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AN EFFECTIVE ALGORITHM TO COMPUTE MANDELBROT SETS IN

PARAMETER PLANES

ANTONIO GARIJO, XAVIER JARQUE, AND JORDI VILLADELPRAT

Abstract. In 2000 McMullen [McM00] proved that copies of generalized Mandelbrot set
are dense in the bifurcation locus for generic families of rational maps. We develop an algo-
rithm to an effective computation of the location and size of these generalized Mandelbrot
sets in parameter space. We illustrate the effectiveness of the algorithm by applying it to
concrete families of rational and entire maps.

Keywords: Holomorphic dynamics, Julia and Fatou sets, bifurcation locus, Misiurewicz
bifurcation, Mandelbrot set, Algorithm.

In non linear science two fruitful ideas has been considered over the years to have a better
understanding of the dynamics of mathematical models. On the one hand, the decomposition
of the phase space of a particular dynamical system into several pieces, so that the restricted
dynamics is more tractable; and on the other hand, the exploration of the changes that occur
in the phase space under small perturbation of the original dynamical system. Under the
general framework of smooth dynamical systems these ideas lead, respectively, to the study
of invariant manifolds and bifurcation diagrams.

Accordingly, when working on mathematical models it is of high interest to know in ad-
vance, before studding a concrete dynamical space, the parameters for which the model may
present undesirable dynamics. In other words, we want to characterize in the parameter space
the set of parameters for which in dynamical plane contains open sets of initial conditions
incompatible with the dynamics we are interested with.

In holomorphic dynamics, i.e. discrete dynamical systems generated by the iterates of
holomorphic maps, the phase space is the complex plane and it is decomposed into two
completely invariant sets: the Fatou and the Julia set. Moreover inside the Julia set of many
rational and entire maps is very common to observe copies of the Julia set of the quadratic
family. In a similar way in the parameter space we distinguish between the hyperbolic and
the bifurcation parameters, and is very common to observe copies of the Mandelbrot set in
the parameter space of many families of rational and entire maps.

In this sense the building block in holomorphic dynamics is the Quadratic family given by
Qc(z) = z2+ξ where ξ is a complex parameter. The phase space or dynamical plane is divided
into two completely invariant subsets: the Fatou set and the Julia set. The Fatou set, denoted
by F(Qξ), is defined as the set of points z0 where the family of iterates {Qnξ (z0) , n ∈ N} is

normal in some neighbourhood of z0, and its complement is the Julia set, denoted by J (Qξ).
The Fatou set is formed by points with tame dynamics while its complement, the Julia set,
is fulfilled by points with chaotic dynamics.

For the quadratic family, the central object of the parameter plane, or ξ−plane, is the
Mandelbrot set (see Figure 1(a)), denoted by M2, defined as the set of ξ−parameters such
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that the critical orbit {Qnξ (0)}n≥0 remains bounded as n tends to ∞ (see also the definition

of Md below). Easily, one can show that the Mandelbrot set is a compact set. Each one of
the black bubbles is called a hyperbolic component of M2 and corresponds to ξ-parameters for
which the dynamical plane has an attracting periodic orbit of the same period. Moreover,
in each bubble the Julia set moves continuously with respect to ξ, having a (unique) center
for which the corresponding attracting periodic orbit has zero multiplier, i.e., it is super-
attracting. In contrast, the bifurcation parameters, consists of the set of parameters ξ such
that the Julia set does not move continuously respect to ξ. The Misiurewicz parameters, i.e.,
ξ−parameters such the critical orbit (the orbit of z = 0) lands in a repelling periodic orbit,
form a dense subset of ∂M2. Proving that the interior of the Mandelbrot set consists only
on hyperbolic parameters is still a challenged open question. For an introduction to complex
dynamics and the quadratic family we refer to [DH84, DH85a, McM94, Mil06, CG93, Tan00]
and references therein.

For more general (uni-parametric) families of holomorphic maps a similar approach has
been considered to split the dynamical plane into the Fatou and the Julia sets as well as to
define the bifurcation locus. In this situation is very common to observe in the dynamical
plane copies of the Julia set of the quadratic family and in the parameter plane copies of the
Mandelbrot set. One of the cornerstone tools for this assertion is the theory of polynomial-like
mappings, developed by A. Douady and J.H. Hubbard in the landmark paper [DH85b]. They
rigorously explained why it is so common to observe, in computer experiments, homeomorphic
copies of polynomial Julia set in dynamical planes of rational or transcendental families, and
small homeomorphic copies of (generalized) Mandelbrot set in the corresponding parameter
planes. Remember that for a given d ≥ 2 the generalized Mandelbrot set is defined as

Md = {ξ ∈ C ,J (zd + ξ) is connected}.

