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Abstract

We consider families of entire transcendental maps given by Fλ,m(z) = λzm exp(z) where

m ≥ 2. All these maps have a superattracting fixed point at z = 0 and a critical point at

z = −m. In parameter planes we focus on the capture zones, i.e., we consider λ values for

which the critical point belongs to the basin of attraction of z = 0. We first show that the Julia

set is either a Cantor bouquet or a Cantor bouquet with pinchings depending on the parameter

λ. Second we investigate the connection between the dynamics near zero and the dynamics

near infinity at the boundary of the immediate basin of attraction of the origin. So we glue the

exponential an polynomial behaviour in the same dynamical plane
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1 Introduction

In this paper, we combine symbolic dynamics with polynomial–like theory to investigate the com-
binatorics of the Julia set of the families of trascendental entire functions

Fλ,m(z) = λzmez, (1.1)

with m ≥ 2 and λ ∈ C \ {0}. The Julia set of an entire map f , J(f), is the set of points where
the family of iterates {fn} fails to be a normal family. Its complement in C is an open set of the
plane known as Fatou set, where the dynamics is tame.

For all functions in (1.1), 0 is a critical and asymptotic value and Fλ,m(−m) = λ(−m)m exp(−m)
is a critical value. Therefore, these maps belong to a general class of entire transcendental maps
with only finitely many critical and asymptotic values also known as critically finite. The interest
on critically finite maps resides in that they resemble rational maps, as their Fatou set contains
neither wandering nor Baker domains (see [7], [13, 14] and [16]). In contrast, the point at infinity
plays a crucial role. For instance, the little Picard Theorem says that an entire function in any
neighborhood of infinity assumes infinitely many times each value in the complex plane with at
most one exception.

The families Fλ,m have been previously considered in the literature. In [3], Bergweiler considers
functions related to Fλ,m to provide examples of a Baker domain at a positive distance from any
singular orbit. In [15], Fagella and Garijo present a thorough analysis of the topology of capture
zones in parameter plane and of Julia sets in dynamical plane.

As the exponential family Eλ(z) = λez is the transcendental version of the quadratic family
Qc(z) = z2 + c, the family Fλ,2 is the transcendental version of the one parameter slice of the cubic
family z 7→ z3 − 3a2z + b, given by

Ma(z) = z3 −
3

2
az2.

We review some of its properties here, for further details see [18]. It is easy to see that Ma

possesses a superattracting fixed point at z = 0 and a free critical point at z = a. When a belongs
to the basin of attraction of the origin, we say that this critical point has been captured. The
connected components of the parameter space for which this phenomenon occurs are thus called
capture zones. Define the main capture zone as the set of parameter values a for which the free
critical point belongs to the immediate basin of the origin. Roughly speaking, with the use of
internal and external rays, Milnor showed how the dynamics near zero (conjugated to θ 7→ 2θ)
meets the dynamics near infinity (conjugated to θ 7→ 3θ) at the boundary of the immediate basin
of attraction of the origin. In [20] Roesch extended Milnor’s results to the family

Ma,m(z) = zm+1 −
m+ 1

m
azm .

We consider (1.1) as the transcendental version of Roesch’s family in the following sense: for
all nonzero values of λ, Fλ,m has a superattracting fixed point at z = 0, and a free simple critical
point at z = −m.
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The dynamical behavior of the free critical point will be crucial to describe the structure of the
dynamical plane. Basically there are three possibilities. Either z = −m is captured or it is related
to a Fatou component different to the basin of z = 0, or it is not related to any Fatou component
(landing on a periodic repelling point, escaping to infinity, etc.).

In this paper we deal only with parameters in capture zones. The problem of describing the
topology of the Julia set for these parameters has been previously solved in a more general setting
in [2, 19] where it has been shown that the Julia set can be described as a Cantor bouquet with
or without pinchings (see Section 2 for definitions and results). Nevertheless, this topological
description does not give a full understanding of the combinatorics in the Julia set, and this is
precisely the main goal of the present work. To do so, we follow Milnor’s approach and study how
the dynamics near zero meets the dynamics of the tails of the Cantor bouquet near infinity. More
specifically, in Theorem A we show how the pinchings occur at the boundary of the immediate
basin of attraction of the origin. In order to present a clear exposition we restrict its formulation
to a particular case and discuss its generalization in Theorem C. Moreover, we completely describe
accessible points in the Julia set from the Fatou set in Theorem B.

The outline of the paper is as follows: in Section 2 we give precise definitions of the Cantor
bouquet with or without pinchings and describe previous results concerning the topology of J(Fλ,m)
and the family Fλ,m. We finish this section with the statements of the two main results of the
paper. In Section 4 we prove Theorem A using a polynomial–like construction around the origin
and symbolic dynamics. The polynomial–like construction rigourously explains how Fλ,2 acts as
z 7→ z2 around the origin. The proof of Theorem B is found in Section 5. Finally in Section 6 we
provide a partial generalization of Theorem A by showing how Fλ,m acts as zm around the origin
for m > 2.

Acknowledgments. The first and second author are both partially supported by the European net-
work 035651-2-CODY. They are also supported by MEC and CIRIT through the grants MTM2005–
02139 and 2005SGR-00550, respectively. The second author is also partially supported by MEC
through the grant MTM2006–05849/Consolider (including a FEDER contribution). The third
author is supported by CONACyT grant 59183, CB-2006-01.

We would like to thank our home institutions and the Mathematics Department at Boston
University, Departament de Matemàtiques at Universitat Autònoma de Barcelona and the Fields
Institute for their hospitality while this work was in progress.

2 Preliminaries and statement of the results

2.1 The notion of Cantor bouquets with or without pinchings

Nowadays there exist a comprehensive study related to dynamics and topology of Julia sets for
entire transcendental maps. Some of the early prime works dealt mainly with complex exponential
family Eλ(z) = λez, [11, 10, 6, 21], while some generalizations to other entire transcendental maps
were also found in [11] and more recently in [2, 19]. Among several topological results, it is shown
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that under certain assumptions, the Julia set of an entire transcendental map is a Cantor bouquet.
Roughly speaking, a Cantor bouquet is a Cantor set of curves extending to infinity in a specific
asymptotic direction, each one of them having a distinguished landing point, called the endpoint.
All points in these curves, except perhaps the endpoints, have forward orbits that tend to infinity
along the curves.

