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Abstract. In this paper we give, as far as we know, the first method to detect
non-algebraic invariant curves for polynomial planar vector fields. This approach is
based on the existence of a generalized cofactor for such curves. As an application
of this algorithmic method we give some Lotka-Volterra systems with non-algebraic
invariant curves.

1. Introduction. Let us consider a planar polynomial differential system of the
form

dx

dt
= ẋ = P (x, y) =

m∑
k=0

Pk(x, y) ,
dy

dt
= ẏ = Q(x, y) =

m∑
k=0

Qk(x, y) , (1.1)

in which P , Q ∈ R[x, y] are relative prime polynomials in the variables x and y.
Moreover Pk and Qk are homogeneous polynomials of degree k. Throughout this
paper we will denote by m = max{deg P,deg Q} the degree of system (1.1).

There are several papers studying whether some invariant curves of system (1.1)
are algebraic, i.e., it can be described implicitly by f(x, y) = 0 where f is a polyno-
mial, see for instance [5] and references therein. An invariant curve f(x, y) = 0 is
an algebraic invariant curve of system (1.1) when f ∈ C[x, y] and it is irreducible.
Let X = P∂/∂x + Q∂/∂y be the vector field associated to (1.1). It is clear that
the orbital derivative X f should vanish on the algebraic curve f(x, y) = 0. On the
other hand, since the ideal < f > is radical, then Xf ∈< f > and therefore there
exists a polynomial K(x, y) ∈ C[x, y] of degree less than or equal to m − 1, called
cofactor associated to the algebraic invariant curve f = 0 such that Xf = Kf .

It is known that algebraic invariant curves and integrability have a narrow re-
lationship for planar polynomial systems like it is clearly shown in the Darboux
theory. Darboux in [8] showed how first integrals of polynomial systems possessing
sufficiently many algebraic invariant curves can be constructed. In short, he proved
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