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JOHANNA D. GARCÍA-SALDAÑA, JAUME LLIBRE AND CLAUDIA VALLS

Abstract. A center p of a differential system in R2 is global if R2 \{p}
is filled of periodic orbits. It is known that a polynomial differential
system of degree 2 has no global centers. Here we characterize the
global centers of the differential systems

ẋ = ax+ by + P3(x, y), ẏ = cx+ dy +Q3(x, y),

with P3 and Q3 homogeneous polynomials of degree 3, and such that
the center has purely imaginary eigenvalues, i.e. a linear type center.

1. Introduction and statement of the main results

The notion of center goes back to Poincaré and Dulac, see [10, 6]. They
defined a center for a vector field on the real plane as a singular point having
a neighborhood filled of periodic orbits with the exception of the singular
point. The problem of distinguishing when a monodromic singular point is
a focus or a center, known as the focus-center problem started precisely with
Poincaré and Dulac and is still active nowadays with many questions still
unsolved. These last years also the centers are perturbed for studying the
limit cycles bifurcating from their periodic solutions, see for instance [1, 3].

If an analytic system has a center, then it is known that after an affine
change of variables and a rescaling of the time variable, it can be written in
one of the following three forms:

ẋ = −y + P (x, y), ẏ = x+Q(x, y),

called linear type center, which has a pair of purely imaginary eigenvalues,

ẋ = y + P (x, y), ẏ = Q(x, y)

called nilpotent center

ẋ = P (x, y), ẏ = Q(x, y)

called degenerated center, where P (x, y) and Q(x, y) are real analytic func-
tions without constant and linear terms defined in a neighborhood of the
origin.
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2 J.D. GARCÍA-SALDAÑA, J. LLIBRE, C. VALLS

We recall that a global center for a vector field on the plane is a singular
point p having R2 filled of periodic orbits with the exception of the singular
point. The easiest global center is the linear center ẋ = −y, ẏ = x. It is
known (see [11, 2]) that quadratic polynomial differential systems have no
global centers. The global degenerated centers of homogeneous or quasi-
homogeneous polynomial differential systems were characterized in [4] and
[8], respectively. However the characterization of the global centers in the
cases that the center is nilpotent or of linear-type has not been done. This is
the first paper in which such classification is done for the linear-type centers
for the systems having a linear part at the origin with purely imaginary
eigenvalues and cubic homogeneous nonlinearities.

A polynomial differential system can be extended in a unique analytic
way to infinity using the Poincaré compactification, for more details see
Chapter 5 of [7].

We now state our main results. We first provide normal forms for the
differential systems to be studied.

Theorem 1. Any vector field having at the origin of coordinates a singular
point with purely imaginary eigenvalues of the form linear plus cubic homo-
geneous terms and no infinite singular points in the Poincaré disc after a
linear change of variables and a rescaling of the independent variable can be
written as

ẋ = −dx− d2 + ω2

c
y + p1x

3 + (p2 − 3αµ)x2y + p3xy
2 − αy3,

ẏ = cx+ dy + αx3 + p1x
2y + (p2 + 3αµ)xy2 + p3y

3,

(1)

where α = ±1 and c, d, ω, µ, p1, p2, p3 ∈ R with c ̸= 0, ω > 0 and µ > −1/3.

The proof of Theorem 1 is given in section 2.

A singular point p of a planar system is called hyperbolic if both eigen-
values of the Jacobian matrix at p have real part different from zero. It is
called semi-hyperbolic if only one of the eigenvalues of the Jacobian matrix
at p is zero, and if both eigenvalues of the Jacobian matrix at p are zero
but this matrix is not identically zero it is called nilpotent. Finally, if the
Jacobian matrix at p is identically zero then p is said to be linearly zero.

Let q be an infinite singular point and let h be a hyperbolic sector of q.
We say that h is degenerated if its two separatrices are contained at infinity,
that is, are contained in the boundary of the Poincaré disc.

It follows from Theorem 2.15 (for hyperbolic singular points), Theorem
2.19 (for semi-hyperbolic singular points) and Theorem 3.5 (for nilpotent
singular points) in [7] that a singular point which is either hyperbolic, semi-
hyperbolic or nilpotent cannot be formed by two degenerated hyperbolic
sectors. So in order that an infinite singular point q can be formed by two
degenerated hyperbolic sectors it must be linearly zero.
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Theorem 2. Any vector field having at the origin of coordinates a singular
point with purely imaginary eigenvalues of the form linear plus cubic ho-
mogeneous terms such that all infinite singular points in the Poincaré disc
are linearly zero after a linear change of variables and a rescaling of the
independent variable can be written as one of the following three systems:

ẋ = −dx− d2 + ω2

c
y + p1x

3 + p2x
2y,

ẏ = cx+ dy + αx3 + p1x
2y + p2xy

2;

(2)

ẋ = −dx− d2 + ω2

c
y + (p2 − 3α)x2y,

ẏ = cx+ dy + (p2 + 3α)xy2;

(3)

ẋ = −dx− d2 + ω2

c
y + (p2 − 3α)x2y + p3xy

2 − αy3,

ẏ = cx+ dy + (p2 + 3α)xy2 + p3y
3;

(4)

where α = ±1 and c, d, ω, p1, p2, p3 ∈ R with c ̸= 0, ω > 0.