In Figure 1(a)-(b) we show the parameter planes of zd + ξ for d = 2 and d = 3, respectively.
The black bubbles, as before, are hyperbolic components and the boundary of Md is the
bifurcation locus.

This central contribution due to A. Douady and J.H. Hubbard has been, and it is still
being, applied widely. In 2000 C. Mcmullen [McM00] push forward the arguments above by
showing that the existence of polynomial dynamics in families of rational maps is, in fact,
universal. More precisely, he proved that small generalized Mandelbrot sets are dense in the
bifurcation locus for generic families of rational maps, and so pieces of the Julia set for those
non-polynomial maps resembles the Julia set of polynomials.

This result has important theoretical implications. For instance, let P be a polynomial of
degree d ≥ 2. A natural root finding algorithm to solve the equation P (z) = 0 is given by the
Newton map

NP (z) := z − P (z)

P ′(z)
.

It is well known that the zeros of P correspond bijectively to the fixed points of NP which
are all (locally) attracting. Roughly speaking, if there are no other stable dynamics for
NP different from the attracting basins of the attracting fixed points, we can ensure that
Nn
P (z0) will numerically converge to one of the roots of P for almost all initial conditions

z0 ∈ C. However, if other stable dynamics coexist in the dynamical plane this will no longer
be true. Precisely the existence of these bad initial conditions in dynamical plane is in direct
correspondence with the existence of generalized Mandelbrot sets in parameter plane. So,
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(b) The parameter plane of z3 + ξ.

Figure 1. Mandelbrot sets of degree d = 2 and d = 3.

the natural question is where are they? Where, in parameter plane, are located the universal
Mandelbrot sets predicted by Mcmullen?

The main goal of this article is to give an effective algorithm to compute hyperbolic com-
ponents (location and size) of the copies of the Mandelbrot set lying in the parameter plane
of a uni-parametric holomorphic family (see section 2). It is worth to be noticed that to
implement the algorithm it is not required to run over Mcmullen’s paper (see section 1), and,
more interesting, can be applied to general holomorphic, not necessary rational, maps. We
illustrate, by means of different sort of examples, the use of the algorithm in Section 3.

1. Small Mandelbrot sets in the bifurcation locus

To provide a solid theoretical content to the algorithm we will describe in next section,
we firstly discuss the key results in [McM00]. Even though we will apply the algorithm to
transcendental maps we use a rational framework, as it is done in [McM00], for the theoretical
discussion. At the end of the section we will briefly argue how to deal with the general scenario.

We consider a holomorphic family of rational maps over the unit disc D as a map

f : D× Ĉ → Ĉ
(t, z) → ft(z)

requiring that for each parameter t ∈ D, the rational map ft : Ĉ→ Ĉ satisfies deg(ft) ≥ 2. The
Bifurcation locus, denoted in what follows by B(f) ⊂ D, it is defined as a set of t-parameters
such that the Julia set J (ft) does not vary continuously (in the Hausdorff topology) over
any neighbourhood of t. Without lost of generality we assume that 0 ∈ B(f). Indeed, we
can always arrange the base point using the change of parameters t := t0 + t. See Subsection
3.2. A local bifurcation is a holomorphic family of rational maps ft over the unit disc such
that t = 0 ∈ B(f), and for simplicity we say a local bifurcation f . A point ct ∈ C such that
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f ′t(ct) = 0 it is called a critical point of ft, and its image vt := ft(ct) it is called a critical
value of ft.

The following definitions and proposition play a crucial role in the description of B(f) (see
details in [McM00]).

Definition 1. Let f be a local bifurcation. A marked critical point c is a holomorphic map
c : D → Ĉ such that f ′t(ct) = 0. To fix the notation we will write (f, c) as the holomorphic
family of rational maps with a marked critical point. We say that the marked critical point
c of f is active if the sequence of iterates {fnt (ct)}n≥0 fails to be a normal family in any
neighbourhood of t = 0.

Definition 2. Let f be a local bifurcation. We say that (f, c) is a (degree d) Misiurewicz
bifurcation if the following conditions hold.

M1. f0(c0) is a repelling fixed-point of f0, with multiplier λ0 := f ′0 (f0 (c0));
M2. c0 is unramified for f0 (that is, c0 has infinitely backward images eventually mapping

to c0 with degree 1);
M3. ft(ct) is not a fixed point of ft for some t (c active); and
M4. deg(ft, ct) = d for all t sufficiently small (the degree of the critical point is locally

constant).

