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In this paper, we characterize the global nilpotent centers of polynomial differential systems of

the linear form plus cubic homogeneous terms.
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1. Introduction and Statements
of the Main Results

Poincaré [1951] and [Dulad [1908] defined a center

for a real planar vector field as a singular point
whose neighborhood is filled with periodic orbits
with the exception of the singular point. The so-
called focus-center problem, which consists of dis-
tinguishing when a monodromic singular point is a
focus or a center, started with these orbits but it is
still very active with many open problems (see for

instance |Al , [2018a; |Christopher & Li,
2007))

If a real planar analytic system has a center at
the origin, then after a linear change of variables

and a rescaling of its independent variable, it can
be written in one of the following three forms:

g =+ Q(x,y),

called a nondegenerate center;

Y= Q(xay)v

T =—y+ P(z,y),

& =y+ P(,y),
called a nilpotent center;

&= P(z,y), y=Q(z,y),

called a degenerate center, where P(z,y) and
Q(z,y) are real analytic functions without constant
and linear terms, defined in a neighborhood of the
origin.
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