The proof of Theorem 2 is given in section 3.

Theorem 3. Systems (1) have a linear type center at the origin if and only
if they can be written as one of the following five systems:

ẋ = −dx− d2 + ω2

c
y − 3αµx2y − αy3,

ẏ = cx+ dy + αx3 + 3αµxy2,

(I)

where α = ±1 and d, ω, µ ∈ R with c ̸= 0, ω > 0 and µ > −1/3. These
systems are Hamiltonian with

H(x, y) =
c

2
x2 + dxy +

d2 + ω2

2c
y2 +

α

4
x4 +

3

2
αµx2y2 +

α

4
y4.

ẋ = −ω2

c
y + (p2 − 3µα)x2y − αy3,

ẏ = cx+ αx3 + (p2 + 3µα)xy2,

(II)

where α = ±1 and c, ω, µ ∈ R with c ̸= 0, ω > 0 and µ > −1/3;

ẋ = −dx− cy + p1x
3 − 3αµx2y − p1xy

2 − αy3,

ẏ = cx+ dy + αx3 + p1x
2y + 3αµxy2 − p1y

3,
(III)

where α = ±1 and c, d, µ ∈ R with |c| > |d|, p1 ̸= 0 and µ > −1/3;

ẋ = −dx− d2 + ω2

c
y − p1x

3 − αcd+ p1(c
2 − d2 − ω2)

cd
x2y − p1xy

2 − αy3,

ẏ = cx+ dy + αx3 + p1x
2y +

αcd+ p1(d
2 + ω2 − c2)

cd
xy2 − p1y

3,

(IV)
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where α = ±1 and c, d, ω ∈ R with cd ̸= 0, p1 ̸= 0 and ω > 0;

ẋ = −cy + p1x
3 + (p2 − α)x2y − p1xy

2 − αy3,

ẏ = cx+ αx3 + p1x
2y + (α+ p2)xy

2 − p1y
3,

(V)

where α = ±1, c ∈ R \ {0} and p1p2 ̸= 0.

The proof of Theorem 3 is given in section 4. In order to state the following
theorem we introduce the notation

R = (2d(p1 + α) + c(2p1 + α(1− 3µ)))(2d(p1 − α)− c(2p1 − α(1− 3µ))),

S1 = −c3d4p41(dα((c
2 + d2)p1 + cdα) + p1(cp1 + dα)ω2),

S2 = c4 + 2c2(d2 − ω2) + (d2 + ω2)2.

(5)

Theorem 4. Under the assumptions of Theorem 3 the following statements
hold.

(a) A system (I) has a global center at the origin if and only if cα > 0.
(b) A system (II) has a global center at the origin if and only if cα > 0

and either ((p2 +3µα)ω2 − c2α)c(p22 +α2(1− 9µ2)) ≤ 0, or (c2(p2 −
3µα) + αω2)c(p22 + α2(1− 9µ2)) ≥ 0.

(c) A system (III) has a global center at the origin if and only if (c ±
d)α > 0 and if p1 = −dα/c then cα > 0, but if p1 ̸= −dα/c then

either R < 0, or R > 0 and ((2dp1+cα(1−3µ))±
√
R)(2p21+α2(3µ−

1)) ≤ 0.
(d) A system (IV) has a global center at the origin if and only if cα((d2+

ω2)
√
S2 + (c2d2 + d4 − c2ω2 + 2d2ω2 + ω4)) ≤ 0 and if p1 = −dα/c

then cα > 0, but if p1 ̸= −dα/c then either S1 < 0, or S1 > 0 and
−2

√
S1 + cdp21(c

3p1 + c2dα+ cp1(d
2 − ω2)− dα(d2 + ω2)) ≤ 0.

(e) A system (V) has a global center at the origin if and only if cα(p2+√
4p21 + p22) ≥ 0 and cα(p2 −

√
4p21 + p22) ≤ 0.

The proof of Theorem 4 is given in section 6.

Theorem 5. Systems (2) have a linear type center at the origin and no
more finite singular points with all infinite singular points formed by two
degenerated hyperbolic sectors if and only if they can be written as one of
the following systems

(VI) ẋ = −dx− d2 + ω2

c
y, ẏ = cx+ dy + αx3,

with α = ±1, d, c, ω ∈ R, c ̸= 0, ω > 0 and cα > 0. Note that these systems
are Hamiltonian with

H(x, y) =
c

2
x2 + dxy +

d2 + ω2

2c
y2 +

α

4
x4;
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x′ = −dx− d2 + ω2

c
y + p1x

3 +
d2 + ω2

cd
p1x

2y,

y′ = cx+ dy + αx3 + p1x
2y +

d2 + ω2

cd
p1xy

2.