Proposition 1.1. For any local bifurcation (f, c) with c active and c0 unramifed, there is a
base change and an n > 0 such that (fn, c) is a (degree d) Misiurewicz bifurcation.

In [McM00] Mcmullen deeply studies the (degree d) Misiurewicz bifurcations, by means of
the theory of polynomial-like maps, to show that the bifurcation locus B(f) ⊂ D of any local
bifurcation is either empty or contains the quasiconformal image of ∂Md for some d. Moreover,
since arguments are of local character and Misiurevicz points are dense in the bifurcation
locus, he concludes that small generalized Mandelbrot set are dense in the bifurcation locus
(Theorem 1.1 and Corollary 1.2 in [McM00]). See Figure 2 where tn are the center of the
main hyperbolic component of baby Mandelbrot sets converging to 0.

He shows that any Misiurewicz bifurcation produces a cascade of generalized Mandelbrot
sets (corresponding to values of tn tending to t = 0). The precise statement is given below.
We use diam(A) to denote the diameter of a set A ⊂ C and an = O(bn) if |an| < C|bn| for
some constant C > 0.

t2t3t4t50

(a) Cascade of polynomial-like mappings.

t5t6t7t8· · ·0

(b) Cascade of polynomial-like mappings.

Figure 2. Parameter plane of the Newton map Nt (Equation 8). Misiurewicz bi-
furcation at t = 0 of degree 2 for the Newton map Nt . For details see subsection
3.1.

Theorem 1.2 (Theorem 4.1 in [McM00]). Let (f, c) be a (degree d) Misiurewicz bifurcation.
Then, the parameter space D contains quasiconformal copies Mn

d of the degree d Mandelbrot
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c0 p0 := f0 (c0)

(a)

ct

pt

ft (ct) f2t (ct)
. . .

(b)

fn−1
t (ct)

Figure 3. Sketch of the construction of a superattracting orbit of period n near a
Misiurewicz bifurcation.

set Md, converging to the origin, with ∂Mn
d contained in the bifurcation locus B(f). More

precisely, for all n� 0 there are homeomorphisms

φn : Md →Mn
d ⊂ D

such that:

(a) fnt is hybrid equivalent to zd + ξ whenever t = φn(ξ);

(b) d(0,Mn
d ) � |λ0|−n/r;

(c) diam(Mn
d )/d(0,Mn

d ) � |λ0|−n/(d−1);
(d) φn extends to a quasiconformal map of the plane with dilatation bounded by 1+O(εn);

and
(e) ψ−1

n ◦ φn(ξ) = ξ +O(εn), where ψn(ξ) = tn(1 + γnξ).

Although details in the proof of the above result are far from being straightforward, the
idea of the construction is quite simple and useful to define the algorithm in the next section.

Assume that we have a Misiurewicz bifurcation. For t = 0, the critical point c0 lands into
a repelling fixed point, so c0 7→ f0(c0) 7→ f0(c0) (see Figure 3(a)). Besides the dynamics of
f0 near f0(c0) is conformally conjugated to z → f0(c0) + λ0(z − f0(c0)), with |λ0| > 1 (see
[CG93] for details on linearizing coordinates).

For small values of t we have two crucial dynamical facts. On the one hand, the fixed point
p0 := f0(c0) moves continuously, that is, there exists pt such that p0 := f0(c0), ft(pt) = pt
and |λt| := |f ′t(pt)| > 1. On the other hand, because of condition M3, we can assume that
ft(ct) is not anymore a fixed point but, by continuity, ft(ct) is close to the repelling fixed
point pt. See Figure 3(b). We claim that for n large enough there exists a small t such
that fnt (ct) = ct and so we have created a periodic point with multiplier 0, so a parameter
corresponding to the center of the main cardioid of a generalized Mandelbrot set (degree
depending on the multiplicity of the critical point ct). To see the claim we observe that c0 is
unramified (infinitely many backward images) and p0 belongs to the Julia set, so there must
be a point b0 near p0 such that fn0 (b0) = c0 for n large. The value of the parameter r in
Theorem 1.2 (b) is equal to the multiplicity, in terms of the variable t, of the map ft(ct) at
t = 0; or in other words ft(ct) = f0(c0) +O(tr). For a complete proof se [McM00].

