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Center cyclicity of a family of quintic
polynomial vector fields

I. A. García∗, J. Llibre† and S. Maza∗

Abstract— We present a method for studying the Hopf cyclicity problem for the non-degenerate centers without the necessity
of solving previously the Dulac complex center problem associated to the larger complexified family. As application we analyze
the Hopf cyclicity of the centers of the quintic polynomial family written in complex notation as ż = iz + zz̄(Az3 + Bz2z̄ +
Czz̄2 +Dz̄3).

Keywords: Cyclicity, limit cycle, center problem.

1 Introduction

We consider a family of planar polynomial differential systems
of the form

(1)
ẋ = λ1x− y + P (x, y,λ),

ẏ = x+ λ1y +Q(x, y,λ),

where P,Q ∈ R[x, y,λ] are the polynomial nonlinearities
of system (1) and (λ1,λ) = (λ1,λ2, . . . ,λn) ∈ Λ ⊂ Rn

are the parameters of the family. We assume that for some
(λ1,λ) = (0,λ∗) ∈ Λ system (1) has a center at the origin. Of
course the origin is always a monodromic singularity of family
(1), i.e., it is a center or a focus and clearly when λ1 �= 0 it is a
focus.

Using a transversal section Σ = [0, ĥ) with endpoint at the
origin of coordinates and parameterized by h where ĥ = ĥ(λ),
we have the displacement map d : Σ × Λ → Σ × Λ defined
by d(h;λ) = Π(h;λ) − h, where Π : Σ × Λ → Σ × Λ is the
Poincaré or return map. We note that ĥ > 0 can be finite or
infinite.

Since the differential system (1) is analytic, the displacement
map d(h;λ) is analytic in the variables h ∈ [0, ĥ) and λ.
Hence we can expand the displacement function d(h;λ) =�

i≥1 vi(λ)h
i in Taylor series at h = 0 where the coefficients

vi ∈ R[λ] are called Poincaré–Liapunov constants. For λ1 = 0
the Bautin ideal B at the origin of system (1) is defined as the
ideal generated by all the polynomials vi(λ) with i ≥ 1 in the
polynomials ring R[λ]. This ideal B is Noetherian and then by
the Hilbert’s basis Theorem it is generated by a finite number
of polynomials.

DEFINITION 1 The minimal basis of a finitely generated ideal
I with respect to an ordered basis B = {f1, f2, f3, . . . } is the
basis MI defined by the following procedure:

(a) initially set MI = {fp}, where fp is the first non-zero
element of B;

(b) check successive elements fj , starting with j = p + 1,
adjoining fj to MI if and only if fj �∈ �MI�, the ideal
generated by MI .

We will write

(2) B = �vi1(λ), vi2(λ), . . . , vim(λ)�,
where {vi1(λ), vi2(λ), . . . , vim(λ)} ⊂ R[λ] is a minimal basis
of the Bautin ideal B. The cardinality m of this basis is called
the Bautin depth of B in [6] and it is associated to the chain of
ideals B1 ⊂ B2 ⊂ · · · ⊂ B where Bs = �v1(λ), . . . , vs(λ)� for
certain integer s ≥ 1.

Following Bautin’s seminal work [1] in Chapter 4 of [10] and
in Chapter 6 of [11] it is proved that when (2) is a minimal
basis of the ideal B then the displacement map d(h;λ) can be
written in the form

(3) d(h;λ) =
m�

j=1

vij (λ)h
ijqj(h;λ),

where qj(h;λ) are analytic functions in the variables h and
λ near (h,λ) = (0,λ∗) such that qj(0;λ

∗) = 1. Clearly
vij (λ

∗) = 0 for all j = 1, . . . ,m when the differential system
(1) has a center at the origin for λ = λ∗.

The maximum number of small amplitude limit cycles that can
bifurcate from a center at the origin of family (1) with λ = λ∗
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under arbitrarily small perturbations inside family (1), that is
for �λ − λ∗� � 1, is called the Hopf cyclicity of the center
with parameters λ∗.It is well known that the Hopf cyclicity of
any center at the origin of (1) is at most the Bautin depth m of
B, see Theorem 2.

We will consider the quintic polynomial family written in
complex form as

(4) ż = (i+ λ1)z + zz̄(Az3 +Bz2z̄ + Czz̄2 +Dz̄3),

with z = x + iy ∈ C and parameters λ1 ∈ R and
(A,B,C,D) ∈ C4. The center problem for this family has
been solved in [8], but the Hopf cyclicity is only stated for the
easier case of having a focus at z = 0. In this work we will
study the cyclicity problem of the center at z = 0 of (4).