(VII)

with α = ±1, d, c, ω ∈ R, ω > 0, cα > 0 and dp1 < 0;

(VIII) x′ = −ω2

c
y + p2x

2y, y′ = cx+ αx3 + p2xy
2.

with α = ±1, c, ω ∈ R, ω > 0, cα > 0 and cp2 < 0;

x′ = −dx− d2 + ω2

c
y +

αd(d2 + ω2)

c(d2 − ω2)
x3 +

α(d2 + ω2)2

c2(d2 − ω2)
x2y,

y′ = cx+ dy + αx3 +
α(d2 + ω2)

c(d2 − ω2)
x2y +

α(d2 + ω2)

c2(d2 − ω2)
xy2.

(IX)

with α = ±1, d, c, ω ∈ R, ω > 0, |d| > |w| and cα > 0.

The proof of Theorem 5 is given in section 6.

Theorem 6. Systems (3) have a linear type center at the origin and no
more finite singular points with all infinite singular points formed by two
degenerated hyperbolic sectors if and only if they can be written as one of
the following systems

(X) ẋ = −dx− d2 + ω2

c
y − 3αx2y, ẏ = cx+ dy + 3αxy2,

with α = ±1, c, d ∈ R, c ̸= 0, ω > 0 and cα > 0. These systems are
Hamiltonian with

H(x, y) =
c

2
x2 + dxy +

d2 + ω2

2c
y2 +

3

2
αx2y2;

(XI) ẋ = −ω2

c
y + (p2 − 3α)x2y, ẏ = cx+ (p2 + 3α)xy2,

with α = ±1, c ∈ R \ {0}, p2 ̸= 0, ω > 0, cα > 0 and p2 ∈ [−3, 3].

The proof of Theorem 6 is given in section 7.

Theorem 7. Systems (4) have a linear type center at the origin and no
more finite singular points with all infinite singular points formed by two
degenerated hyperbolic sectors if and only if they can be written as one of
the following systems

(XII) ẋ = −dx− d2 + ω2

c
y − 3αx2y − αy3, ẏ = cx+ dy + 3αx2,

with α = ±1, c, d ∈ R, c ̸= 0, ω > 0 and cα > 0. These systems are
Hamiltonian with

H(x, y) =
c

2
x2 + dxy +

d2 + ω2

2
y2 +

3α

2
x2y2 +

α

4
y4;
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(XIII) ẋ = −ω2

c
y + (p2 − 3α)x2y − αy3, ẏ = cx+ (p2 + 3α)xy2,

with α = ±1, c ∈ R \ {0}, p2 ̸= 0, ω > 0, cα > 0 and c(p2 + 3α) ≥ 0.

The proof of Theorem 7 is given in section 8.

An immediate consequence of Theorems 4, 5, 6 and 7 is the following.

Corollary 8. Any polynomial vector field having at the origin of coordinates
a singular point with purely imaginary eigenvalues of the form linear plus
cubic homogeneous terms has a global center at the origin if and only if it
satisfies the assumptions of Theorems 4, or 5, or 6, or 7.

2. Proof of Theorem 1

Doing a linear change of variables and a rescaling of the independent
variable, planar cubic homogeneous differential systems can be classified
into the following ten classes, see [4]:

ẋ = x(p1x
2 + p2xy + p3y

2),

ẏ = y(p1x
2 + p2xy + p3y

2),
(i)

whose infinity in the Poincaré disc is formed by singular points;

ẋ = p1x
3 + p2x

2y + p3xy
2,

ẏ = αx3 + p1x
2y + p2xy

2 + p3y
3,

(ii)

where α = ±1 and whose infinite singular points in the Poincaré disc are
the real solutions of αx4 = 0 at infinity.

ẋ = (p1 − 1)x3 + p2x
2y + p3xy

2,

ẏ = (p1 + 3)x2y + p2xy
2 + p3y

3,
(iii)

whose infinite singular points in the Poincaré disc are the real solutions of
4x3y = 0 at infinity.

ẋ = p1x
3 + (p2 − 3α)x2y + p3xy

2,

ẏ = p1x
2y + (p2 + 3α)xy2 + p3y

3,
(iv)

where α = ±1 and whose infinite singular points in the Poincaré disc are
the real solutions of 6αx2y2 = 0 at infinity.