Remark 1. Since all arguments used in [McM00] are local we can extend those results to
other holomorphic families of non-rational maps, like transcendental entire.
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2. The algorithm

In this section we present an algorithm to compute the location and size of the small gener-
alized Mandelbrot sets in the bifurcation locus B(f) coming from the Misiurewicz bifurcation
using the estimations obtained in Theorem 1.2. Next we will effectively use the algorithm in
some examples.

We assume that (f, c) is a (degree d) Misiurewicz bifurcation. In order to be more precise
we denote the holomorphic family by f(t, z) := ft(z) to emphasize the dependence on the
parameter t and the variable z. In a similar way the marked critical point ct is given by the
holomorphic map c : D→ Ĉ, so we write ct = c(t). We define the following auxiliary maps,

(1) G0(t) = c(t) and Gk(t) = fk (t, c(t)) for k > 0,

that is Gk, k ≥ 0, is a function depending on t giving the k−th iterate of the critical point
c(t), for the corresponding map ft. We have the following recursive expression, for k ≥ 0,

(2) Gk+1(t) = fk+1 (t, c(t)) = f
(
t, fk (t, c(t))

)
= f (t, Gk(t)) .

Some computations show that

(3) G′0(t) = c′(t) and G′k+1(t) =
∂f

∂t
(t, Gk(t)) · 1 +

∂f

∂z
(t, Gk(t)) ·G′k(t), k > 0.

The center of the generalized Mandelbrot set Md of the family zd+ξ is the parameter ξ0 = 0,
so the center of Md corresponds to the polynomial zd having a superattracting fixed point at
the origin. See Figure 1. Similarly, we define the size of Md measuring the distance between
two concrete parameters in Md. In order to do this, we consider the distance, denoted by L,
between the center ξ0 of Md and a parameter ξ1 such that zd + ξ1 exhibits a superattracting
two cycle; thus L = |ξ0 − ξ1|. See also Figure 1. Easy computations show that there are
d − 1 possible choices for the parameter ξ1 given by d−1

√
−1. However, these d − 1 values

are symmetrically distributed around the origin with equal distance L = 1 to the origin.
By definition the center and the size of the generalized Mandelbrot set Md is cero and one,
respectively.

Since the definition of the center and the size of Md are in dynamical terms, we can easily
transfer these two definition to any small copy of Md.

Definition 3. Let Mn
d be a homeomorphic copy of Md (see Theorem 1.2). We define tn :=

φn(0), the center of Mn
d ; or equivalently, the parameter such that the marked critical point

c(tn) has a superattracting orbit of minimal period n, and sn := φn( d−1
√
−1) (we choose one

of the roots), a parameter such that the critical marked point c(sn) exhibits a superattracting
orbit of minimal period 2n. Then the size Mn

d is defined by Ln = |tn − sn|.
Under this notation the main concern is to numerically compute tn (location) and Ln (size)

of the small generalized Mandelbrot sets in the parameter plane of a holomorphic family.
However we notice that, at least theoretically, the computations of those values using the
auxiliary maps Gk’s is immediate.

Lemma 2.1. Assume the notation of Definition 3. The values of tn and sn are solutions of
the following system of equations

(4)

{
Gn(tn) = c(tn)
G2n(sn) = c(sn).

Of course Ln = |tn − sn|.
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Proof. The proof is straightforward since Gn(tn) = fn(tn, c(tn)) and G2n(sn) = f2n(sn, c(sn)).
�

We will use Newton’s method to numerically solve these equations. Nonetheless remember
that the small copies of the Mandelbrot set we are looking for are dense in the bifurcation locus
which implies that it is crucial to have an arbitrarily good accuracy on the initial condition in
order to find the correct parameters. In particular we notice that if tn solves the first equation,
then it also solves the second equation. To attain this goal we will use a continuation method.

Computing the location tn ofMn
d . We will compute tn recursively. Assume that we know

with high accuracy the location tn−1. From Theorem 1.2(b) we get

|tn| ≈ |λ0|−n/r , |tn−1| ≈ |λ0|−(n−1)/r

and we conclude |tn| ≈ |tn−1| · |λ0|−1/r. So, we numerically compute tn as a result of the
iterative process (Newton’s method applied to the equation Gn(t)− c(t) = 0) given by

(5) τ0 = tn−1 · λ−1/r
0

τk = τk−1 − (Gn(τk−1)− c(τk−1))/(G′n(τk−1)− c′(τk−1)), k ≥ 1.

We can numerically compute Gn(t) and G′n(t) using the recursive expressions obtained in
Equations (2) and (3).

