Non-landing hairs in Sierpiński curve Julia sets of transcendental entire maps

by

Antonio Garijo (Tarragona), Xavier Jarque (Tarragona) and Mónica Moreno Rocha (Guanajuato)

Abstract. We consider the family of transcendental entire maps given by $f_a(z) = a(z-(1-a))\exp(z+a)$ where a is a complex parameter. Every map has a superattracting fixed point at z = -a and an asymptotic value at z = 0. For a > 1 the Julia set of f_a is known to be homeomorphic to the Sierpiński universal curve, thus containing embedded copies of any one-dimensional plane continuum. In this paper we study subcontinua of the Julia set that can be defined in a combinatorial manner. In particular, we show the existence of non-landing hairs with prescribed combinatorics embedded in the Julia set for all parameters $a \ge 3$. We also study the relation between non-landing hairs and the immediate basin of attraction of z = -a. Even though each non-landing hair accumulates on the boundary of the immediate basin at a single point, its closure is an indecomposable subcontinuum of the Julia set.

1. Introduction. Let $f : \mathbb{C} \to \mathbb{C}$ be a transcendental entire map. The *Fatou set* $\mathcal{F}(f)$ is the largest open set where iterates of f form a normal family. Its complement in \mathbb{C} is the *Julia set* $\mathcal{J}(f)$ and it is a non-empty unbounded subset of the plane. When the set of singular values is bounded, we say f is of *bounded singular type* and denote this class of maps by \mathcal{B} . It has been shown in [Ba] and [R1] that the Julia set of a hyperbolic map in \mathcal{B} contains uncountably many unbounded curves, usually known as *hairs* [DT]. A hair is said to *land* if it is homeomorphic to the half-closed ray $[0, +\infty)$. The point corresponding to t = 0 is known as the *endpoint* of the hair. In contrast, if its accumulation set is a non-trivial continuum, we obtain a *non-landing* hair.

²⁰¹⁰ Mathematics Subject Classification: Primary 37F10; Secondary 37F20.

 $Key \ words \ and \ phrases:$ transcendental entire maps, Julia set, non-landing hairs, indecomposable continua.