The concept of a Cantor bouquet was first introduced in [11] and described in a dynamical
setting. Let f be a (critically finite) entire transcendental map and denote by J(f) its Julia set.
For a fixed N ∈ N, denote by

ΣN = {s = (s0s1s2 · · · ) | sj ∈ {0, 1, 2, · · · , N − 1} for each j},

the space of one-sided infinite sequences of N symbols and by σ the right shift map acting on ΣN .

Definition 2.1. An invariant set CN of J(f) is an N -Cantor bouquet if there is a homeomorphism
h : ΣN × [1,∞) → CN that satisfies the following conditions:

(a) For the projection π : ΣN × [1,∞) → ΣN ,

π ◦ h−1 ◦ f ◦ h(s, t) = σ(s).

(b) For each s ∈ ΣN ,

lim
t→∞

h(s, t) = +∞.

(c) If t > 1, then for each s ∈ ΣN ,

lim
j→∞

f j(h(s, t)) = +∞.

Fixing s ∈ ΣN , the curve {h(s, t) | t > 1} will be called a tail and h(s, 1) = zs is its endpoint.
The union of the tail with its endpoint is known as a hair associated to s.

In order to exemplify this definition, we sketch the construction of an N -Cantor bouquet for
Eλ, with λ ∈ (0, 1/e). See [11] for further details. For these parameters there exists a unique
attracting fixed point that traps the orbit of the unique asymptotic value z = 0, therefore Eλ is
hyperbolic. The horizontal lines Ik = {z ∈ C | Im(z) = (2k + 1)π}, k ∈ Z, are the infinitely many
components of the preimage of the negative real line R

− under Eλ. Denote by Mk the open strip
bounded by Ik and Ik+1. A point z ∈ J(Eλ) has a well defined itinerary s = (s0, s1, . . .) if and
only if Ek

λ(z) ∈ Msk
, k ≥ 0. Fix N and take constants ξ and η such that the image under Eλ of

each rectangle

Rk = {z ∈ C | ξ < Re(z) < η, (2k + 1)π < Im(z) < (2k + 3)π}

contains R = ∪Rk for k = 0, 1, . . . , N − 1. Since the exponential map is expansive on R one
can show that each point, with an orbit never escaping from R, has a unique itinerary in ΣN
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and belongs to J(Eλ). The set of non-escaping points is shown to be homeomorphic to ΣN and
constitute the endpoints of the bouquet.

Redefining constants ξ and η, it is possible to obtain for each s ∈ ΣN a sequence of rectangles
Rsk

⊂Msk
with increasing real part and Rsk

⊂ Eλ(Rsk−1
). Similar arguments show the existance

of a single point in Rs0 with an orbit escaping to infinity from the right hand direction following
s. A continuity argument shows that in fact there exists a continuous curve (or tail) inside Ms0

with same dynamics. Appropriate pullbacks of the tail can be done to see how the tail limits to
the left at the endpoint associated to s, giving thus a full hair.

As ΣN+1 naturally contains ΣN , it follows that CN ⊂ CN+1 for each N , and the set

C =
⋃

N≥0

CN

is now called a Cantor bouquet. In Figure 1(a) the Cantor bouquet of an exponential map is shown,
where all hairs extend to infinity to the right.

Devaney and Tangerman generalized ([11]) above result showing that the Julia set for critically
finite transcendental entire maps contains a Cantor bouquet. Let f be an entire transcendental
map with finitely many singular values. Let D be an open disk in the plane which contains all of
the critical and asymptotic values of f . Let Γ be the complement of D. We call a component of
T of f−1(Γ) an exponential tract.

We fix a ray ζ = ζ(r) = reiθ which is disjoint from T and defined for r ≥ ρ, and we use the
components of the preimage of this ray in T to set up the fundamental domains for the Cantor
bouquet. More precisely, let γi = γi(r) for i ∈ Z denote the pre-images of ζ in T . That is,
γi(r) = f−1(ζ(r)) for an appropriate branch of f−1. We choose the index i in the natural way so
that γi and γi+1 are adjacent for each i. The curves γi and γi+1 bound a strip which serves as a
fundamental domain for f |T , we also denote this strip by Ti. Let WN =

⋃N
i=−N Ti and

ΛN = {z ∈WN | f◦j(z) ∈WN for all j ≥ 0}.

Definition 2.2. f |T has asymptotic direction θ∗ if γi(r) is a C1−asymptotic to a straight line
with direction θ∗ for each curve γi, defining the fundamental domains.

Definition 2.3. T is a hyperbolic exponential tract if there exist positive constants R1, α,C such
that, if z and f(z) lie in WN , with |z| = r ≥ R1, then

1. |f(z)| > C exp(rα).

2. |f ′(z)| > C exp(rα).

3. |Arg(f ′(z))| < C exp(−rα).

In the next theorem it is shown that the set of points whose orbits remain in T contains a
Cantor bouquet ([11]).

5



Theorem 2.4. Let f ∈ S. Let T be a hyperbolic exponential tract on which f has assymptotic
direction θ∗. Then, for each N , ΛN is a Cantor bouquet. Consequently,

JT (f) = {z | f◦j(z) ∈ T for all j ≥ 0}

contains a Cantor bouquet.

Surprisingly, it was shown in [1] that every Cantor bouquet associated to the exponential family
with a completely invariant basin of attraction (and other entire transcendental maps) are in fact
homeomorphic to a unique topological abstract model called straight brush.

(a) An attracting fixed point for
λ = −0.05 + 1.14i.

(b) An attracting two–cycle for λ =
−4 + 1.14i.

(c) An attracting three–cycle for
λ = −1.06 + 1.89i.

Figure 1: The Julia set for Eλ is shown in white.

Definition 2.5. A straight brush B is a subset of [1,∞)×D, with D a dense subset of the irrational
numbers, that satisfies the following properties.

(a) Hairiness: If (y, α) ∈ B then there exists yα ≤ y such that (t, α) ∈ B if and only if yα ≤ t.
The point (yα, α) is called the endpoint of the hair [t,∞) × {α} at α.

(b) Density: the set {α | (y, α) ∈ B for some y} is dense in D. Moreover, given any (y, α) ∈ B
there are sequences βn ր α, γn ց α so that the sequences of endpoints (yβn

, βn) and (yγn , γn)
converge to (y, α) in B.

(c) Compact sections: B is a closed subset of R
2.

In [1] it is shown that any two straight brushes are ambiently homeomorphic, that is there
exists a homeomorphism of R

2 taking one straight brush onto the other. This leads to a formal
definition of a Cantor bouquet.