Computing the size Ln ofMn
d . In this case we also assume that tn−1 and Ln−1 are known

values and we will compute the size Ln = |tn−sn| ofMn
d . As before we can obtain sn solving

(4) using the Newton’s method from an initial condition close to sn.
We firstly find an initial condition close to sn. In this case we identify the diameter ofMn

d
with Ln and using Theorem 1.2 estimations (b) and (c), we have that

Ln
Ln−1

≈ |tn|
|tn−1|

· |λ0|−n/(d−1)

|λ0|−(n−1)/(d−1)
=
|tn|
|tn−1|

· |λ0|−
1

d−1 ,

so, we conclude that sn ≈ tn
(

1 + Ln−1

tn−1
· |λ0|−

1
d−1 · d−1

√
−1

)
.

Finally, we use this initial condition to solve numerically the equation G2n(t) − c(t) = 0.
We construct the following sequence of iterates (ηk)k≥0 tending to sn as k tends to ∞,

(6)
η0 = tn

(
1 + Ln−1

tn−1
· λ
− 1

d−1

0 · d−1
√
−1

)
ηk = ηk−1 + (G2n(ηk−1)− c(ηk−1))/(G′2n(ηk−1)− c′(ηk−1)).

We remark that in the above algorithm to compute tn and Ln it is crucial to have an
accurate initial condition. Assuming that the rational map ft has degree d, we have that the
n−th iterate fnt has degree dn. Hence the number of solutions of (4) grows exponentially.

From the numerical computation point of view of the location tn and the size Ln we can also
visualize the results obtained in Theorem 1.2(b-c). Thus for example simple computations
show a linear relation between log (tn) and log (Ln) with respect to n. More precisely,

(7)
log (tn) ≈ α+ β · n where β = − log |λ0|/r
log (Ln) ≈ γ + δ · n where δ = − log |λ0|

(
1
d−1 + 1

r

)
.

In the next section we illustrate how to implement the above algorithm to compute the
location tn and the size Ln of a cascade of small copies of the Mandelbrot set Md for different
families covering rational as well as transcendental scenarios.
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3. Applications

3.1. Example 1. The Newton method. In this example we consider the Newton’s method
applied to the family of polynomials

pt (z) = zd+1 − tz + 1,

where d ≥ 2 and t is a complex parameter. To simplify the notation we will assume that d is
fixed; so, we erase the dependence on d. In fact the parameter d coincides with the degree of
the Newton method applied to the polynomial pt at the unique active critical point.

The expression of the Newton’s map applied to pt writes as

(8) Nt (z) = z − pt (z)

p′t (z)
= z − zd+1 − tz + 1

(d+ 1)zd − t
=

dzd+1 − 1

(d+ 1)zd − t
.

It is easy to check that the zeros of the polynomial pt are finite fixed points of Nt which are
always attracting. Moreover the point at ∞ is a repelling fixed point of Nt with multiplier
λ0 = (d + 1)/d (independently of t). We remark that given any holomorphic family of
polynomials qt of degree d+ 1 and their associated family of Newton’s method Nqt , then the
point of ∞ is the unique repelling fixed point of Nqt and its multiplier is always equal to
λ0 = (d+ 1)/d (independently of qt).

The critical points of Nt correspond to the zeros of the rational map

N ′t(z) =
pt(z)p

′′
t (z)

(p′t(z))
2
.

So the critical points of Nt are the zeros of pt and z = 0 since p′′t (z) = (d+1)dzd−1. The zeros
of the polynomial are fixed points of the Newton map, so there are not active critical points.
Therefore the origin is the unique active critical point of Nt and the degree of Nt at the origin
is equal to d, so deg (Nt, 0) = d. We observe that the marked critical point is c(t) = 0 for
all the values of t; and we can interpret the parameter d as the degree of this active critical
point. The corresponding critical value, Nt(0), is equal to 1/t. Furthermore at the parameter
t = 0 we have a Misiurewicz bifurcation of degree d (see Definition 4). In Figure 4 we show
the parameter plane of the Newton map for different values of d.

The hyperbolic components in the t-parameter plane are the open subsets of C in which
the unique active critical point c(t) = 0 either eventually map to one of the immediate basin
of attraction corresponding to one of the roots of pt or it has its own hyperbolic dynamics
associated to an attracting periodic point of period greater than one. Of course, the bifur-
cation locus corresponds to the union of all boundaries of those components and possible
accumulating points, see Figure 4. For a detailed study of the dynamical system given by (8)
we cite [CGJV14].

