First integrals and Darboux polynomials of natural polynomial Hamiltonian systems **

Isaac A. García ${ }^{\mathrm{a}, *}$, Maite Grau ${ }^{\text {a }}$, Jaume Llibre ${ }^{\text {b }}$
a Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69, 25001 Lleida, Catalonia, Spain
${ }^{\text {b }}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

ARTICLE INFO

Article history:

Received 29 April 2010
Received in revised form 9 July 2010
Accepted 24 September 2010
Available online 2 October 2010
Communicated by A.P. Fordy

Keywords:

Darboux polynomial
Hamiltonian system
Polynomial potential
Polynomial first integral

Abstract

In this Letter we study some aspects of the relationship between the existence of Darboux polynomials and additional polynomial first integrals in natural polynomial Hamiltonian systems with a finite number of degrees of freedom. More precisely, first we improve results of the paper of Maciejewski and Przybylska [A.J. Maciejewski, M. Przybylska, Phys. Lett. A 326 (2004) 219]; and after we answer two open questions presented in that paper.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction and main results

Probably the most natural class of Hamiltonian systems which appears in Mechanics are the ones whose Hamiltonian is a sum of the kinetic and potential energy.

In this Letter we consider the polynomial Hamiltonians of the form
$H(q, p)=T(p)+V(q)=\frac{1}{2} \sum_{i=1}^{m} \mu_{i} p_{i}^{2}+V(q)$,
where $V(q)$ is a polynomial and $\mu_{i} \in \mathbb{C}$ for $i=1, \ldots, m$. So the Hamiltonian system defined in $\mathbb{C}^{2 m}$ with m degrees of freedom and Hamiltonian (1) is
$\frac{d q_{i}}{d t}=\mu_{i} p_{i}, \quad \frac{d p_{i}}{d t}=-\frac{\partial V}{\partial q_{i}}, \quad$ for $i=1, \ldots, m$,
with positions $q=\left(q_{1}, \ldots, q_{m}\right) \in \mathbb{C}^{m}$, momenta $p=\left(p_{1}, \ldots, p_{m}\right) \in$ \mathbb{C}^{m} and $t \in \mathbb{R}$. To avoid the easy linear differential systems we assume that $r=\operatorname{deg}(V)>2$.

We denote by \mathcal{X}_{H} the associated Hamiltonian vector field in $\mathbb{C}^{2 m}$, i.e.

[^0]$\mathcal{X}_{H}=\sum_{i=1}^{m} \mu_{i} p_{i} \frac{\partial}{\partial q_{i}}-\sum_{i=1}^{m} \frac{\partial V(q)}{\partial q_{i}} \frac{\partial}{\partial p_{i}}$.
A non-constant polynomial $F \in \mathbb{C}[q, p]$ is a Darboux polynomial of the polynomial Hamiltonian vector field \mathcal{X}_{H} if there exists a polynomial $K \in \mathbb{C}[q, p]$, called the cofactor of F such that $\mathcal{X}_{H} F=$ $K F$. We say that F is a proper Darboux polynomial if its cofactor is not identically zero, i.e. if F is not a first integral of \mathcal{X}_{H}.

Given an involution $\tau: \mathbb{C}^{2 m} \rightarrow \mathbb{C}^{2 m}$ (i.e. a diffeomorphism such that τ^{2} is the identity) and a function $F: \mathbb{C}^{2 m} \rightarrow \mathbb{C}$, we define $F^{\tau}: \mathbb{C}^{2 m} \rightarrow \mathbb{C}$ as $F^{\tau}=\tau_{*} F=F \circ \tau$. In what follows we denote by σ the involution defined by $\sigma(q, p)=(q,-p)$.

A first integral $I(q, p)$ of the Hamiltonian vector field \mathcal{X}_{H} is called an additional first integral when H and I are functionally independent, i.e. when the gradient vectors of $H(q, p)$ and $I(q, p)$ are linearly independent in $\mathbb{C}^{2 m}$ except perhaps in a zero Lebesgue measure set.

Our work is a natural continuation of the interesting paper [5] of Maciejewski and Przybylska, see also [6]. There, the authors stated the following two main results.

Theorem 1. (See [5].) Assume that in Hamiltonian (1) the potential V (q) is of odd degree, then every Darboux polynomial of its Hamiltonian system is a first integral.

Theorem 2. (See [5].) Assume that in Hamiltonian (1) at least two μ_{i} are not zero and that the potential $V(q)$ is of even degree. If its Hamiltonian system possesses a proper Darboux polynomial, then it admits an additional polynomial first integral.

[^0]: मh The first two authors are partially supported by a MCYT/FEDER grant number MTM2008-00694 and by a CIRIT grant number 2009SGR381. The third author is partialy supported by MCYT/FEDER grant number MTM2008-03437, by CIRIT grant number 2009SGR410 and by ICREA Academia.

 * Corresponding author.

 E-mail addresses: garcia@matematica.udl.cat (I.A. García), mtgrau@matematica.udl.cat (M. Grau), jllibre@mat.uab.cat (J. Llibre).