Definition 2.6. A Cantor bouquet is a compact subset of C that is homeomorphic to a straight
brush (with ∞ mapped to ∞).
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The construction of the N–Cantor bouquet sketched above and the existence and the abstract
model was heavily based on the existence of an attracting fixed point, so the Fatou set concides
with its immediate basin of attraction. Recently Barański studied the structure of the Julia set
for a large class of maps. More precisely,

Theorem 2.7. Let f be an entire transcendental function of finite order so that all critical and
asymptotic values are contained in a compact subset of a completely invariant attracting basin of
a fixed point. Then J(f) consists of disjoint hairs homeomorphic to the half-line [0,∞).

Definitions 2.1 and 2.5 describe how each endpoint of a Cantor bouquet has a unique tail
attached to it. However, Julia sets of entire transcendental functions may resemble a Cantor
bouquet far to the right and with some endpoints becoming landing points of more than one hair.
In [4] it is shown that, for the exponential family, the existence of an attracting cycle of period
two or higher provides sufficient conditions for multiple landings. See Figure 1(b)–(c). In order
to understand this new structure, [5] provided a topological abstract model known as modified
straight brush. This model is the quotient of the straight brush with a dynamical equivalence
relation defined among a subset of its endpoints. In the dynamical setting, we say

Definition 2.8. A Julia set homeomorphic to a modified straight brush is called a Cantor bouquet
with pinchings.

Examples of Cantor bouquets with pinchings were mostly known among complex exponential
and sine families with an attracting periodic cycle. However, in a recent paper, Rempe [19] have
shown that these pinchings will occur in a large number of dynamical planes of entire transcendental
maps. To do this he study the escaping set, defined as the of points whose orbits tends to infinity.
It is well known that the Julia set of an entire transcendental map consist of the boundary of the
escaping set.

Precisely he dealt with functions in the set B, that is functions for which the set of critical
and asymptotic values is bounded (notice that all functions in the hypothesis of Theorem 2.7
belong to the set B). The main result in [19] is that if two entire transcendental maps in B are
quasiconformally equivalent near infinity, then their escaping set are quasiconformally conjugate
near infinity (notice that, fixed m, all functions in family Fλ,m are quasiconformally equivalent
near infinity).

Using this strong rigidity theorem for the escaping set of entire maps, the author is able to
prove the following result for hyperbolic maps, that is, maps for which all its singular values belongs
to an attracting basin of a periodic point (stated as Theorem 1.4 and 5.2 in [19]).

Theorem 2.9. Let f, g ∈ B be two hyperbolic maps of finite order and quasiconformally equivalent
near infinity. Assume that g also verity the hypothesis of Theorem 2.7. Then f and g are conjugate
on their set of escaping points and the conjugacy extends to a continuous surjective map from J(g)
onto J(f).

As a consequence of all results stated in this section, we will show in Section 3 that the Julia
ofFλ,m is a Cantor bouquet or a Cantor Bouquet with pinchings accordingly with the parameter
λ.
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2.2 The family Fλ,m

We state without proofs some results on the parameter and dynamical plane of Fλ,m that we
will strongly use in subsequent sections. Recall that Fλ,m(z) = λzmez. Clearly, there exists a
superattracting fixed point at z = 0 for all choices of λ and m ≥ 2. Denote its basin of attraction
by

A(0) = Aλ,m(0) = {z ∈ C|Fn
λ,m(z) → 0 as n→ ∞}, (2.1)

and its immediate basin by A∗(0) = A∗
λ,m(0). In [15] it is proved that A∗(0) contains the disc

Dε = {z ∈ C | |z| < ε} where ε depends on λ and m. Moreover, Fλ,m has also a (free) simple
critical point at z = −m . With this in mind, define a capture zone as a connected component in
parameter plane given by

Ck
m = {λ ∈ C |F k

λ,m(−m) ∈ A∗(0) , F j
λ,m(−m) /∈ A∗(0), 0 ≤ j ≤ k − 1}, (2.2)

for each m ≥ 2 and k ≥ 0. Any λ ∈ Ck
m is called a capture parameter. In particular

C0
m = {λ ∈ C | −m ∈ A∗(0)}, (2.3)

is known as main capture zone. The next theorem gathers some of the most important results
related to the family Fλ,m and found in [15].

Theorem 2.10. The following statements hold for all m ≥ 2.

(a) The main capture zone is a bounded component. If λ ∈ C0
m, then A(0) = A∗(0).

(b) C1
m = ∅. In other words, −m ∈ A∗(0) if and only if Fλ,m(−m) ∈ A∗(0).

(c) C2
m is an unbounded component extending into the left or right hand plane depending on m.

(d) For k > 2, Ck
m has infinitely many connected components extending to infinity in an asymp-

totic direction.

(e) For k ≥ 2, if λ ∈ Ck
m then A(0) has infinitely many connected components. All these compo-

nents, except A∗(0), are unbounded.

In Figure 2 we illustrate the parameter plane of Fλ,m for m = 2 and 3. The main capture zone
is drawn in blue1 while other capture zones are shown in red. The parameter values for which the
orbit of the free critical point does not converge to zero (so, it is not captured) but it is bounded are
drawn in orange. The parameter values for which the orbit of the free critical point is unbounded
are drawn in black. If m is even, capture zones extend to +∞ as the real part of λ tends to +∞,
whereas if m is odd these strips extend to −∞ as the real part of λ tends to −∞.

1Color plots are available in the online version of this paper. Otherwise, blue is darker than red and orange is
light.
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(a) Range (−24, 8) × (−16, 16). (b) Range (−5, 11) × (−8, 8).

Figure 2: Parameter plane for (a) Fλ,2 and (b) Fλ,3. Color codes are explained in the text.

In Figure 3(a)–(c), we display the Julia set of Fλ,2 for two different values of λ (Figure 3(c)
is a magnification of Figure 3(b)). The immediate basin of attraction of z = 0 is shown in blue
(although it is not visible in Figure 3(b)). The connected components A(0) \ A∗(0) are shown in
red and the Julia set is in black. In Figure 3(a) λ is drawn from C0

2 and the Julia set is thus a
Cantor bouquet. In Figures 3(b) and (c) the λ value belongs to C2

2 and the Julia set is a pinched
Cantor bouquet with pinchings located at the boundary of the immediate basin of attraction of
z = 0 (and all its preimages).