We choose this example for several reasons. Firstly, there is only one active critical point,
c(t) = 0, and changing the value of the parameter d ≥ 2 the active critical point has local
degree d. Thus, changing the value of the parameter d we find out generalized Mandelbrot
setsMd densely appearing in the bifurcation locus of of Nt (see Figure 4). Moreover, Nt has a
Misiurewicz bifurcation at t = 0 of degree d (see Figure 2). Secondly, and more important, we
claim that the family Nt can be considered as a model for the study of Misiurewicz bifurcations
for Newton’s method applied to arbitrary families of polynomials. To see the claim, suppose
that qt is a family of polynomials of degree d+ 1 and we denote by Nqt the Newton’s method
associated to qt. Assume, without lost of generality, that t = 0 is a Misiurewicz bifurcation
of some degree. As we already explain the unique repelling fixed point of Nqt is located at ∞
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(a) The parameter plane for d = 2. (b) Zoom of (a).

(c) The parameter plane for d = 3. (d) Zoom of (c).

Figure 4. Different parameter planes of Nt for two values of the parameter d.

and its multiplier, λ0 = (d + 1)/d, coincides with the multiplier of the family Nt. But from
Theorem 1.2(b-c) this universal multiplier controls the location and the size of the cascade of
the generalized Mandelbrot sets tending to t = 0 that appears in the parameter plane. This
phenomenon explain why the parameter plane of two Newton’s method applied to different
families of polynomials of the same degree look like so similar.

Going back to Nt, remember that it has a Misiurewicz bifurcation at t = 0 of degree d. So
we have in the parameter plane of Nt a cascade of generalized Mandelbrot sets, denoted by
Mn

d where n denotes the period of the attracting cycle in the main cardioid, tending to the
Misiurewicz bifurcation parameter, t = 0. We denote tn and Ln the location and size of the
baby Mandelbrot set Mn

d of period n. Applying the algorithm developed in section 2 we can
compute numerically the centers and the size of these baby Mandelbrot sets. In Table 3.1 we
show these values for n ≤ 25 when d = 2 and d = 3. In Figure 2 we also plot the first terms
of this sequence for d = 2.
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d = 2 d = 2 d = 3 d = 3

Period n Location tn Size Ln Location tn Size Ln

2 1.259921050 1.82397728 ·10−2 1.316074013 2.40997622 ·10−2

3 0.765955195 1.17992525·10−2 0.916566576 2.26459898·10−2

4 0.481413938 5.91059457·10−3 0.653403073 1.65675678 ·10−2

5 0.309653924 2.77393767·10−3 0.474076799 1.14015617·10−2

6 0.201928044 1.26947908·10−3 0.347781941 7.66436441·10−3

7 0.132762229 5.73984187·10−4 0.256914343 5.09179360·10−3

8 8.772559252·10−2 2.57817423·10−4 0.190650421 3.35928347·10−3

9 5.814830777·10−2 1.15357132·10−4 0.141908798 2.20632049·10−3

10 3.862008787·10−2 5.14925041·10−5 0.105850492 1.44463194·10−3

11 2.568314590·10−2 2.29504099·10−5 7.907129190 ·10−2 9.43859243·10−4

12 1.709415373·10−2 1.02191826·10−5 5.912954709·10−2 6.15720590·10−4

13 1.138377583·10−2 4.54744711·10−6 4.425102165·10−2 4.01208952·10−4

14 7.583732763·10−3 2.02273525·10−6 3.313488345·10−2 2.61215381·10−4

15 5.053407225·10−3 8.99480984·10−7 2.482142214·10−2 1.69966087·10−4

16 3.367867386·10−3 3.99912962·10−7 1.859945698·10−2 1.10542637·10−4

17 2.244769739·10−3 1.77781615·10−7 1.394029959 ·10−2 7.18706781·10−5

18 1.496302176·10−3 7.90266424·10−8 1.045001811·10−2 4.67159515·10−5

19 9.974410761·10−4 3.51266814·10−8 7.834593604 ·10−3 3.03597177·10−5

20 6.649190879·10−4 1.56129631·10−8 5.874306375·10−3 1.97273977·10−5

21 4.432608954·10−4 6.93942194·10−9 4.404809479·10−3 1.28173032 ·10−5

22 2.954990445·10−4 3.08428448·10−9 3.303090086·10−3 8.32702141·10−6

23 1.969957106·10−4 1.37082183·10−9 2.477027012·10−3 5.40950304·10−6

24 1.313288506·10−4 6.09262656·10−10 1.857606938 ·10−3 3.51403497·10−6

25 8.755184568·10−5 2.70776582·10−10 1.393113383·10−3 2.28265653·10−6

Table 1. Location tn and size Ln of the Mandelbrot setsMn
2 tending to t = 0

for the family Nt with d = 2 and d = 3. See Figure 2.

