EXISTENCE OF PERIODIC SOLUTIONS FOR A CLASS OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

ANTONIO GARCIA ${ }^{1}$ AND JAUME LLIBRE ${ }^{2}$

Abstract

We provide sufficient conditions for the existence of a periodic solution for a class of second order differential equations of the form $\ddot{x}+g(x)=\varepsilon f(t, x, \dot{x}, \varepsilon)$, where ε is a small parameter.

1. Introduction and statement of the results

The second order differential equations of the form

$$
\ddot{x}+g(x)=\varepsilon f(t, x, \dot{x}, \varepsilon)
$$

have been studied by many authors because they have many applications, see for instance $[2,3,7,8,9,12,15]$. Two of the main families studied are the Duffing equations see $[5,6], \ldots$ or the forced pendulum see the nice survey [11] and the references quoted therein.

The aim of this work is to study periodic solutions of the second order differential equation

$$
\begin{equation*}
\ddot{x}+g(x)=\mu^{2 n+1} p(t)+\mu^{4 n+1} q(t, x, y, \mu), \tag{1}
\end{equation*}
$$

where n is a positive integer, μ is a small parameter, and the functions

$$
g(x)=x+x^{2 n+1}(b+x h(x)),
$$

and $h(x)$ are smooth, $b \neq 0, p(t)$ and $q(t, x, y, \mu)$ are smooth and periodic with period 2π in the variable t.

Let $\Gamma(x)$ the Gamma function, see for more details [1], and let α and β the first Fourier coefficients of the periodic function $p(t)$, i.e.

$$
\alpha=\frac{1}{\pi} \int_{0}^{2 \pi} p(t) \cos t d t, \quad \beta=\frac{1}{\pi} \int_{0}^{2 \pi} p(t) \sin t d t .
$$

Then our main result is the following.

Key words and phrases. periodic orbit, second-order differential equation, averaging theory.

Theorem 1. If $\alpha \beta \neq 0$ then for $\mu \neq 0$ sufficiently small the differential equation (1) has a 2π-periodic solution $\mathbf{x}(t, \mu)$ such that

$$
\mathbf{x}(0, \mu)=\pi^{\frac{1}{4 n+2}}\left(\frac{\Gamma(n+2)}{2 b \Gamma\left(n+\frac{3}{2}\right)}\right)^{\frac{1}{2 n+1}} \alpha\left(\frac{\beta^{2}}{\alpha^{2}}+1\right)^{-n}+O\left(\mu^{2 n}\right) .
$$

Theorem 1 is proved in section 3. Its proof uses the averaging theory for computing periodic solutions, see section 2 for a summary of the results on this theory that we shall need.

2. The averaging theory

We want to study the T-periodic solutions of the periodic differential systems of the form

$$
\begin{equation*}
\mathbf{x}^{\prime}=F_{0}(t, \mathbf{x})+\varepsilon F_{1}(t, \mathbf{x})+\varepsilon^{2} F_{2}(t, \mathbf{x}, \varepsilon) \tag{2}
\end{equation*}
$$

with $\varepsilon>0$ sufficiently small, where $F_{0}, F_{1}: \mathbb{R} \times \Omega \rightarrow \mathbb{R}^{n}$ and F_{2} : $\mathbb{R} \times \Omega \times\left(-\varepsilon_{0}, \varepsilon_{0}\right) \rightarrow \mathbb{R}^{n}$ are \mathcal{C}^{2} functions, T-periodic in the variable t, and Ω is an open subset of \mathbb{R}^{n}. Let $\mathbf{x}(t, \mathbf{z}, \varepsilon)$ be the solution of the differential system (2) such that $\mathbf{x}(0, \mathbf{z}, \varepsilon)=\mathbf{z}$. Suppose that the unperturbed system

$$
\begin{equation*}
\mathbf{x}^{\prime}=F_{0}(t, \mathbf{x}) \tag{3}
\end{equation*}
$$

has an open set V with $\bar{V} \subset \Omega$ such that for each $\mathbf{z} \in \bar{V}, \mathbf{x}(t, \mathbf{z}, 0)$ is T-periodic.

Let \mathbf{y} be an $n \times n$ matrix, and consider the first order variational equation

$$
\begin{equation*}
\mathbf{y}^{\prime}=D_{\mathbf{x}} F_{0}(t, \mathbf{x}(t, \mathbf{z}, 0)) \mathbf{y} \tag{4}
\end{equation*}
$$

of the unperturbed system (3) on the periodic solution $\mathbf{x}(t, \mathbf{z}, 0)$. Let $M_{\mathbf{z}}(t)$ be the fundamental matrix of the linear differential system (4) with periodic coefficients such that $M_{\mathbf{z}}(0)$ is the $n \times n$ identity matrix.