(a) λ = 0.32 + 0.82i. Range
(−15, 15) × (−15, 15).

(b) λ = −21+3i. Range (−15, 15)×
(−15, 15).

(c) λ = −21 + 3i. Range (−.2, .2)×
(−.2, .2).

Figure 3: The Julia set for Fλ,2. Color codes are explained in the text.
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2.3 Statement of the results

Throughout this work, we only deal with parameter values belonging to a capture zone. Under this
assumption, it is straightforward to argue that the Fatou set coincides with the basin of attraction
of z = 0, and consequently, its complement is the Julia set. It is then natural to ask about the
topology of this set.

Theorem A Let λ ∈ Ck
m, m ≥ 2, k ≥ 0. Then, if λ ∈ C0

m then J(Fλ,m) is a Cantor bouquet
homeomorphic to a straight brush, and if λ ∈ Ck

m, k > 1 then J(Fλ,m) is a pinched Cantor bouquet.

In the light of the above result we know that the Julia set for capture parameters in Ck
m is

either a Cantor bouquet (k = 0) or a Cantor bouquet with pinchings (k ≥ 2). Our main goal in
this paper is to explain how these pinchings occur by matching the dynamics of the polynomial
map z 7→ zm with the dynamics of z 7→ λez. The bridge between these dynamical behaviors is
build by means of symbolic dynamics and polynomial–like constructions, showing thus how tails
of Fλ,m land, in particular, at the boundary of the basin of attraction of z = 0. See Figure 3(c).

For simplicity and clarity in the exposition, we state and prove Theorem A for particular values
of m and k. We have chosen them in order to capture the main arguments of the construction
without introducing overwhelming notation. In Section 6 we state the general case for arbitrary
values of m and k and discuss the refinement of the previous arguments that will constitute its
proof.

Theorem B Let Fλ,2(z) = λz2ez and assume that λ ∈ C3
2 . Then, the boundary of A∗(0) is a

quasi-circle where Fλ,2 on ∂A∗(0) is conjugate to θ 7→ 2θ on the unit circle. Each point in the
boundary of A∗(0) is an endpoint. Moreover there exists a domain Γ ⊂ C such that

(i) If Fλ,2(−2) /∈ Γ, then each point in ∂A∗(0) is a landing point of a unique hair, except the
fixed point at ∂A∗(0) and all its preimages, which are endpoints of exactly two hairs.

(ii) If Fλ,2(−2) ∈ Γ, then each point in ∂A∗(0) is a landing point of a unique hair, except the
two periodic points of period two on ∂A∗(0) and all their preimages, which are endpoints of
exactly two hairs.

The third result of the paper is about the accessible points from the Fatou set. Let f be
an entire transcendental map. A point z0 in J(f) is accessible (from the Fatou set) if there is a
continuous curve γ : [0, 1) → C for which γ(t) lies in the Fatou set for all t and lim

t→1−
γ(t) = z0.

Notice that such a curve must therefore lie in a single component of the Fatou set. The existence
and characterization of non–accesible points is an interesting problem by itself that arises not only
in the entire transcendental setting (see for example [8, 5]) but also in rational dynamics, [17].
For instance, in the exponential family Eλ, for λ ∈ (0, 1/e), the only accessible points are the
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endpoints. We can draw a result concerning the set of accessible points of the Julia set from the
basin of attraction of 0.

Theorem C Let m ≥ 2 and k ≥ 2. The set of points in J(Fλ,m) that are accessible can be
completely characterized as follows.

(a) If λ ∈ C0
m, this set coincides with the set of all endpoints.

(b) If λ ∈ Ck
m, this set coincides with the set of endpoints lying in ∂A∗(0) and all its preimages.

However, for any natural number N there exists an N–Cantor bouquet that contains only
non–accesible points.

3 Proof of Theorem A

The proof of Theorem A follows from the next two propositions. Firstly, if the parameter λ belongs
to C0

m then the corresponding Fatou set consists in a completely invariant basin of attraction and
the Julia set is its complement. The situation is quite similar to the case of the exponential map
with an attracting fixed point that we explained in the Section 2.1. Roughly speaking our map
acts in a similar way than the exponential map. On one hand in both cases points escape to
infinity when their real parts tend to infinity. On the other hand the partition used to label points
tending to infinity is defined using the components of the preimage of the negative real line. In
Proposition 3.1 we prove that the Julia set is a Cantor bouquet, i.e., the Julia set is homeomorphic
to a straight brush. Secondly, if the parameter λ belongs to any other capture zone then the Julia
set is a pinched Cantor bouquet, in this case the situation is similar to the case of the exponential
map with an attracting k-cycle with k > 1.

Proposition 3.1. If λ ∈ C0
m then J(Fλ,m) is Cantor bouquet homeomorphic to a straight brush.

Proof. First we find out a hyperbolic tract T in the dynamical plane, following Devaney-Tangerman
constructon (see [11], pp. 490-491), in order to prove that the set of points with forward orbit in
T contains a Cantor bouquet.

Let ∆r denote the open disk of radius r > 0 centered at the origin. Select r small enough so
neither −m nor Fλ,m(−m) lies in ∆r. Let n0 denote the smallest positive integer needed so the
bounded component of F−n0

λ,m (∆r) contains both the origin and the critical value z = Fλ,m(−m),
but not z = −m. Call this component D. Let Γ be the complement of D. Notice that for each

k ≤ n0, F
−k
λ,m(∆r) consists of two connected components, while

T := F−n0−1
λ,m (∆r) = F−1

λ,m(Γ).

has only one connected component, and D ∩ T = ∅. Clearly T is an exponential tract for Fλ,m

and other exponential tract intersect T . We consider the connected components of the preimage
of R

− outside D. These countable number of curves, denoted by σi, i ∈ Z, define a partition of T
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(for a precise description and parametrization of these curves see [15] or Section 4 in this paper).
Moreover all these curves extend to infinity to the right and have the asymptotic direction θ⋆ = 0.

Finally we claim that T is a hyperbolic exponential tract. Since the family behaves like the
exponential family far to the rigth we left the details of checking the conditions to the reader.

Thus, from Theorem 3.3 in [11], the Julia set lies on T and contains a Cantor bouquet (in the
sense of Devaney-Tangerman). Moreover we observe that if λ ∈ C0

m, the Fatou set is the completely
invariant attracting basin of z = 0 (a particular case of Baranski’s approach). So all points in the
Julia set must belong to a unique hair or endpoint (in the tract T ). This two results together
imply that the Julia set is precisely the Cantor bouquet given in [11].