ẋ = p1x
3 + (p2 − α)x2y + p3xy

2 − αy3,

ẏ = αx3 + p1x
2y + (p2 + α)xy2 + p3y

3,
(v)

where α = ±1 and without infinite singular points;

ẋ = p1x
3 + (p2 − 3α)x2y + p3xy

2 + y3,

ẏ = p21y + (p2 + 3α)xy2 + p3y
3,

(vi)
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whose infinite singular points in the Poincaré disc are the real solutions of
y2(6x2 − y2)2 = 0 at infinity;

ẋ = p1x
3 + (p2 − 3α)x2y + p3xy

2 − αy3,

ẏ = p1x
2y + (p2 + 3α)xy2 + p3y

3,
(vii)

where α = ±1 and whose infinite singular points in the Poincaré disc are
the real solutions of αy2(6x2 + y2) = 0 at infinity;

ẋ = p1x
3 + (p2 − 3µ)x2y + p3xy

2 + y3,

ẏ = x3 + p1x
2y + (p2 + 3µ)xy2 + p3y

3,
(viii)

with µ ∈ R and whose infinite singular points in the Poincaré disc are the
real solutions of x4 + 6µx2y2 − y4 = 0 at infinity;

ẋ = p1x
3 + (p2 − 3αµ)x2y + p3xy

2 − αy3,

ẏ = αx3 + p1x
2y + (p2 + 3αµ)xy2 + p3y

3,
(ix)

with α = ±1, µ > −1/3, µ ̸= 1/3 and without infinite singular points;

ẋ = p1x
3 + (p2 − 3µ)x2y + p3xy

2 − y3,

ẏ = x3 + p1x
2y + (p2 + 3µ)xy2 + p3y

3,
(x)

with µ < −1/3 and whose infinite singular points in the Poincaré disc are
the solutions of x4 + 6µx2y2 + y4 = 0 at infinity.

Note that when µ = 1/3 system (v) becomes system (ix) and from now
on we consider system (ix) with µ > −1/3 and forgot system (v).

In this theorem we are interested in systems without infinite singular
points. The only classes of systems that have no infinite singular points are
systems (ix) with µ > −1/3.

For studying the cubic planar polynomial vector fields having linear and
cubic terms being the origin a singular point, it is sufficient to add to the
above family in (ix) a linear part. This is due to the fact that the linear
changes of variables that are done to obtain the classes (i)–(x) are not affine,
they are strictly linear. So a linear plus a cubic vector field being the origin
a singular point with no infinite singular points in the Poincaré disc can be
written as

ẋ = ax+ by + p1x
3 + (p2 − 3αµ)x2y + p3xy

2 − αy3,

ẏ = cx+ dy + αx3 + p1x
2y + (p2 + 3αµ)xy2 + p3y

3,
(6)

for some real constants a, b, c, d and with α = ±1, µ > −1/3. The eigenval-
ues of the linear part of system (6) at the origin are

λ1,2 =
a+ d±

√
(a+ d)2 − 4(ad− bc)

2
.

In order to have a linear type center at the origin, these eigenvalues must
be ±ωi, for some ω > 0. So a = −d and d2+ bc = −ω2. We see that bc ̸= 0,
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otherwise the left hand side would be non-negative. Then we can solve for
b and we get b = −(d2 + ω2)/c. So system (6) becomes

ẋ = −dx− d2 + ω2

c
y + p1x

3 + (p2 − 3αµ)x2y + p3xy
2 − αy3,

ẏ = cx+ dy + αx3 + p1x
2y + (p2 + 3αµ)xy2 + p3y

3.

(7)

This completes the proof of the theorem.

3. Proof of Theorem 2

The proof of Theorem 2 is the same as the proof of Theorem 1 taking
into account that system (ii) has only the origin of the local chart U2 as the
infinite singular points which is linearly zero if and only if p3 = 0. This gives
system (2) in Theorem 2.

Moreover, system (iv) has only the origin of the local charts U1 and U2

as infinite singular points and they are both linearly zero if and only if
p1 = p3 = 0. This gives system (3) in Theorem 2.

System (vii) has an infinite singular point which is the origin of the local
chart U1 and is linearly zero if and only if p1 = 0. This gives system (4) in
Theorem 2.

Any other of the systems (i)–(x) either the infinite is formed by singular
points, or they do not provide infinite singular points in the Poincaré disc,
or they provide at least one infinite singular point which is not linearly zero.
After this, the proof is exactly the same as in the proof of Theorem 1 (that
is, adding the linear part).

4. Proof of Theorem 3

We will use the following result, proved in [9].

Theorem 9. Any planar vector field of the form: linear plus cubic ho-
mogeneous terms being the origin a singular point with purely imaginary
eigenvalues can be written in the form

ẋ = y + Fx3 +Gx2y + (H − 3P )xy2 +Ky3,

ẏ = −x+ Lx3 + (M −H − 3F )x2y + (N −G)xy2 + Py3.
(8)

The origin of system (8) is a center if and only if one of the following
conditions hold:

(a) H = M = N = 0;
(b) M = 0, HL = −2FN − HK − HN + 2NP and H2F = GHN −

HKN + 2N2P −H2P −HN2;
(c) M = 0, H = 5(P − F )/2, L = −G − 4K, N = 5(G + 3K), and

3F 2 + 10FP + 16GK + 64K2 + 3P 2 = 0.
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First we write the linear part of system (7) into its real Jordan normal
form doing the change of variables x = (ωY − dX)/c, y = X and then we
do the rescaling τ = ωt. Doing so, the new system can be written as in (8)
with

F =
c3p3 − 3αc2dµ− c2dp2 + cd2p1 − αd3

c3ω
,

G =
3αc2µ+ c2p2 − 2cdp1 + 3αd2

c3
, H =

4p1ω

c2
, P =

ω(cp1 + αd)

c3
,

K =
αω2

c3
, L = −

α
(
c4 + 6c2d2µ+ d4

)
c3ω2

,

M =
4
(
c2p3 − cdp2 + (d2 + ω2)p1

)
c2ω

, N =
2(cp2 − 2dp1)

c2
.