Another way to visualise the output of these numerical computations is to use Theorem
1.2 and (7). From there we have

|tn| ' C |λ0|−n/r
|Ln| ' D |λ0|−n/r−n/(d−1),

or equivalently,

log |tn| ' log(C)− log |λ0|
r · n

log |Ln| ' log(D)− log |λ0|
(

1
r + 1

d−1

)
· n.

The above expressions can be expressed as a linear regressions between the logarithm of the
location and size ofMn

d and n, respectively. We plot in Figure 5 the results of the numerical
computation of tn and Ln for different values of the parameter d. In both cases, subfigures
(a) and (b), the x-axis correspond to the period n of the small Mandelbrot setMn

d , while the
y−axis corresponds to log |tn| and log |Ln|, respectively.

3.2. Example 2. An entire transcendental family. Due to the existence of an essential
singularity at infinity, the global dynamics of transcendental entire maps is quite different to
the dynamics of rational maps. For instance new types of Fatou components may exist like
Baker or wandering domains (see [Dev94] for a brief introduction to transcendental dynamics).
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(a) Location tn of the generalized Mandelbrot set Mn
d . (b) Size Ln of the generalized Mandelbrot set Mn

d .

Figure 5. Linear regression between log (tn) and n (left) and log (Ln) and n (right)
for the map Nt and several values of d.

However, according to Remark 1, since the theory of Misiurewicz bifurcations is of local
character, it can be easily extended to families of transcendental entire maps. The main goal
is to show that the above algorithm runs with no significant modifications.

We consider the family of entire transcendental maps given by

(9) ft(z) = tz2 exp(z) ,

where t 6= 0 is a complex parameter. For all the values of the parameter t we have a superat-
tracting fixed point at the origin, i.e., ft(0) = f ′t(0) = 0, which is also an asymptotic value (a
singularity of the inverse map, see [Dev94], pages 181-182). Computing the derivative we have
that f ′t(z) = tz(z+2) exp(z) and thus there also exists a unique (active) critical point located
at c(t) ≡ −2. The local degree of both critical points is 2 since f ′′t (0) 6= 0 and f ′′t (−2) 6= 0.
The Fatou set of ft always contains the basin of attraction of 0, that is the points in C that
under iteration tends to 0.

Although ∞ is an essential singularity of the map ft and so, the global dynamics is far for
being polynomial or rational, the existence of a critical point at −2 of degree 2 makes some
similarities between the family ft and the quadratic family. Such similarities are explained
when plotting the parameter plane of ft where we can see some copies of small Mandelbrot
sets. In this parameter plane we plot three different behaviours, the first one is the set of
parameters such that the orbit of the active critical point −2 tends to zero (blue), the second
one when the orbit escapes to∞ (red) and finally when the orbit accumulates in an attracting
cycle (black). See Figure 6.

In order to study a Misiurewicz bifurcation we need to find parameter values such that the
active critical point lands in a repelling fixed point. Thus, we first compute de critical value
v(t) = ft(−2) = 4te−2, and imposing that v(t) is a fixed point ft(v(t)) = v(t) we arrive to the
equation

ft(4te
−2) = 4te−2.

Instead of solve numerically this equation we can take advantage to write it down in term of
the function g(z) = z exp(z) and its (multi-valued) function W (z) known as Lambert function.
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τ̄

t2

(a) Cascade of polynomial-like mappings.

τ̄

t2

t3

t4

(b) Cascade of polynomial-like map-

pings.

Figure 6. Parameter plane of the entire transcendental map ft. Misiurewicz bifur-
cation at t = τ̄ of degree 2 for the map ft.

Using this approach the above equation writes as

[g(z)]2 =
1

e2
where z = 2te−2,

obtaining two real solutions W (±1/e)e2/2. Only one of those τ̄ = W (1/e)e2/2 ≈ 1.028795064
satisfies the dynamical condition that the critical point is prefix. The other value correspond
to the case that the critical point is a fixed point. For this parameter value τ̄ the active
critical point c(τ̄) = −2 lands in a repelling fixed point located at 4τ̄ e−2 with multiplier
λ0 ≈ 2.556929. We can redefine the parameter t := t + τ̄ and considering the family of
functions

(10) gt(z) := ft+τ̄ (z) = (t+ τ̄)z2 exp(z)

concluding that gt has a Misiurewicz bifurcation of degree 2 at the parameter t = 0. Applying
the algorithm developed in Section 2 we have computed the location tn and size Ln of the
cascade of Mandelbrot sets Mn

2 tending to t = 0. To illustrate these computations we use,
as before, the regression between the period n of the small Mandelbrot set Mn

2 with log |tn|
and log |Ln|, in Figure 7(a) or Figure 7(b), respectively.