The method for bounding the cyclicity does not need to solve
previously the Dulac complex center problem associated to the
larger complexified family.

2 Background on the cyclicity problem

In this section we summarize several results concerning the
cyclicity problem and the approach to that problem using
methods from computational commutative algebra. Most of
this background can be found in the excellent book [11].

Using the rearrangement (3) of the displacement map d(h;λ)
and applying Rolle’s Theorem several times the following
theorem is proved, see for example [1, 6, 11, 10].

THEOREM 2 Let {vi1(λ), vi2(λ), . . . , vim(λ)} ⊂ R[λ] be a
minimal basis of the Bautin ideal B associated to the origin of
family (1). Then the Hopf cyclicity of any center at the origin
in (1) is at most m.

The Poincaré-Liapunov constants are difficult to work with
mainly because to compute them we must perform quadratures.
Therefore, instead of working with the Poincaré-Liapunov
constants, from the computational point of view it is better
to obtain other polynomials ηj(λ) ∈ R[λ] that arise as the
obstructions in order to get a formal first integral H(x, y) =
x2 + y2 + · · · of family (1) with λ1 = 0 which is another
characterization of centers, see Poincaré [9] and Liapunov [7].

Using the complex coordinate z = x+ iy ∈ C family (1) with
λ1 = 0 can be written into the form ż = iz+F (z, z̄,λ) where
z̄ = x − iy and F is given by the polynomial F (z, z̄,λ) =
P
�
1
2 (z + z̄), i

2 (z̄ − z),λ
�
+ iQ

�
1
2 (z + z̄), i

2 (z̄ − z),λ
�
. We

can adjoin to this complex polynomial differential equation its
complex conjugate forming thus the complex system

ż = iz + F (z, z̄,λ) = iz +
�N

j+k=2 aj,k(λ)z
j z̄k,(5)

˙̄z = −iz̄ + F̄ (z, z̄,λ) = −iz̄ +
�N

j+k=2 āj,k(λ)z̄
jzk.

Replacing the conjugates z̄ and āj,k by new independent com-
plex state variable and complex parameters, say w and bj,k
respectively, yields a larger complex family of systems

(6) ż = iz+
N�

j+k=2

aj,kz
jwk, ẇ = −iw+

N�

j+k=2

bj,kw
jzk,

defined in C2 with complex parameters µ = (aj,k, bj,k).
Family (6) is called the complexification of family (1) with
λ1 = 0.

Following Dulac [3] one can generalize the concept of center
singularity of systems in R2 to systems in C2. To be specific we
say that (6) has a (complex) center at the origin (z, w) = (0, 0)
when µ = µ∗ if and only if it admits a formal (complex) first
integral Ĥ(z, w;µ∗) = zw+· · · . It is easy to check that system
(1) with (λ1,λ) = (0,λ∗) has a center at the origin if and only
if (5) has a center at the origin for λ = λ∗.

We shall define the focus quantities gj(µ) ∈ C[µ] with µ =

(aj,k, bj,k) of the complexification (6). Denote by X̂µ =
(iz+ · · · )∂z+(−iw+ · · · )∂w the family of vector fields in C2

associated with (6). The focus quantities satisfy that when we
look for a formal first integral Ĥ(z, w;µ) = zw + · · · of X̂µ

then X̂µ(Ĥ) =
�

j≥1 gj(µ)(zw)
j+1.

Let I the ideal in C[λ] given by I = �gj(µ) : j ∈ N�. It is
evident that (6) has a center at the origin when µ = µ∗ if and
only if µ∗ ∈ V(I), the complex variety associated to I . We
refer to I and V(I) as the complex Bautin ideal and complex
center variety respectively.

In order to avoid solve the Dulac center problem, instead of
working with complex focus quantities gj we will work with
the real focus quantities fj(λ) for family (1) defined as

(7) fj(λ) = gj(aj,k(λ), āj,k(λ) ∈ R[λ].

Theorem 6.2.3 of [11] describes the relationship between the
Poincaré-Liapunov constants vj(λ) and the real focus quanti-
ties fj(λ) for family (1). In summary we can finally obtain
an upper bound of the Hopf cyclicity only in terms of the
real focus quantities instead of Poincaré-Liapunov constants
because Theorem 2 can be restated in terms of a minimal Basis
of B formed by real focus quantities. The key point is that
expression (3) of the displacement map can be rewritten as

(8) d(h;λ) =

m�

j=1

f̃kj
(λ)h2kj+1ψj(h;λ),

where ψj(h;λ) are analytic functions in the variables h and
λ near (h,λ) = (0,λ∗) such that ψj(0;λ

∗) = 1. So we shall
compute real focus quantities instead of the Poincaré-Liapunov
constants due to their computational simplicity.

