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In this Letter we study some aspects of the relationship between the existence of Darboux polynomials
and additional polynomial first integrals in natural polynomial Hamiltonian systems with a finite number
of degrees of freedom. More precisely, first we improve results of the paper of Maciejewski and
Przybylska [A.J. Maciejewski, M. Przybylska, Phys. Lett. A 326 (2004) 219]; and after we answer two
open questions presented in that paper.
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1. Introduction and main results

Probably the most natural class of Hamiltonian systems which
appears in Mechanics are the ones whose Hamiltonian is a sum of
the kinetic and potential energy.

In this Letter we consider the polynomial Hamiltonians of the
form

H(q, p) = T (p) + V (q) = 1

2

m∑

i=1

μi p2
i + V (q), (1)

where V (q) is a polynomial and μi ∈ C for i = 1, . . . ,m. So the
Hamiltonian system defined in C

2m with m degrees of freedom
and Hamiltonian (1) is

dqi

dt
= μi pi,

dpi

dt
= −∂V

∂qi
, for i = 1, . . . ,m,

with positions q = (q1, . . . ,qm) ∈ C
m , momenta p = (p1, . . . , pm) ∈

C
m and t ∈ R. To avoid the easy linear differential systems we as-

sume that r = deg(V ) > 2.
We denote by X H the associated Hamiltonian vector field in

C
2m , i.e.
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X H =
m∑

i=1

μi pi
∂

∂qi
−

m∑

i=1

∂V (q)

∂qi

∂

∂ pi
.

A non-constant polynomial F ∈ C[q, p] is a Darboux polynomial
of the polynomial Hamiltonian vector field X H if there exists a
polynomial K ∈ C[q, p], called the cofactor of F such that X H F =
K F . We say that F is a proper Darboux polynomial if its cofactor
is not identically zero, i.e. if F is not a first integral of X H .

Given an involution τ : C
2m → C

2m (i.e. a diffeomorphism such
that τ 2 is the identity) and a function F : C

2m → C, we define
F τ : C

2m → C as F τ = τ∗ F = F ◦ τ . In what follows we denote by
σ the involution defined by σ(q, p) = (q,−p).

A first integral I(q, p) of the Hamiltonian vector field X H is
called an additional first integral when H and I are functionally in-
dependent, i.e. when the gradient vectors of H(q, p) and I(q, p)

are linearly independent in C
2m except perhaps in a zero Lebesgue

measure set.
Our work is a natural continuation of the interesting paper [5]

of Maciejewski and Przybylska, see also [6]. There, the authors
stated the following two main results.

Theorem 1. (See [5].) Assume that in Hamiltonian (1) the potential V (q)

is of odd degree, then every Darboux polynomial of its Hamiltonian sys-
tem is a first integral.

Theorem 2. (See [5].) Assume that in Hamiltonian (1) at least two μi
are not zero and that the potential V (q) is of even degree. If its Hamil-
tonian system possesses a proper Darboux polynomial, then it admits an
additional polynomial first integral.
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