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Abstract. We consider the family of transcendental entire maps given by fa(z) =
a(z−(1−a)) exp(z+a) where a is a complex parameter. Every map has a superattracting
fixed point at z = −a and an asymptotic value at z = 0. For a > 1 the Julia set of fa is
known to be homeomorphic to the Sierpiński universal curve, thus containing embedded
copies of any one-dimensional plane continuum. In this paper we study subcontinua of
the Julia set that can be defined in a combinatorial manner. In particular, we show the
existence of non-landing hairs with prescribed combinatorics embedded in the Julia set
for all parameters a ≥ 3. We also study the relation between non-landing hairs and the
immediate basin of attraction of z = −a. Even though each non-landing hair accumulates
on the boundary of the immediate basin at a single point, its closure is an indecomposable
subcontinuum of the Julia set.

1. Introduction. Let f : C → C be a transcendental entire map. The
Fatou set F(f) is the largest open set where iterates of f form a normal
family. Its complement in C is the Julia set J (f) and it is a non-empty
unbounded subset of the plane. When the set of singular values is bounded,
we say f is of bounded singular type and denote this class of maps by B.
It has been shown in [Ba] and [R1] that the Julia set of a hyperbolic map
in B contains uncountably many unbounded curves, usually known as hairs
[DT]. A hair is said to land if it is homeomorphic to the half-closed ray
[0,+∞). The point corresponding to t = 0 is known as the endpoint of
the hair. In contrast, if its accumulation set is a non-trivial continuum, we
obtain a non-landing hair.
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