Condition (a) in Theorem 9 yields p1 = p2 = p3 = 0 and so we obtain
system (I) in the statement of the theorem. Note that in this case system (I)
is Hamiltonian with the Hamiltonian stated in the statement of the theorem.

Condition (b) in Theorem 9 yields the following real solutions in which
cα ̸= 0, ω ̸= 0 and µ > −1/3:

• d = p1 = p3 = 0. This condition yields system (II) in the statement
of the theorem;

• p3 = −p1, p2 = 0, ω =
√
c2 − d2 (and so |c| > |d|). Moreover p1 ̸= 0

because otherwise the system becomes a system (I). This condition
yields system (III) in the statement of the theorem;

• µ = 1/3, p3 = −p1, p2 = p1(d
2 + ω2 − c2)/(cd) (and so cd ̸= 0).

Moreover p1 ̸= 0 because otherwise the system becomes a system (I).
This condition yields system (IV) in the statement of the theorem;

• µ = 1/3, p3 = −p1, ω = ±c, d = 0. Note that p1p2 ̸= 0 because if
p2 = 0 then the system becomes a system (III), and if p1 = 0 then
the system becomes a system (II). This condition yields system (V)
in the statement of the theorem.

We will show now that condition (c) is not satisfied. Indeed conditions (c)
yield that the unique possible solution with α ̸= 0 is

p1 = −dα

c
, p2 =

2c3dp3 + α(d4 − 3c4)

2c2d2
, µ = −c4 + d4

6c2d2
.

Note that µ < −1/3 and so this condition is not possible. This completes
the proof of the theorem.

5. Proof of Theorem 4

We will study each of the systems (I)–(V) separately.
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First note that in case of system (I) we get that the system is Hamiltonian.
It was proved in [5] that in this case there unique condition so that the unique
finite singular point is the origin is cα > 0. Hence statement (a) is proved.

The singular points of system (II) are

(0, 0),
(
0,±i

ω√
cα

)
,
(
± i

√
c

α
, 0
)
, (±x,±y)

with

x =

√
(p2 + 3µα)ω2 − c2α

c(p22 + α2(1− 9µ2))
, y = i

√
c2(p2 − 3µα) + αω2

c(p22 + α2(1− 9µ2))

(note that if c(p22 + α2(1− 9µ2)) = 0 the points (±x,±y) do not exist). So
in order that the candidates to be singular points different from the origin
do not exist we must have cα > 0 and either ((p2 + 3µα)ω2 − c2α)c(p22 +
α2(1− 9µ2)) ≤ 0, or (c2(p2− 3µα)+αω2)c(p22+α2(1− 9µ2)) ≥ 0. We recall
that if (p2 + 3µα)ω2 − c2α = 0, i.e., p2 = α(c2 − 3µω2)/ω2, then x = 0
and y = iω/

√
αc which is non real because cα > 0. On the other hand,

if c2(p2 − 3µα) + αω2 = 0, that is, p2 = α(3c2µ − ω2)/c2 then y = 0 and

x = i
√
c/α which is also non real. So statement (b) is proved.

The singular points of system (III) (which has the condition |c| > |d| and
p1 ̸= 0) are,

(0, 0), ±i

√
c+ d

α(1 + 3µ)
(1, 1), ±i

√
c− d

α(1 + 3µ)
(1, 1), ±(x±,−y±)

where

x± =

√
2dp1 + cα(1− 3µ)±

√
R

2(2p21 + α2(3µ− 1))
, y± = −2dp1 + cα(1− 3µ)∓

√
R

2(cp1 + dα)
x±,

with R introduced in (5). Note that if 2p21 + α2(3µ − 1) = 0 then the
points ±(x±,−y±) do not exist. On the other hand, if cp1 + dα = 0, i.e.,
p1 = −dα/c then the points ±(x±,−y±) become(

± i

√
c

α
, 0
) (

0,±i

√
c

α

)
.

So in order that all the candidates to be singular points different from the
origin do not exist, we must have (besides the condition |c| > |d|, p1 ≠ 0),
(c± d)α > 0 and if p1 = −dα/c then cα > 0, but if p1 ̸= −dα/c then either

R < 0, or R > 0 and ((2dp1 + cα(1 − 3µ)) ±
√
R)(2p21 + α2(3µ − 1)) ≤ 0.

Hence statement (c) is proved.