The rest of the proof shows that the Cantor bouquet is homeomorphic to a straight brush.
Since the basic ideas are closed to the construction of the straight brush for the exponential family
in [1], we only sckech here the key steps (see also [5] for a straight brush construction) in [1] in our
setting.

Fixed m ≥ 2 and f ∈ Fλ,m with λ ∈ C0
m. Because of the expansivity of f in the tract T , if

we take a preimage of T inside T we get infinitely many connected components, denoted in what
follows by Hi, ∈ Z (one in each of the strips given by the curves σi). Precisely it is easy to check
that if z ∈ Hk then

(2k + 1)π − Arg(λ) −
π

2
≤ Im(z) ≤ (2k + 1)π − Arg(λ) +

π

2

We observe that T is not contained in any half plane (as it happens with the complex exponential
family with an invariant basin of attraction) so that the Hi extend arbitrarily far to the left (inside
T ) as i increases in absolute value. So we define, for each x ∈ C and n ∈ Z, the squares:

S(x, n) = Hn

⋃

{z ∈ C | x ≤ Re(z) ≤ x+ π}.

We notice that either S(x, n) = ∅ or S(x, n) ∩ J(f) 6= ∅. When S(x, n) 6= ∅, its image by f is a
piece of an annulus cutting across the sets Hi.

(FALTA ACABAR)

The following proposition, stated for our family Fλ,m, is a particular case of Corollary 5.3 in
[19]. We state and prove it here for completeness.

Proposition 3.2. If λ ∈ Ck
m, k > 1 then J(Fλ,m) is a pinched Cantor bouquet.

Proof. Using Rempe’s result (see Section 2.1) we can relate the escaping set and the Julia set of
two maps as long as these maps are quasiconformally equivalent near infinity. In our case we take
two values λ1, λ2 with the first value in C0

m and the second value in any other different capture zone.
Using φ1(z) = λ2

λ1
z and φ2(z) = z we have that φ1 ◦ Fλ1,m = Fλ2,m ◦ φ2, proving thus that both

maps are quasiconformally equivalents. So we apply Theorem 2.9 to conclude that, if I(Fλ1,m) and

12



I(Fλ2,m) denote the escaping set of Fλ1,m and Fλ2,m respectively, there exists a homeomorphism
ψ : I(Fλ1,m) 7→ I(Fλ2,m), which extends as a surjective continuous map

ψ̄ : J(Fλ1,m) 7→ J(Fλ2,m).

Since by the previous proposition J(Fλ1,m) is a Cantor bouquet homeomorphic to a straight brush,
we conclude that J(Fλ2,m) is a Cantor bouquet with pinchings (or equivalently, a modified stragiht
brush with identifications in some of the non escaping endpoints).

4 Proof of Theorem B

We begin by showing that the boundary of A∗
λ,2(0) is a quasi–circle using a polynomial–like con-

struction (see [12] for an excellent exposition on polynomial–like mappings). After that, we use
symbolic dynamics to show how the hairs land on ∂A∗

λ,2(0) and characterize the pinchings.
Before we start the proof, we describe a partition of the dynamical plane derived from the

components of the preimage of R
−, for all m ≥ 2 and any capture parameter λ. Hereafter, denote

by Arg(·) ∈ (−π, π] the principal argument. From the expression Fλ,m(z) = λzmez, it is easy to
see that

Arg(Fλ,m(z)) = Arg(λ) +mArg(z) + Im(z) ( mod 2π),

so that, finding components of the preimage of R
− is equivalent to solve Arg(Fλ,m(z)) = π. Denote

r = |z| and α = Arg(z) so the above equation becomes

r = ρk(α) =
(2k + 1)π −mα− Arg(λ)

sin(α)
,

where α ∈ (−π, π) and k ∈ Z. Thus, for fixed λ and m, the component of the preimage of R
− are

given by
σk = ρk(α)eiα. (4.1)

In Figure 4 we show some of these curves for m = 5. As their real parts tend to +∞, all the σk

are asymptotic to the horizontal lines Im(z) = (2k + 1)π − Arg(λ). There are m of these curves
that start at the origin (namely, σ−j , . . . , σj−1 when m = 2j, or σ−j , . . . , σj when m = 2j + 1),
while all others start at −∞.

The family of curves σk, k ∈ Z, divides the plane into infinitely many regions or strips. One
of these regions, denoted in what follows by W , contains R

− and is bounded by four of these
curves, namely, σj, σj−1, σ−j and σ−(j+1) when m = 2j, and by σj+1, σj , σ−j and σ−(j+1), when
m = 2j + 1. We say that W has two arms in the far right–hand side plane and refer to the upper
and lower arm of W in the natural way. All other regions, denoted by Mk, are bounded by σk and
σk+1 with k 6= j − 1,−j − 1 if m = 2j, and k 6= j,−j − 1 if m = 2j + 1.

From the above construction, it is clear that

Fλ,m : Mk → C \ R
−

13



σ0

σ1

σ2

σ−1

σ−2

σ−3

σ−4

σ−5

σ−6

σ3

σ4

σ5

(a) Graphs of σk for m = 5. (b) The Julia set of Fλ,5 lying over the graphs
of σk.

Figure 4: Strips in the dynamical plane.

is a bijective map for each k. Denote by

Lk : C \ R
− →Mk (4.2)

the inverse of Fλ,m taking values in each Mk. In contrast, the map

Fλ,m : W → C \ R
−

is a covering map of degree 2, since contains the critical point z = −m of multiplicity one.
We are now ready to prove the polynomial–like construction.

Proposition 4.1. Let λ be a parameter in C3
2 and r > 0 large enough. Then, there exist Ur

and Vr open, bounded and simply connected domains of C, such that 0 ∈ Ur ⊂ Vr and satisfying
that (Fλ,2, Ur, Vr) is a polynomial–like mapping of degree 2. Moreover, the filled Julia set of

(Fλ,2, Ur, Vr) is a quasi–disk and coincides with A∗
λ,2(0).

Proof. Since λ ∈ C3
2 , we have that F 3

λ,2(−2) lies in the immediate basin of 0. Consider a simple (non

closed) curve, completely contained in A∗
λ,2(0), joining 0 and F 3

λ,2(−2) such that it is an straight
line inside Dε (a small disc inside A∗

λ,2(0)). Pulling back this curve twice, it defines a simple curve
γ in the Fatou set joining +∞ and Fλ,2(−2) such that it cuts across each straight line Re(z) = c
once, for sufficiently big c ∈ R. The rest of the proof is divided in three steps, and the third step
in two cases.

