + z)(−i + z̄). The phase portrait has two centers at z = 0 (non-
degenerate) and z = −i (degenerate) with a common boundary given by Im(z) = −1/2.
We focus at z = 0. The linearizing map is given by w = z

i+z
, so Eq. (15) becomes

dw

dt
= iw

1

|1 − w|2 , (17)

and the period function can be explicitly computed, T (�) = 2�(1+�2), where � = |w|.
Of course there are no problems of convergence and the function is well defined in
all R and tends to infinity as � does. However, the function T (�) is only the period
function of the period annulus at z = 0 as long as the circle of radius � lies in
the image by �(z) = z/(i + z) of P0. It is easy to verify that the boundary of P0
given by Im(z) = −1/2 goes to the circle of radius � = 1, so the period function is
T (�) = 2�(1 + �2), � < 1, and it tends to 4� when � → 1 and it tends to 2� when
� → 0.

In case of k > 0 the origin is a degenerate center. As expected the period function
tends to infinity when we approach to the origin. To deduce the existence of at most
one zero of T ′(�), we observe that a zero of T ′(�) implies the existence of a solution
of the equation

−
0∑

j=−k

|hj+k|2j�2j−1 =
∞∑

j=1

|hj+k|2j�2j−1. (18)

The left-hand side of this expression is a positive decreasing function tending to infinity
when � tends to zero. The right-hand side is a positive increasing function. Hence,
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above equation has at most one zero, obtaining thus the existence of at most one
critical period. The fact that this zero does not always exist is illustrated in example
ż = z(i + z)zz̄ for which the period function in P0 is T (�) = 2�(1 + 1/�2) being
� = |w| < 1, as in the previous example. So, it is decreasing from infinity to 4�.
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