The singular points of system (IV) (which has the condition cd ̸= 0 and
p1 ̸= 0) are, besides the origin,

±
(
− c2d3p31 ±

√
S1

c2d2p21(cp1 + dα)
y, y
)
, ±

(
− d2 + ω2 − c2 ±

√
S2

2cd
ŷ, ŷ
)
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where

y = −

√
−2

√
S1 + cdp21(c

3p1 + c2dα+ cp1(d2 − ω2)− dα(d2 + ω2))

p41S2
,

ŷ = −

√
(d2 + ω2)

√
S2 + (c2d2 + d4 − c2ω2 + 2d2ω2 + ω4)

2cα
√
S2

,

and S1, S2 were introduced in (5). Note that if cp1 + dα = 0 that is p1 =
−dα/c then the singular points

±
(
− c2d3p31 ±

√
S1

c2d2p21(cp1 + dα)
y, y
)

become (
± i

√
c

α
, 0
)
, ±i

√
c

α

1√
S2

(
d2 + ω2 − c2,−2dc

)
.

So in order that all the candidates to be singular points different from the
origin do not exist, we must have (besides the condition cd ̸= 0 and p1 ≠ 0),
cα((d2 + ω2)

√
S2 + (c2d2 + d4 − c2ω2 + 2d2ω2 + ω4)) ≤ 0 and if p1 = −dα/c

then cα > 0, but if p1 ̸= −dα/c then either S1 < 0, or S1 > 0 and −2
√
S1 +

cdp21(c
3p1 + c2dα + cp1(d

2 − ω2) − dα(d2 + ω2)) ≤ 0. This completes the
proof of statement (d).

The singular points of system (V) are, besides the origin,

±
√
c√

2p1 − ip2

(1− i√
2
,−1 + i√

2

)
, ∓

√
c√

2p1 + ip2

(1 + i√
2
,−1− i√

2

)
,

±
( T1√

2
,−

√
2p1T1

p2 +
√

4p21 + p22

)
, ±

( T2√
2
,
(p2 +

√
4p21 + p22)T2

2
√
2p1

)
where

T1 =

√
−c(p2 +

√
4p21 + p22)

α
√
4p21 + p22

and T2 =

√
c(p2 −

√
4p21 + p22)

α
√
4p21 + p22

.

So taking into account that p1p2 ̸= 0, in order that all the candidates to be
singular points different from the origin do not exist, we must have cα(p2 +√

4p21 + p22) ≥ 0 and cα(p2 −
√
4p21 + p22) ≤ 0. This concludes the proof of

the theorem.

6. Proof of Theorem 5

First we write the linear part of system (2) into its real Jordan normal
form doing the change of variables x = (ωY − dX)/c, y = X and then we
do the rescaling τ = ωt. Doing so the new system can be written as in (8)
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with

F =
d

c3ω
(cdp1 − c2p2 − αd2), G =

c2p2 + 3αd2 − 2cdp1
c3

,

K =
αω2

c3
, L = − d4α

c3ω2
, P =

(cp1 + dα)ω

c3
,

H =
4p1ω

c2
, N =

2(cp2 − 2dp1)

c2
, M =

4

c2ω
(p1(d

2 + ω2)− cdp2).

Condition (a) in Theorem 9 yields p1 = p2 = 0 and so we obtain system
(VI). Note that system (VI) is Hamiltonian with Hamiltonian

H =
c

2
x2 + dxy +

d2 + ω2

2c
y2 +

α

4
x4.

It was proved in [5] that in this case the unique infinite singular point which
is the origin of the local chart U2 is formed by two degenerated hyperbolic
sectors if and only if cα > 0 and that in this case there are no more finite
singular points besides the origin.

Condition (b) in Theorem 9 with p21 + p22 + p23 ̸= 0 yields the conditions

(b.1) p2 = p1(d
2+ω2)/(cd) with cd ̸= 0 and p1 ̸= 0 because otherwise this

system becomes a system (VI);
(b.2) p1 = 0, d = 0 and p2 ̸= 0 because otherwise this system becomes a

system (VI);

(b.3) p1 =
dα(d2 + ω2)

c(d2 − ω2)
, p2 =

α(d2 + ω2)2

c2(d2 − ω2)
with |d| ̸= |ω|.

System (2) with the conditions (b.1) becomes

x′ = −dx− d2 + ω2

c
y + p1x

3 +
d2 + ω2

cd
p1x

2y,

y′ = cx+ dy + αx3 + p1x
2y +

d2 + ω2

cd
p1xy

2.

(9)

The singular points of system (9) are

(0, 0), ±

(√
d

p1
,−

cd3/2p
1/2
1 ± i

√
cd(d3α+ (cp1 + dα)ω2)

p1(d2 + ω2)

)
,

± i

√
c

α(d2 + ω2)

(
ω,

dωc

d2 + ω2

)
.

In order that all the candidates to be singular points different from the origin
do not exist, and taking into account that condition cα > 0, dp1 > 0 and
cd(d3α+ (cp1 + dα)ω2) < 0 never hold, we must have cα > 0 and dp1 < 0.