Theorem 2. Consider the function $F: \bar{V} \rightarrow \mathbb{R}^{n}$

$$
\begin{equation*}
f(\mathbf{z})=\int_{0}^{T} M_{\mathbf{z}}^{-1}(t) F_{1}(t, \mathbf{x}(t, \mathbf{z}, 0)) d t \tag{5}
\end{equation*}
$$

If there exists $\alpha \in V$ with $f(\alpha)=0$ and

$$
\begin{equation*}
\operatorname{det}((d f / d \mathbf{z})(\alpha)) \neq 0 \tag{6}
\end{equation*}
$$

then there exists a T-periodic solution $\mathbf{x}(t, \varepsilon)$ of system (2) such that $\mathbf{x}(0, \varepsilon)=\alpha+O(\varepsilon)$.

The existence of the periodic solution of Theorem 2 is due to Malkin [10] and Roseau [13], for a shorter and easier proof see [4]. The proof for the stability follows in a similar way to the proof of Theorem 11.6 of [14].

3. Proof of Theorem 1

The differential equation of second order (1) can be written as the first order differential system

$$
\begin{align*}
& \dot{x}=y \\
& \dot{y}=-x-x^{2 n+1}(b+x h(x))+\mu^{2 n+1} p(t)+\mu^{4 n+1} q(t, x, y, \mu) . \tag{7}
\end{align*}
$$

In order to apply the averaging theory described in section 2 to this differential system we do the scaling $x \rightarrow \mu x$ and $y \rightarrow \mu y$. Hence the differential system (7) becomes

$$
\begin{align*}
& \dot{x}=y \\
& \dot{y}=-x+\mu^{2 n}\left(-b x^{2 n+1}+p(t)\right)+\mu^{4 n} q^{*}(t, x, y, \mu) . \tag{8}
\end{align*}
$$

This system is written into the normal form (2) for applying the averaging theory described in section 2 , where

$$
\begin{align*}
& \mathbf{x}=(x, y) \\
& \varepsilon=\mu^{2 n} \\
& \mathbf{F}_{0}(\mathbf{x})=(y,-x) \tag{9}\\
& \mathbf{F}_{1}(\mathbf{x}, t)=\left(0,-b x^{2 n+1}+p(t)\right) \\
& \mathbf{F}_{2}(\mathbf{x}, t, \varepsilon)=(0, \bar{q}(t, x, y, \varepsilon))
\end{align*}
$$

From section 2 the solution $\mathbf{x}(t, \mathbf{z}, 0)=(x(t, \mathbf{z}, 0), y(t, \mathbf{z}, 0))$ of system (8) with $\varepsilon=0$ satisfies $\mathbf{x}(0, \mathbf{z}, 0)=\mathbf{z}=\left(x_{0}, y_{0}\right)$, and consequently

$$
\begin{aligned}
& x(t, \mathbf{z}, 0)=x_{0} \cos t+y_{0} \sin t \\
& y(t, \mathbf{z}, 0)=-x_{0} \sin t+y_{0} \cos t
\end{aligned}
$$

The fundamental matrix $M_{\mathbf{z}}(t)=M(t)$ of the the first order variational equation (4) satisfying (9) is

$$
M(t)=\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)
$$

According with Theorem 2 in order to compute the $2 \pi-$ periodic solutions of the differential system (8) we must compute the integral

$$
\begin{aligned}
f(\mathbf{z}) & =\binom{f_{1}\left(x_{0}, y_{0}\right)}{f_{2}\left(x_{0}, y_{0}\right)} \\
& =\int_{0}^{2 \pi} M^{-1}(t) F_{1}(t, \mathbf{x}(t, \mathbf{z}, 0)) d t \\
& =\binom{b \int_{0}^{2 \pi} \sin t\left(x_{0} \cos t+y_{0} \sin t\right)^{2 n+1} d t-\int_{0}^{2 \pi} p(t) \sin t d t}{-b \int_{0}^{2 \pi} \cos t\left(x_{0} \cos t+y_{0} \sin t\right)^{2 n+1} d t+\int_{0}^{2 \pi} p(t) \cos t d t} .
\end{aligned}
$$

Doing induction with respect to n it is not difficult to show that

$$
\begin{aligned}
& \int_{0}^{2 \pi} \sin t\left(x_{0} \cos t+y_{0} \sin t\right)^{2 n+1} d t=\frac{2 \sqrt{\pi} \Gamma\left(\frac{3}{2}+n\right)}{\Gamma(2+n)} y_{0}\left(x_{0}^{2}+y_{0}^{2}\right)^{n} \\
& \int_{0}^{2 \pi} \cos t\left(x_{0} \cos t+y_{0} \sin t\right)^{2 n+1} d t=\frac{2 \sqrt{\pi} \Gamma\left(\frac{3}{2}+n\right)}{\Gamma(2+n)} x_{0}\left(x_{0}^{2}+y_{0}^{2}\right)^{n}
\end{aligned}
$$

Therefore we must solve the system

$$
\binom{f_{1}\left(x_{0}, y_{0}\right)}{f_{2}\left(x_{0}, y_{0}\right)}=\binom{\frac{2 \sqrt{\pi} b \Gamma\left(\frac{3}{2}+n\right)}{\Gamma(2+n)} y_{0}\left(x_{0}^{2}+y_{0}^{2}\right)^{n}-\pi \beta_{1}}{\frac{-2 \sqrt{\pi} b \Gamma\left(\frac{3}{2}+n\right)}{\Gamma(2+n)} x_{0}\left(x_{0}^{2}+y_{0}^{2}\right)^{n}+\pi \alpha_{1}}=\binom{0}{0} .
$$