The first step is to consider the preimage of γ in W . We claim that γ ∩ R
− = ∅. (FALTA

PRUEBA)
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Since z = −2 is a simple critical point, the preimage of γ consists of two simple curves that
meet only at z = −2. Denote these curves by α and β and note that they extend to +∞ in a
different arm of W . To fix notation, let α be the curve extending along the lower arm and β the
one extending in the upper arm.

 

 

W

−2

β

α

M2

M1

M−3

M−4

β2

α2

β1

α1

β−3

α−3

β−4

α−4

M−1

α−1

β−1

Figure 5: Dynamical plane of Fλ,2 divided into fundamental domains. The curves α and β are
drawn in dotted lines. The components of the preimages of α and β in each Mk, denoted by αk

and βk, are drawn in dashed lines.

The second step is to take the components of the preimage of α ∪ β in W and on each funda-
mental domain Mk. Clearly, F−1

λ,2 (−2) consists of infinitely many points, denoted by qk, and each
one lying in a unique σk curve. On the other hand, using the inverse branches Lk (4.2), we get
exactly one preimage of α and one preimage of β in each domain Mk. We denote them by αk and
βk, respectively. By continuity, αk and βk are joined at the corresponding point qk. See Figure 5.
The components of the preimages of α and β in W are obtained as follows. Since Fλ,2 is a covering
map of degree 2 in W , components of the preimages consist of four curves denoted by αi

W and
βi

W , i = 1, 2, extending to +∞ through the lower (i = 1) and upper (i = 2) arms of W .
The third step in the polynomial–like mapping construction is to define the sets Ur and Vr

of the statement with the desired properties. We denote by Γ the connected component of the
complement of α ∪ β containing the origin. The proof splits in two possible scenarios depending
on the location of Fλ,2(−2) with respect of Γ.

Case 1. Fλ,2(−2) 6∈ Γ. Far to the right, the relative position of α and β with respect to
{α1

W , β1
W , α2

W , β2
W } when going from bottom to top of Γ is either {α,α1

W , β1
W , β, α2

W , β2
W } if Fλ,2(−2)

lies below α, or {α1
W , β1

W , α, α2
W , β2

W , β} if Fλ,2(−2) lies above β. To see the claim suppose that

15



Fλ,2(−2) lies below α (the second case is similar). Let L be a vertical segment far to the right and
contained in the lower arm of W. By construction, its bottom and top endpoints are in σ−2 and
σ−1 respectively, so Fλ,2(L) is a simple curve that surrounds the origin starting and ending at R

−.
As we move in L from bottom to top, Fλ,2(L) travels in a counterclockwise direction, cutting γ, α
and β in this order. Their components of the preimage located in the lower arm of W are ordered
as α,α1

W and β1
W . For the upper arm of W the arguments are similar. See Figure 6(a).

For any r > 0 sufficiently large, define Vr = {z ∈ Γ | Re z < r} and let Ur be the con-
nected component of the preimage of Vr containing the origin. Then Ur is bounded by pieces
of {α1

W , β1
W , α−1, β−1} plus two (almost) vertical lines. Clearly U r ⊂ Vr and Fλ,2 maps ∂Ur onto

∂Vr in a 2–to–1 fashion. Thus (Fλ,2, Ur, Vr) is a desired polynomial–like map of degree 2. In
Figure 7(a) we illustrate the sets Ur and Vr.

 

 

W

−2

Fλ,2(−2)

β

α

β2
W

α2
W

β1
W

α1
W

γ

(a) Case 1 in the proof of Proposition 4.1.

 

 

W

−2
Fλ,2(−2)

β

α

β2
W

α2
W

β1
W

α1
W

γ

(b) Case 2 in the proof of Proposition 4.1.

Figure 6: Sketch of the relative positions of α and β with respect to their component of the
preimage in W .

Case 2. Fλ,2(−2) ∈ Γ. Since Fλ,2(−2) belongs to the Fatou set and takes two iterates to be in
A∗(0), we have that Fλ,2(−2) must belong to one of the two connected components of F−2

λ,2 (A∗(0))

in Γ. In general for each k ≥ 2 and m ≥ 2, F−k
λ,m(A∗(0)) consists of finitely many unbounded and

connected components extending towards ∞ when m is even, or −∞ when m is odd. We name
these type of components fingers.

Denote by F the finger where γ is located. Then, far to the right, the relative position of
the curves α and β with respect to {α1

W , β1
W , α2

W , α2
W } when going from bottom to top of Γ is

{α1
W , α, β1

W , α2
W , β, β2

W } (regardless of the finger where γ is located). See Figure 6(b). The above
claim follows easily from similar arguments as in Case 1.
Let r be a positive real number such that r > 1 + Re (Fλ,2(−2)) and γ ∩ (Re(z) = r) is a unique
point (see the definition of γ). We define Bε(γ) to be a closed ε−neighborhood of a piece of γ,
completely contained in F . More precisely,

Bε(γ) = {z ∈ F |Re (z) ≤ r and dist(z, γ) ≤ ε}, (4.3)
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(a) Polynomial–like construction for m = 2 and
k = 3 when Fλ,2(−2) 6∈ Γ.
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W

−2

F (−2)

β

γ

α

α2
W

β1
W

Ur

Vr

Fλ,2

(b) Polynomial–like construction for m = 2 and
k = 3 when Fλ,2(−2) ∈ Γ.

Figure 7: Domains Ur and Vr in Proposition 4.1
.

where dist(z, γ) denotes the natural distance between compact sets. If ε is small enough, we have
that Bε(γ) is simply connected.
Let now Vr = {z ∈ Γ | Re(z) < r} \ Bε(γ) and define Ur as the connected component of the
preimage of Vr containing the origin. We claim that, for r > 0 large enough, (Fλ,2, Ur, Vr) is
the desired polynomial–like mapping of degree 2. To see this, we study the preimage of the
boundaries of Vr in Γ. The preimage of the arcs of α and β that bound Vr are arcs of the curves
β1

W , α−1, β−1 and α2
W . The preimage of Bε(γ) in Γ has two connected components: one is a

connected component contained in M−1, and the other is a connected component contained in
the intersection of Γ with a small neighbourhood of a piece of α ∪ β. Finally, the preimage of
Γ∩{z | Re z = r} is the suitable union of (almost) vertical lines that bound Ur from the right. We
illustrate this construction in Figure 7(b). Since Ur ⊂ Vr and the map Fλ,2 : Ur → Vr sends ∂Ur to
∂Vr with degree 2, we conclude that for r large enough, the triple (Fλ,2, Ur, Vr) is a polynomial–like
mapping of degree 2.