Now we study the infinite singular points. We already know that the
unique infinite singular point is the origin of the local chart U2 that is linearly
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zero. On the local chart U2 we have

u̇ = −d2 + ω2

c
v2 − 2duv2 − αu4 − cu2v2,

v̇ = −v
(d2 + ω2

cd
p1u+ p1u

2 + dv2 + αu3 + cuv2
)
.

Doing two horizontal blow ups and one vertical blow up and taking into
account that cα > 0 and dp1 < 0 we conclude that the origin of the local
chart U2 is formed by two degenerated hyperbolic sectors. So we obtain
system (VII).

System (2) with the conditions (b.2) becomes

x′ = −ω2

c
y + p2x

2y,

y′ = cx+ αx3 + p2xy
2.

(10)

The singular points of system (10) are

(0, 0), ±i
(√ c

α
, 0
)
,

(
± ω
√
cp2

,±i

√
c2p2 + αω2

cp22

)
.

In order that all the candidates to be singular points different from the origin
do not exist, and taking into account that condition cα > 0, cp2 > 0 and
c(c2p2 + αω2) < 0 is null, we must have cα > 0 and cp2 < 0.

Now we study the infinite singular points. We already know that the
unique infinite singular point is the origin of the local chart U2 that is linearly
zero. On the local chart U2 we have

u̇ = −ω2

c
v2 − αu4 − cu2v2,

v̇ = uv(p2 + αu2 + cv2).

Doing one horizontal and one vertical blow up, taking into account that
cα > 0 and cp2 < 0 we conclude that the origin of the local chart U2 is
formed by two degenerated hyperbolic sectors. So we obtain system (VIII).

System (2) with the conditions (b.3) becomes

x′ = −dx− d2 + ω2

c
y +

αd(d2 + ω2)

c(d2 − ω2)
x3 +

α(d2 + ω2)2

c2(d2 − ω2)
x2y,

y′ = cx+ dy + αx3 +
αd(d2 + ω2)

c(d2 − ω2)
x2y +

α(d2 + ω2)

c2(d2 − ω2)
xy2.

(11)

The singular points of system (11) are

(0, 0), ±i

√
cω2

α(d2 + ω2)

(
1,− dc

d2 + ω2

)
,

√
c(d2 − ω2)

α(d2 + ω2)

(
± 1,−cd(1± i)

d2 + ω2

)
.
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In order that all the candidates to be singular points different from the origin
do not exist we must have cα > 0.

Now we study the infinite singular points. We already know that the
unique infinite singular point is the origin of the local chart U2 that is linearly
zero. On the local chart U2 we have

u̇ = −ω2 + d2

c
v2 − 2duv2 − αu4 − cu2v2,

v̇ = −
v
(
c2
(
d2 − ω2

) (
v2(cu+ d) + αu3

)
+ αu

(
d2 + ω2

) (
cdu+ d2 + ω2

))
c2 (d2 − ω2)

.

Doing one horizontal and one vertical blow up, taking into account that
cα > 0 we see that if |d| > |ω| the origin of the local chart U2 is formed
by two degenerated hyperbolic sectors while if |d| < |ω| there are parabolic
sectors arriving to the origin of the local chart U2 and so it is not formed
by two degenerated hyperbolic sectors. In short, for having the origin as
the unique finite singular point and that the origin of the local chart U2 is
formed by two degenerated hyperbolic sectors we must have cα > 0 and
|d| > |ω|. So we obtain system (IX).

For condition (c) of Theorem 9 with p21+ p22+ p23 ̸= 0 systems (2) have no
linear type center at the origin. This completes the proof of Theorem 5.

7. Proof of Theorem 6

First we write the linear part of system (3) into its real Jordan normal
form doing the change of variables x = (ωY − dX)/c, y = X and then we
do the rescaling τ = ωt. Doing so, the new system can be written as in (8)
with

F = −d(p2 + 3α)

cω
, G =

p2 + 3α

c
, K = 0, L = −6d2α

cω2
,

P = 0, H = 0, N =
2p2
c

, M = −4dp2
cω

.

Condition (a) in Theorem 9 yields p2 = 0 and so we obtain system (X).
Note that system (X) is Hamiltonian with Hamiltonian

H(x, y) =
c

2
x2 + dxy +

d2 + ω2

2c
y2 +

3

2
αx2y2.

It was proved in [5] that in this case the unique infinite singular points
are the origin of the local charts U1 and U2 and they are formed by two
degenerated hyperbolic sectors if and only if cα > 0 and that in this case
there are no more finite singular points besides the origin.
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Condition (b) in Theorem 9 with p2 ̸= 0 yields the condition d = 0. So
system (3) becomes

(12) ẋ = −ω2

c
y + (p2 − 3α)x2y, ẏ = cx+ (p2 + 3α)xy2.

First we study the finite singular points. They are

(0, 0),

(
± ω√

c(p2 − 3α)
,±i

√
c

p2 + 3α

)
,

where they do not exist if and only if either c(p2−3α) ≤ 0, or c(p2−3α) > 0
and c(p2 + 3α) ≥ 0.