This system has a unique solution

$$
\binom{x_{0}^{*}}{y_{0}^{*}}=\pi^{\frac{1}{4 n+2}}\left(\frac{\Gamma(n+2)}{2 b \Gamma\left(n+\frac{3}{2}\right)}\right)^{\frac{1}{2 n+1}}\binom{\alpha\left(\frac{\beta^{2}}{\alpha^{2}}+1\right)^{-n}}{\beta\left(\frac{\alpha^{2}}{\beta^{2}}+1\right)^{-n}} .
$$

The determinant (6) of the Jacobian matrix $\operatorname{Df}\left(x_{0}^{*}, y_{0}^{*}\right)$ is

$$
\begin{gathered}
\operatorname{det}\left(D f\left(x_{0}^{*}, y_{0}^{*}\right)\right)=4^{\frac{1}{2 n+1}}(2 n+1) \pi^{\frac{2 n}{2 n+1}+1}\left(\frac{\Gamma(n+2)}{b \Gamma\left(n+\frac{3}{2}\right)}\right)^{-\frac{2}{2 n+1}} \\
\left(\left(\beta\left(\frac{\alpha^{2}}{\beta^{2}}+1\right)^{-n}\right)^{\frac{2}{2 n+1}}+\left(\alpha\left(\frac{\beta^{2}}{\alpha^{2}}+1\right)^{-n}\right)^{\frac{2}{2 n+1}}\right)^{2 n}
\end{gathered}
$$

and by assumptions it is positive because $\alpha \beta b \neq 0$.

In summary all the assumptions of Theorem 2 hold and consequently from Theorem 2 it follows Theorem 1.

Acknowledgements

The second author is partially supported by a FEDER-MINECO grant MTM2016-77278-P and an AGAUR grant number 2017SGR1617.

References

[1] M. Abramowitz and I.A. Stegun, Modified Bessel Functions I and K, $\S 9.6$ in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972, pp 374-377.
[2] D.R. Anderson, Multiple periodic solutions for a second-order problem on periodic time scales, Nonlinear Anal. 60 (2005), 101-115.
[3] D.R. Anderson and R.I. Avery, Existence of a periodic solution for continuous and discrete periodic second-order equations with variable potentials, J. Appl. Math. Comput. 37 (2011), 297-312.
[4] A. Buica, J. P. Françoise and J. Llibre, Periodic solutions of nonlinear periodic differential systems with a small parameter, Comm. Pure Appl. Anal. 6 (2006), 103-111.
[5] H. Chen and Y. Li, Stability and exact multiplicity of periodic solutions of Duffing equations with cubic nonlinearities, Proc. Amer. Math. Soc. 135 (2007), 3925-3932.
[6] G. Duffing, Erzwungen Schwingungen bei veränderlicher Eigenfrequenz und ihre technisch Bedeutung, Sammlung Vieweg Heft 41/42, Vieweg, Braunschweig, 1918.
[7] J.R. Graef, L. Kong and H. Wang, Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem, J. Differ. Equ. 245 (2008), 1185-1197.
[8] J.K. Hale and P.Z. Taboas, Interaction of damping and forcing in a second order equation, Nonlinear Anal. 2 (1978), 77-84.
[9] Y. Liu, W. Ge and Z. Gui, Three positive periodic solutions of nonlinear differential equations with periodic coefficients, Anal. Appl. 3(2) (2005), 145155.
[10] I.G. Malkin, Some Problems of the theory of nonlinear oscillations, Gosudarstv. Izdat. Tehn-Teor. Lit. Moscow, 1956 (in Russian).
[11] J. Mawhin, Seventy-five years of global analysis around the forced pendulum equation, Proceedings of Equadiff 9 CD rom, Masaryk University, Brno 1997, pp 115-145.
[12] D. Nuñez, A. Rivera andG. Rossodivita, Stability of odd periodic solutions in a resonant oscillator, Annali di Matematica (2017) 196, 443-455.
[13] M. Roseau, Vibrations non linéaires et théorie de la stabilité, Springer Tracts in Natural Philosophy, Vol. 8, Springer, New York, 1985.
[14] F. Vehrulst, Nonlinear differential equations and dynamical systems, Universitext, Springer, 1996.
[15] X. Wu, J. Li and Y, Zhou, A priori bounds for periodic solutions of a Duffing equation, J. Appl. Math. Comput. 26 (2008), 535-543.
${ }^{1}$ Departamento de Matemáticas, UAM-Iztapalapa, 09340 Iztapalapa, México City. MÉxico

E-mail address: agar@xanum.uam.mx
${ }^{2}$ Departament de Matemàtiques, Universitat Autònoma de Barcelo-na, 08193 Bellaterra, Barcelona, Catalonia, Spain

E-mail address: jllibre@mat.uab.cat