Our final step is to show that the filled Julia set of (Fλ,2, Ur, Vr) is a quasi–disk. By the
Straightening Theorem, [12], there exists a quasi–conformal mapping ϕ that conjugates Fλ,2 to
a polynomial Q of degree 2 on the set Ur. That is (ϕ ◦ Fλ,2 ◦ ϕ−1)(z) = Q(z) for all z ∈ Ur.
Since z = 0 is a superattracting fixed point for Fλ,2 and ϕ is a conjugacy, we have that z = 0 is
superattracting for Q. Hence, after perhaps a holomorphic change of variables, we may assume
that Q(z) = z2. Thus, the filled Julia set of (Fλ,2, Ur, Vr) given by

K(Fλ,2) = {z ∈ Ur |F
n
λ,2(z) ∈ Ur for all n} =

⋂

n≥0

F−n
λ,2 (Ur),

coincides with A∗(0) and is the image under the quasi–conformal map ϕ−1 of the closed unit disk.
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So ∂A∗(0) is a quasi–circle. Using ϕ we can parametrize ∂A∗(0) so that any point z ∈ ∂A∗(0) can
be written as z = ϕ−1(θ), or simply z = zθ, for some θ ∈ S

1. Since ϕ conjugates Fλ,2 on ∂A∗(0)
with the map θ 7→ 2θ on S

1, we have that Fλ,2(zθ) = z2θ.

Remark 4.2. An important consequence of the previous proposition is that the only points in Ur

that never escape under iteration are precisely A∗
λ,2(0), a quasi–disk. Since J(Fλ,2) is a pinched

Cantor bouquet it follows that all points in ∂A∗
λ,2(0) must be endpoints of at least one hair.

What remains to prove involves the use of symbolic dynamics that will allow us to show how
pinchings occur at the boundary of A∗

λ,2(0). As stated in the theorem, this depends on the relative
position of Fλ,2(−2) with respect to the boundaries of Γ.

Case 1. Fλ,2(−2) /∈ Γ. Fix r large enough and let Ω be the connected component of the
preimage of Γ containing 0. Observe that Ω is the union of Ur and two strips Hi, i = 0, 1
extending to infinity in the asymptotic direction. Also ∂Ω (as well as ∂Γ) belongs to the Fatou
set. On the right hand side boundary of Ur (equivalently, the left hand side boundary of Hi) there
are infinitely many hairs crossing it and landing at some endpoint inside Ur. This follows from the
topological structure of the Julia set and the existence of infinitely many endpoints inside Ur.

Next step is to characterize hairs with endpoints in the boundary of A∗(0). If one of those hairs
has an endpoint in Ur but not in ∂A∗(0), it must eventually escape from Ω since the only points in
the Julia set with forward orbit inside Ur are the points in ∂A∗(0) (see Remark 4.2). Consequently
the hairs with endpoints in ∂A∗(0) must remain under forward iteration in Ω and their tails must
also remain in H0 ∪H1. Since each Hi maps one–to–one into Γ \ Vr we can associated to each of
those tails an itinerary s ∈ Σ2 in the natural way (0 for H0 and 1 for H1) and viceversa, i.e., for
each sequence s ∈ Σ2 there is a unique tail in Ω with this itinerary. The existence and uniqueness
of the tail with a prescribed itinerary follow from the fact that the image by Fλ,2(−2) of the left
hand side boundary of Hi cut across each Hi in an almost vertical line, for all r sufficiently large.
See [11] (proof of Theorem 3.3), or Proposition 1.2 in [9] for details.

To finish the proof, note that each of the endpoints in ∂A∗(0) has dynamics governed by θ 7→ 2θ
and the tails have associated a unique sequence s ∈ Σ2. This will determine how many tails land
on each endpoint. Indeed, there are two fixed tails associated to 0̄ and 1̄, and a unique fixed point
in ∂A∗(0), so both fixed tails must land on it giving two pinched hairs. The preimage of these
hairs in Ω contains two new hairs (with sequences 10̄ and 01̄) landing at the preimage point of the
fixed point in ∂A∗(0), thus again given a pinching. Clearly, this type of pinching occurs at each
point in the backward orbit of the fixed point restricted to ∂A∗(0).

Any other point not contained in the backward orbit of the fixed point has a unique tail landing
on it. To see this, let z ∈ ∂A∗(0) be one of those points and set θ = ϕ(z). Then, the itinerary for
θ in S

1 is given by its binary expansion whereas from the construction above, the tail landing on z
must share the same itinerary with respect to H0 and H1. Since there is a unique tail associated
to an itinerary s ∈ Σ2, the result follows.
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Case 2. Fλ,2(−2) ∈ Γ. Select r > 0 large enough and let Ω be the connected component of
the preimage of Γ containing 0, minus an ε–neighbourhood of a piece of γ, as in 4.3. Observe
that Ω is the union of Ur and four arms Hi, i = 0, . . . , 3 extending to infinity in the asymptotic
direction. We know that on the right hand side boundary of Ur there are infinitely hairs crossing
it and landing at some endpoint inside Ur, since the boundary of Ω belongs to the Fatou set. As
before, the hairs with an endpoint in Ur but not in ∂A∗(0) must eventually escape under forward
iteration from Ω, and hairs with endpoint in ∂A∗(0) must remain in Ω, so their tails must remain
in ∪Hi. However, in this case, the dynamics on those hairs are governed by a subshift of four
symbols, since each strip fails to cover ∪Hi under the action of Fλ,2.

Labeling the strips in an increasing order from bottom to top, the transition matrix of the
subshift is given by

A =









0 0 0 1
1 1 1 0
0 0 0 1
1 1 1 0









where aij = 1 (respectively, aij = 0) means the strip Hi covers (respectively, does not cover) Hj.
For instance, there is a unique fixed sequence 1 and four period two sequences given by 03, 30, 23
and 32. Denote by ΣA the space of allowed sequences generated by A.