Now we study the infinite singular points of this system. We already know
that they are the origins of the local charts U1 and U2. On the local chart
U1 system (12) becomes

u̇ = 6αu2 + cv2 +
ω2

c
u2v2, v̇ = uv

(
3α− p2 +

ω2

c
v2
)
.

The only infinite singular point of this system is the origin which is linearly
zero. Doing one horizontal and one vertical blow up, we get that if c(p2 +
3α) > 0 and α(p2+3α) > 0 or p2+3α = 0 and cα > 0, then the origin of the
local chart U1 is formed by two degenerated hyperbolic sectors. Otherwise
there are parabolic sectors arriving at the origin of the local chart U1 and
so it is not formed by two degenerated hyperbolic sectors. These conditions
are equivalent to: either p2+3α > 0, c > 0 and α = 1; or p2+3α < 0, c < 0
and α = −1; or p2 + 3α = 0 and cα > 0.

On the local chart U2 system becomes

u̇ = −6αu2 − ω2

c
v2 − cu2v2, v̇ = −uv(p2 + 3α+ cv2).

Doing one horizontal and one vertical blow up, we get that if c(p2−3α) < 0
and α(p2 − 3α) < 0, or p2 − 3α = 0 and cα > 0, then the origin of the local
chart U2 is formed by two degenerated hyperbolic sectors. Otherwise, there
are parabolic sectors arriving to the origin of the local chart U2 and so it
is not formed by two degenerated hyperbolic sectors. These conditions are
equivalent to: either p2 − 3α > 0, c < 0 and α = −1; or p2 − 3α < 0, c > 0
and α = 1; or p2 − 3α = 0 and cα > 0.

In short, for having the origin as the unique finite singular point and that
both the origins of the local charts U1 and U2 are formed by two degenerated
hyperbolic sectors we must have cα > 0 and p2 ∈ [−3, 3]. Hence we obtain
system (XI).

For condition (c) of Theorem 9 with p2 ̸= 0 systems (3) have no linear
type center at the origin. This completes the proof of Theorem 6.
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8. Proof of Theorem 7

First we write the linear part of system (4) into its real Jordan normal
form doing the change of variables x = (ωY − dX)/c, y = X and then we
do the rescaling τ = ωt. Doing so the new system can be written as in (8)
with

F =
cp3 − dp2 − 3dα

cω
, G =

p2 + 3α

c
, K = 0,

L = −α(c2 + 6d2)

cω2
, P = 0, H = 0, N =

2p2
c

, M =
4(cp3 − dp2)

cω
.

Condition (a) in Theorem 9 yields p1 = p2 = 0 and so we obtain sys-
tem (XII). Note that system (XII) is Hamiltonian with Hamiltonian

H(x, y) =
c

2
x2 + dxy +

d2 + ω2

2c
y2 +

3α

2
x2y2 +

α

4
y4.

It was proved in [5] that in this case the unique infinite singular point is the
origin of the local chart U1 which is formed by two degenerated hyperbolic
sectors if and only if cα > 0 and that in this case there are no more finite
singular points besides the origin.

Condition (b) in Theorem 9 with p22 + p23 ̸= 0 and α ̸= 0 yields the
condition p3 = d = 0. So we get the system

(13) ẋ = −ω2

c
y + (p2 − 3α)x2y − αy3, ẏ = cx+ (p2 + 3α)xy2,

whose finite singular points are

(0, 0),
(
0,± iω√

cα

)
,

(
±

√
(p2 + 3α)ω2 − c2α

c(p22 − 9α2)
,±i

√
c

p2 + 3α

)
.

Note that if p2 = ±3α the last four points do not exist. So in order that they
do not exist we must have cα > 0 and either c(p2+3α) ≥ 0, or c(p2+3α) < 0
and (p2 − 3α)((p2 + 3α)ω2 − c2α) > 0.

Now we study the infinite singular points of system (13). We already know
that it is the origin of the local chart U1. On the local chart U1 system (13)
becomes

u̇ = 6αu2 + cv2 + αu4 +
ω2

c
u2v2, v̇ = uv

(
3α− p2 + αu2 +

ω2

c
v2
)
.

Doing one horizontal and one vertical blow up and taking into account that
cα > 0, we get that if c(p2 + 3α) ≥ 0 and α(p2 + 3α) ≥ 0, then after the
blow-down the origin of the local chart U1 is formed by two degenerated
hyperbolic sectors. On the other hand, if the above conditions do not hold,
then the origin of the local chart U1 is not formed by two degenerated
hyperbolic sectors. In short, in order that system (13) has no more finite
singular points besides the origin and the origin of the local chart U1 is
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formed by two degenerated hyperbolic sectors we must have c(p2 + 3α) ≥ 0
and cα > 0. Hence we get system (XIII).

For condition (c) of Theorem 9 with p22 + p23 ̸= 0 systems (4) have no
linear type center at the origin. This completes the proof of Theorem 7.
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