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EXISTENCE OF PERIODIC SOLUTIONS FOR A
CLASS OF SECOND ORDER ORDINARY

DIFFERENTIAL EQUATIONS

ANTONIO GARCIA1 AND JAUME LLIBRE2

Abstract. We provide sufficient conditions for the existence of a
periodic solution for a class of second order differential equations
of the form ẍ+ g(x) = εf(t, x, ẋ, ε), where ε is a small parameter.

1. Introduction and statement of the results

The second order differential equations of the form

ẍ+ g(x) = εf(t, x, ẋ, ε),

have been studied by many authors because they have many applica-
tions, see for instance [2, 3, 7, 8, 9, 12, 15]. Two of the main families
studied are the Duffing equations see [5, 6], ... or the forced pendulum
see the nice survey [11] and the references quoted therein.

The aim of this work is to study periodic solutions of the second
order differential equation

(1) ẍ+ g(x) = µ2n+1p(t) + µ4n+1q(t, x, y, µ),

where n is a positive integer, µ is a small parameter, and the functions

g(x) = x+ x2n+1 (b+ xh(x)) ,

and h(x) are smooth, b ̸= 0, p(t) and q(t, x, y, µ) are smooth and peri-
odic with period 2π in the variable t.

Let Γ(x) the Gamma function, see for more details [1], and let α and
β the first Fourier coefficients of the periodic function p(t), i.e.

α =
1

π

∫ 2π

0

p(t) cos t dt, β =
1

π

∫ 2π

0

p(t) sin t dt.

Then our main result is the following.
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Theorem 1. If αβ ̸= 0 then for µ ̸= 0 sufficiently small the differential
equation (1) has a 2π–periodic solution x(t, µ) such that

x(0, µ) = π
1

4n+2

(
Γ(n+ 2)

2bΓ
(
n+ 3

2

)) 1
2n+1

α

(
β2

α2
+ 1

)−n

+O(µ2n).

Theorem 1 is proved in section 3. Its proof uses the averaging theory
for computing periodic solutions, see section 2 for a summary of the
results on this theory that we shall need.

2. The averaging theory

We want to study the T–periodic solutions of the periodic differential
systems of the form

(2) x′ = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε),

with ε > 0 sufficiently small, where F0, F1 : R × Ω → Rn and F2 :
R × Ω × (−ε0, ε0) → Rn are C2 functions, T–periodic in the variable
t, and Ω is an open subset of Rn. Let x(t, z, ε) be the solution of
the differential system (2) such that x(0, z, ε) = z. Suppose that the
unperturbed system

(3) x′ = F0(t,x),

has an open set V with V ⊂ Ω such that for each z ∈ V , x(t, z, 0) is
T–periodic.

Let y be an n × n matrix, and consider the first order variational
equation

(4) y′ = DxF0(t,x(t, z, 0))y,

of the unperturbed system (3) on the periodic solution x(t, z, 0). Let
Mz(t) be the fundamental matrix of the linear differential system (4)
with periodic coefficients such that Mz(0) is the n×n identity matrix.

Theorem 2. Consider the function F : V → Rn

(5) f(z) =

∫ T

0

M−1
z (t)F1(t,x(t, z, 0))dt.

If there exists α ∈ V with f(α) = 0 and

(6) det ((d f/dz) (α)) ̸= 0,

then there exists a T–periodic solution x(t, ε) of system (2) such that
x(0, ε) = α +O(ε).
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The existence of the periodic solution of Theorem 2 is due to Malkin
[10] and Roseau [13], for a shorter and easier proof see [4]. The proof
for the stability follows in a similar way to the proof of Theorem 11.6
of [14].

3. Proof of Theorem 1

The differential equation of second order (1) can be written as the
first order differential system

(7)
ẋ = y,
ẏ = −x− x2n+1 (b+ xh(x)) + µ2n+1p(t) + µ4n+1q(t, x, y, µ).

In order to apply the averaging theory described in section 2 to this
differential system we do the scaling x → µx and y → µy. Hence the
differential system (7) becomes

(8)
ẋ = y,
ẏ = −x+ µ2n (−bx2n+1 + p(t)) + µ4n q∗(t, x, y, µ).

This system is written into the normal form (2) for applying the aver-
aging theory described in section 2, where

(9)

x = (x, y),
ε = µ2n,
F0(x) = (y,−x),
F1(x, t) = (0,−bx2n+1 + p(t)),
F2(x, t, ε) = (0, q̄(t, x, y, ε)) .

From section 2 the solution x(t, z, 0) = (x(t, z, 0), y(t, z, 0)) of system
(8) with ε = 0 satisfies x(0, z, 0) = z = (x0, y0), and consequently

x(t, z, 0) = x0 cos t+ y0 sin t,
y(t, z, 0) = −x0 sin t+ y0 cos t.

The fundamental matrix Mz(t) = M(t) of the the first order varia-
tional equation (4) satisfying (9) is

M(t) =

(
cos t sin t
− sin t cos t

)
.
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According with Theorem 2 in order to compute the 2π–periodic so-
lutions of the differential system (8) we must compute the integral

f(z) =

(
f1(x0, y0)
f2(x0, y0)

)
=

∫ 2π

0

M−1(t)F1(t,x(t, z, 0))dt

=


b

∫ 2π

0

sin t(x0 cos t+ y0 sin t)
2n+1dt−

∫ 2π

0

p(t) sin tdt

−b

∫ 2π

0

cos t(x0 cos t+ y0 sin t)
2n+1dt+

∫ 2π

0

p(t) cos tdt

 .

Doing induction with respect to n it is not difficult to show that∫ 2π

0

sin t (x0 cos t+ y0 sin t)
2n+1 dt =

2
√
π Γ
(
3
2
+ n
)

Γ(2 + n)
y0
(
x2
0 + y20

)n
,∫ 2π

0

cos t (x0 cos t+ y0 sin t)
2n+1 dt =

2
√
π Γ
(
3
2
+ n
)

Γ(2 + n)
x0

(
x2
0 + y20

)n
.

Therefore we must solve the system

(
f1(x0, y0)

f2(x0, y0)

)
=


2
√
π bΓ

(
3
2
+ n
)

Γ(2 + n)
y0 (x

2
0 + y20)

n − πβ1

−2
√
π bΓ

(
3
2
+ n
)

Γ(2 + n)
x0 (x

2
0 + y20)

n
+ πα1

 =

(
0

0

)
.

This system has a unique solution(
x∗
0

y∗0

)
= π

1
4n+2

(
Γ(n+ 2)

2bΓ
(
n+ 3

2

)) 1
2n+1

α
(

β2

α2 + 1
)−n

β
(

α2

β2 + 1
)−n

 .

The determinant (6) of the Jacobian matrix Df(x∗
0, y

∗
0) is

det(Df(x∗
0, y

∗
0)) = 4

1
2n+1 (2n+ 1)π

2n
2n+1

+1

(
Γ(n+ 2)

bΓ
(
n+ 3

2

))− 2
2n+1

((
β
(

α2

β2 + 1
)−n

) 2
2n+1

+

(
α
(

β2

α2 + 1
)−n

) 2
2n+1

)2n

,

and by assumptions it is positive because αβb ̸= 0.
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In summary all the assumptions of Theorem 2 hold and consequently
from Theorem 2 it follows Theorem 1.
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