As before, we can associate to any tail in ∪Hi with endpoint in ∂A∗(0) a sequence in ΣA and
viceversa. To finish the proof, note that each of the endpoints in ∂A∗(0) has dynamics governed by
θ 7→ 2θ. We construct a partition in ∂A∗(0) to determine how many tails land on each endpoint.

From the transition matrix its easy to see the existence of a unique fixed tail (with itinerary
1̄) that in turn, must land at the unique fixed point in ∂A∗(0). Now, we can compute periodic
points of period two in ∂A∗(0). Under the angle doubling map restricted to S

1, these point are
θ = 1/3 and θ = 2/3. Using the conjugacy ϕ−1, denote the corresponding 2–periodic points in
∂A∗(0) by z1/3 and z2/3. As mentioned before, the four tails of period two have sequences 03, 30,
23 and 32. An easy combinatorial argument shows that the tails associated to 03 and 32 land at a
single endpoint of period two whereas the tails associated to 30 and 23 land in the other periodic
point. The set of periodic points of period two and their preimages, namely z1/6, z1/3, z2/3 and
z5/6 defines the desired partition on ∂A∗(0). To match the sequences in ΣA with this partition, we
label them in the following way: traveling along ∂A∗(0) in a counterclockwise direction, associate
the symbol 0 to the arc joining z2/3 and z5/6, the symbol 1 to the arc joining z5/6 and z1/6, 2 to the
arc joining z1/6 and z1/3, and 3 to the arc joining z1/3 and z2/3. Is left to the reader to check that
under Fλ,2 the arc with symbol 0 covers the arc with symbol 3 and so on. Hence, the transition
matrix for this partition is exactly A.

As before, each point not in the backward orbits of z1/3 and z2/3 has a unique itinerary s ∈ ΣA,
and by uniqueness of the tails, this point is the landing point of a unique tail associated to s. This
concludes the proof of Theorem A.
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5 Proof of Theorem B

In this section we prove our result concerning accessibility of points in the Julia set. Part (a) follows
directly from Theorem C in [2], since when λ belongs to C0

m, Fλ,m has a completely invariant basin
of attraction.

Part (b) is shown as follows. First, we will show that in out case a point z0 in the Julia set is
accessible if and only if it belongs to the boundary of some Fatou component. Assume first that z0
belongs to the boundary of some connected component U in the Fatou set. From the polynomial–
like construction (see Proposition 4.1) U is a quasi–disk, so there exists a quasi–conformal map
ϕ : U → D. Setting θ0 = Arg(ϕ(z0)), the curve γ(t) = ϕ−1(t · eiθ0), t ∈ [0, 1), is an accessible path
for z0. The reverse implication is straightforward.

There are points in J(Fλ,m) that are not accessible, as they do not belong to the boundary of
any connected component of the Fatou set. In particular any point whose orbit escapes to infinity
is non–accessible, and those points are dense in the Julia set. Moreover, any repelling periodic
point that does not belong to ∂A∗(0) must be non–accessible. In fact, we show that for any
integer N ≥ 0, there exists a non–accessible and forward invariant N -Cantor bouquet contained
in J(Fλ,m).

We use the same notation as in Proposition 4.1. Consider the components of the preimage
of α ∪ β in all the fundamental domains outside Γ ∪ W . These components of the preimage
bound simply connected C–shaped regions, denoted by Dk, and induce a natural alphabet A =
{±1,±2, . . . ,±k, . . .}. For each natural number N , the set CN given by

CN = {z ∈ J(Fλ,m) |Fn
λ,m(z) ∈

⋃

|k|≤N

Dk for all n ∈ Z and k ∈ A},

is an N -Cantor bouquet of non–accessible points. The fundamental domains Dk, with k ∈ A, |k| ≤
N define in a natural way an itinerary s = (s0, s1, . . .), si ∈ A and |si| ≤ N for all points in CN . For
a given s, the only point with bounded orbit that follows s is the endpoint, while those points with
unbounded orbit and itinerary s form the tail of the hair. The construction mimics the N–Cantor
bouquet construction described in Section 2.

Since all accessible points must lie in the boundary of a Fatou component (and thus eventually
enter the domain Γ ∪W under iteration), is now straightforward to see that all points in CN are
non–accessible.

6 Generalizations

In the proof of Theorem A we used two main tools: polynomial–like construction and symbolic
dynamics. In order to generalize our results for any m ≥ 2 and k ≥ 2, we start with the following
proposition.

Proposition 6.1. Let m ≥ 2, k ≥ 2, r > 0 large enough and assume that λ ∈ Ck
m. Then, there

exist Ur and Vr open, bounded and simply connected domains of C, such that 0 ∈ Ur ⊂ V and
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satisfying that (Fλ,m, Ur, Vr) is a polynomial–like mapping of degree m. Moreover, the filled Julia

set of (Fλ,m, Ur, Vr) is a quasi–disk and coincides with A∗
λ,m(0).

The proof of the above result splits into two cases depending once more on the relative position
of the free critical value with respect to Γ. In the case when Fλ,m(−m) does not lie in Γ, the same
arguments as in Proposition 4.1 follow through. Thus, under the dynamics of θ 7→ mθ, there exist
m− 1 fixed points in ∂A∗

λ,m(0). At the same time, there are m fixed tails that must land at those
fixed points. Following the same arguments as in Theorem A, case (i), we also have

Theorem C Let m ≥ 2, k ≥ 2 and assume that λ ∈ Ck
m and Fλ,m(−m) /∈ Γ. Then the Julia set

J(Fλ,m) is a pinched Cantor bouquet. The boundary of A∗(0) is a quasi-circle and each one of its
points is an endpoint. Fλ,m on ∂A∗(0) is conjugate to θ 7→ mθ on the unit circle. Moreover, each
point in ∂A∗(0) is a landing point of a unique hair, except for a single fixed point in ∂A∗(0) and
all its preimages, which are endpoints of exactly two hairs.

In the case when Fλ,m(−m) lies in Γ, the arguments of the polynomial–like construction are
again similar, nevertheless we must take into account the orbit of the critical value with respect
to Γ. Let k′ denote the number of iterates that takes Fλ,m(−m) to leave Γ for the first time.
Since λ is a capture parameter, 1 ≤ k′ ≤ k − 2. Then, after removing k′ ε–neighborhoods around
γ, Fλ,m(γ), . . . , F k′−1

λ,m (γ) in the definition of Vr, the argument now follows as in Proposition 4.1. The
pinchings of the corresponding Cantor bouquet are determined by a transition matrix associated
to this construction.
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