The problem of finding the depth of the Bautin ideal is in
general a difficult task, that is the reason for which the cyclicity
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problem of a center is not easy to solve. However, the problem
becomes easier when the Bautin ideal is radical. Recall that the
radical of B is defined as the ideal

√
B = {p ∈ R[λ] : ps ∈

B for some s ∈ N} and that clearly B ⊆
√
B. If B =

√
B then

B is called a radical ideal.

But B is not always radical, of course. Next theorem allows us
to obtain an upper bound on the Hopf cyclicity of the center at
the origin of family (1) in some subset of the center variety
when B is not radical. It is based on some ideas from [4]
and its proof is analogous (with small technical differences)
to that presented in [5] for some class of nilpotent monodromic
singularities.

Before stating Theorem 3 we recall that, given a ground field
K, a polynomial ideal J ⊂ K[x] is prime if whenever p, q ∈
K[x] with p q ∈ J then either p ∈ J or q ∈ J . The ideal
J is primary if p q ∈ J implies either p ∈ J or the power
qs ∈ J for some positive s ∈ N. Every radical ideal can be
written as the intersection of prime ideals. Also it is known by
the Lasker-Noether Theorem (see [2]) that an arbitrary ideal
J can be decomposed as the intersection of a finite number of
primary ideals.

THEOREM 3 Assume that the center problem at the origin
of family (1) has been solved and its center variety V(B)
satisfies that V(B) = V(Bjs) as varieties in Cn−1. Let
{fj1 , . . . , fjs} be a minimal basis of Bjs and suppose a primary
decomposition of Bjs can be written as Bjs = R ∩ N where
R is the intersection of the ideals in the decomposition that
are prime and N is the intersection of the remaining ideals
in the decomposition. Then for any system of family (1)
corresponding to λ∗ ∈ V(B) \ V(N ), the Hopf cyclicity of
the center at the origin is at most s.

3 Main Results

It is clear that if you show that V(Bs) = V(B) for some
integer s ≥ 1 then you have solved the center problem of the
polynomial family. This is the case of [8] where it is proved
that the polynomial differential family

(9) ż = (i+λ1)z+(zz̄)
d−3
2 (Az3+Bz2z̄+Czz̄2+Dz̄3),

with d ≥ 5 odd and being A = a1 + ia2, B = b1 + ib2,
C = c1 + ic2 and D = d1 + id2 has a center at z = 0 if and
only if λ1 = 0 and one of the following two sets of conditions
hold:

(c.1) Integrable case: b1 = 3a1 + c1 = 3a2 − c2 = 0;

(c.2) Reversible case: b1 = a2c1 + a1c2 = a21d1 − a22d1 −
2a1a2d2 = c21d1 − c22d1 + 2c1c2d2 = 0.

We recall that the integrable case (c.1) means that family (9)
can be written after rescaling by |z|d−3 into the form ż =

i∂H/∂z̄ where H(z, z̄) is a function such that exp(H) for
d = 5 and H for d ≥ 7 odd are both real analytic first integrals
in a neighborhood of (x, y) = (0, 0).

Define the reduced focal values as �fk ≡ fk mod Bk−1,
that is the remainder of fk upon division by a Gröbner ba-
sis of the ideal Bk−1. We have computed the first non-
vanishing reduced focal values of (4) with parameters λ =
(a1, a2, b1, b2, c1, c2, d1, d2) ∈ R8 obtaining f2j+1(λ) ≡ 0
and up to a positive multiplicative constant they are

