Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

First integrals and Darboux polynomials of natural polynomial Hamiltonian systems [☆]

Isaac A. García^{a,*}, Maite Grau^a, Jaume Llibre^b

^a Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69, 25001 Lleida, Catalonia, Spain

^b Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

ARTICLE INFO

ABSTRACT

open questions presented in that paper.

Article history: Received 29 April 2010 Received in revised form 9 July 2010 Accepted 24 September 2010 Available online 2 October 2010 Communicated by A.P. Fordy

Keywords: Darboux polynomial Hamiltonian system Polynomial potential Polynomial first integral

omial potential

1. Introduction and main results

Probably the most natural class of Hamiltonian systems which appears in Mechanics are the ones whose Hamiltonian is a sum of the kinetic and potential energy.

In this Letter we consider the polynomial Hamiltonians of the form

$$H(q, p) = T(p) + V(q) = \frac{1}{2} \sum_{i=1}^{m} \mu_i p_i^2 + V(q),$$
(1)

where V(q) is a polynomial and $\mu_i \in \mathbb{C}$ for i = 1, ..., m. So the Hamiltonian system defined in \mathbb{C}^{2m} with *m* degrees of freedom and Hamiltonian (1) is

$$\frac{dq_i}{dt} = \mu_i p_i, \qquad \frac{dp_i}{dt} = -\frac{\partial V}{\partial q_i}, \quad \text{for } i = 1, \dots, m,$$

with positions $q = (q_1, \ldots, q_m) \in \mathbb{C}^m$, momenta $p = (p_1, \ldots, p_m) \in \mathbb{C}^m$ and $t \in \mathbb{R}$. To avoid the easy linear differential systems we assume that $r = \deg(V) > 2$.

We denote by \mathcal{X}_H the associated Hamiltonian vector field in \mathbb{C}^{2m} , i.e.

* Corresponding author.

$$\mathcal{X}_{H} = \sum_{i=1}^{m} \mu_{i} p_{i} \frac{\partial}{\partial q_{i}} - \sum_{i=1}^{m} \frac{\partial V(q)}{\partial q_{i}} \frac{\partial}{\partial p_{i}}.$$

In this Letter we study some aspects of the relationship between the existence of Darboux polynomials

and additional polynomial first integrals in natural polynomial Hamiltonian systems with a finite number

of degrees of freedom. More precisely, first we improve results of the paper of Maciejewski and

Przybylska [A.J. Maciejewski, M. Przybylska, Phys. Lett. A 326 (2004) 219]; and after we answer two

A non-constant polynomial $F \in \mathbb{C}[q, p]$ is a *Darboux polynomial* of the polynomial Hamiltonian vector field \mathcal{X}_H if there exists a polynomial $K \in \mathbb{C}[q, p]$, called the *cofactor* of F such that $\mathcal{X}_H F = KF$. We say that F is a *proper* Darboux polynomial if its cofactor is not identically zero, i.e. if F is not a first integral of \mathcal{X}_H .

© 2010 Elsevier B.V. All rights reserved.

Given an *involution* $\tau : \mathbb{C}^{2m} \to \mathbb{C}^{2m}$ (i.e. a diffeomorphism such that τ^2 is the identity) and a function $F : \mathbb{C}^{2m} \to \mathbb{C}$, we define $F^{\tau} : \mathbb{C}^{2m} \to \mathbb{C}$ as $F^{\tau} = \tau_* F = F \circ \tau$. In what follows we denote by σ the involution defined by $\sigma(q, p) = (q, -p)$.

A first integral I(q, p) of the Hamiltonian vector field \mathcal{X}_H is called an *additional first integral* when H and I are functionally independent, i.e. when the gradient vectors of H(q, p) and I(q, p) are linearly independent in \mathbb{C}^{2m} except perhaps in a zero Lebesgue measure set.

Our work is a natural continuation of the interesting paper [5] of Maciejewski and Przybylska, see also [6]. There, the authors stated the following two main results.

Theorem 1. (See [5].) Assume that in Hamiltonian (1) the potential V (q) is of odd degree, then every Darboux polynomial of its Hamiltonian system is a first integral.

Theorem 2. (See [5].) Assume that in Hamiltonian (1) at least two μ_i are not zero and that the potential V (q) is of even degree. If its Hamiltonian system possesses a proper Darboux polynomial, then it admits an additional polynomial first integral.

 $^{^{\}pm}$ The first two authors are partially supported by a MCYT/FEDER grant number MTM2008-00694 and by a CIRIT grant number 2009SGR381. The third author is partialy supported by MCYT/FEDER grant number MTM2008-03437, by CIRIT grant number 2009SGR410 and by ICREA Academia.

E-mail addresses: garcia@matematica.udl.cat (I.A. García),

mtgrau@matematica.udl.cat (M. Grau), jllibre@mat.uab.cat (J. Llibre).

^{0375-9601/\$ –} see front matter $\,\,\odot$ 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.physleta.2010.09.060