We end up this section by considering a slight modification of the Misiurewicz bifurcation
described above (where, remember, the active critical point c(t) lands in one iterate at the
repelling fixed point). Following [McM00], we introduce a new parameter k controlling the
number of iterates that the active critical point needs to land at the repelling fixed point
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(a) Location tn of the generalized Mandelbrot set Mn
2 . (b) Size Ln of the generalized Mandelbrot set Mn

2 .

Figure 7. Linear regression between log (tn) and n (left) and log (Ln) and n (right)
for the entire map ft.

Definition 4. Let f be a local bifurcation. We say that (f, c) is a degree d generalized
Misiurewicz bifurcation if the following conditions hold.

M1. There exists k ≥ 1 such that fk0 (c0) is a repelling fixed-point of f0, with multiplier
λ0 = f ′0

(
fk0 (c0)

)
;

M2. c0 is unramified for f0;
M3. fkt (ct) is not a fixed point of ft, for some t; and
M4. deg(ft, ct) = d and deg(fkt , ct) = d for all t sufficiently small .

Since the active critical point takes k iterates to arrive to the repelling fixed point, in the
last condition we require that this critical point does not collide with another critical point
of the map until it reaches the repelling fixed point.

It is worth to be noticed that this approach is different than the one consisting of applying
the theory of Misiurewicz bifurcation developed in Section 1 to the map gt = fkt . Indeed if
the active critical point c0 needs k iterates to land at the repelling fixed point fk(c0), it turns
out that the multiplier of such fixed point is λ0 = f ′0

(
fk0 (c0)

)
. In contrast if we take gt := fkt ,

the fixed point under g0 is g0(c0) and its multiplier is g′0 (g0 (c0)) = λk0; and on the other hand
the periods of the baby Mandelbrot sets are multiples of k.

Assuming that we have a generalized Misiurewicz bifurcation at t = 0 we obtain the same
estimations of the location tn and size Ln of the generalized copies of the Mandelbrot setMn

2

tending to t = 0. We recall that the key ingredient in these estimations is the local behavior
near the repelling fixed point fk(c0), the only difference is that the critical point takes more
iterates to reach this point. As we mention before we exclude the case when this critical point
heats another critical point and thus increasing the degree of the map.

We apply this generalization to the family of maps ft (Equation 9) for k = 2. Thus, the
first step is to find a concrete value of the parameter, denoted by τ̂ , such that the active
critical point c(τ̂) = −2 lands into two iterates in a repelling fixed point. This is equivalent
to solve the equation

f3
t (−2) = f2

t (−2).
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We solve numerically the above equation obtaining the parameter τ̂ ≈ −19.63162088. For
this concrete parameter value, the critical point −2 lands into two iterates to the repelling
fixed point f2

τ̂ (−2) ≈ −5.37511380 with multiplier λ0 ≈ 1.9462489. In Figure 8 we show
in the parameter plane of the map ft the location of the parameter τ̂ and the sequence of
Mandelbrot sets Mn

2 tending to this generalized Misiurewicz bifurcation.

τ̂

(a) Cascade of polynomial-like mappings.

τ̂
t̂3t̂4t̂5

(b) Cascade of polynomial-like mappings.

Figure 8. Parameter plane of the entire transcendental map ft (Equation 9). Gen-
eralized Misiurewicz bifurcation at t = τ̂ of degree 2 for the map ft. Observe that the
smallest period is n = k + 1 = 3.

We observe that by construction the sequence of copies of Mandelbrot setMn
2 have n ≥ 3,

since we need two iterates to be close to the repelling fixed and at least another iterate to
return to the critical point. In general, when the critical point takes k iterates to land into
a repelling fixed point, the small copies of Mandelbrot set have period n ≥ k + 1. Applying
again the algorithm developed in the Section 2 we obtain the location t̂n and size L̂n of Mn

2

of degree n. Finally, in Figure 9 we show the linear regression between the period and the
logarithm of the location and size of Mn

2 as expected.

(a) Location t̂n of the generalized Mandelbrot set Mn
2 . (b) Size L̂n of the generalized Mandelbrot set Mn

2 .

Figure 9. Linear regression between log (t̂n) and n (left) and log (L̂n) and n (right)
for the entire map ft.
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