f2(λ) = b1,

f̃4(λ) = −a2c1 − a1c2,

f̃6(λ) = 3a1c1d1 + c21d1 + 3a2c2d1 − c22d1 −
6a2c1d2 + 2c1c2d2,

f̃8(λ) = −b2(9a
2
1d1 − 9a22d1 − c21d1 + c22d1 −

18a1a2d2 − 2c1c2d2),

f̃10(λ) = −324a41d1 + 324a42d1 + 4c41d1 − 4c42d1 +

243a21d
3
1 − 243a22d

3
1 − 27c21d

3
1 + 27c22d

3
1 +

648a31a2d2 + 648a1a
3
2d2 + 8c31c2d2 +

8c1c
3
2d2 − 486a1a2d

2
1d2 − 54c1c2d

2
1d2 +

243a21d1d
2
2 − 243a22d1d

2
2 − 27c21d1d

2
2 +−

27c22d1d
2
2486a1a2d

3
2 − 54c1c2d

3
2,

f̃14(λ) = (d21 + d22)
2(9a21d1 − 9a22d1 − c21d1 +

c22d1 − 18a1a2d2 − 2c1c2d2),

f̃16(λ) = −(d21 + d22)(81a
3
1a2d

2
1 − 81a1a

3
2d

2
1 +

c31c2d
2
1 − c1c

3
2d

2
1 − 243a21a

2
2d1d2 +

81a42d1d2 + 3c21c
2
2d1d2 − c42d1d2 +

162a1a
3
2d

2
2 + 2c1c

3
2d

2
2),

The following proposition will be needed later on when we use
Theorem 3 for proving our main result, Theorem 6.

PROPOSITION 4 The center variety V(B) ⊂ R8 of family (4)
is V(B) = V(B14). This equality also holds in C8.

Notice that B and B14 are ideals in R[λ] because we are
working with real focal values. A key point in Proposition
4 is that the inequality V(B) = V(B14) must also hold in
C8. Recall that given two ideals I and J in R[λ], it can
be that V(I) = V(J) as real varieties included in Rk, but
V(I) �= V(J) when they are viewed as complex varieties
in Ck. At this point we view family (1) as a system on C2

with complex parameters, i.e., we will study family (1) with
(x, y) ∈ C2 and λ ∈ Cn−1. Now we do the linear complex
change of coordinates (x, y) �→ (X,Y ) = (x + iy, x − iy).
Notice that now Ȳ �= X but anyway (1) is transformed into

(10) Ẋ = iX+F+(X,Y ;λ), Ẏ = −iY +F−(X,Y ;λ),
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where F± only contains nonlinear terms in X and Y because

F±(X,Y ;λ) = P

�
1

2
(X + Y ),

i

2
(Y −X),λ

�

±iQ

�
1

2
(X + Y ),

i

2
(Y −X),λ

�
.

In this complex setting we can build a formal se-
ries H̃(X,Y ;λ) = XY + · · · such that Xλ(H̃) =�

j≥1 fj(λ)(XY )j+1 being Xλ the vector field in C2 associ-
ated to (10) and where fj ∈ R[λ] are just the already defined
real focus quantities associated to the origin of family (1).
Hence (10) with λ = λ∗ ∈ Cn−1 has a formal first integral
if and only if fj(λ∗) = 0 for all j ∈ N. Since family (1) with
λ1 = 0 is linearly conjugate with family (10) we have that the
complex family (1) with (λ1,λ) = (0,λ∗) ∈ R × Cn−1 has a
formal first integral H(x, y) with H : C2 → C if and only if
fj(λ

∗) = 0 for all j ∈ N.

The above arguments lead to conclude that the equality of
the varieties V(B) = V(Bk) holds in Cn−1 whether for any
λ∗ ∈ Cn−1 satisfying f1(λ

∗) = · · · = fk(λ
∗) = 0 there is

a formal first integral H(x, y) = x2 + y2 + · · · of (1) with
(λ1,λ) = (0,λ∗) ∈ R × Cn−1 and it is proved using only
analytic (not geometric) arguments valid for (x, y) ∈ C2 and
λ ∈ Cn−1:

We observe that if we have the explicit expression of a formal
or analytic real first integral of certain subfamily of centers of
(1) (this always happens in the Hamiltonian subfamily) we can
directly check whether this first integral can be extended to the
complex setting concluding that equality of the varieties also
holds in the complex setting.

There is a wide class of systems (1), the time-reversible centers,
for which the former is true. We prove this fact in the following
proposition.

PROPOSITION 5 Let system (1) with (λ1,λ) = (0,λ∗) and
λ∗ ∈ Rn−1 be time-reversible. Then its complex extension
to (x, y) ∈ C2 and λ∗ ∈ Cn−1 possesses a holomorphic first
integral near the origin. In particular, this λ∗ ∈ Cn−1 vanishes
all the real focal values, i.e., fk(λ∗) = 0 for all k ∈ N.

We end with an application of Theorem 3 to family (4) which
is one of our main results. Notice that, when reading the
statement of the forthcoming Theorem 6, only remains to
obtain a cyclicity upper bound of the linear center ż = iz,
that is system (4) with λ = 0. Anyway our calculations show
strong evidences for stating the conjecture that such a bound is
seven.

THEOREM 6 The following statements hold.

(a) Any nonlinear center at the origin of family (4) has Hopf
cyclicity at most 6 when we perturb it inside this family.

(b) There are perturbations of the linear center ż = iz inside
family (4) producing 6 limit cycles bifurcating from the
origin.
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